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Abstract. We develop a learning-based method to generate patient-specific pseudo computed tomography
(CT) from routinely acquired magnetic resonance imaging (MRI) for potential MRI-based radiotherapy treatment
planning. The proposed pseudo CT (PCT) synthesis method consists of a training stage and a synthesizing
stage. During the training stage, patch-based features are extracted from MRIs. Using a feature selection,
the most informative features are identified as an anatomical signature to train a sequence of alternating random
forests based on an iterative refinement model. During the synthesizing stage, we feed the anatomical signa-
tures extracted from an MRI into the sequence of well-trained forests for a PCT synthesis. Our PCT was com-
pared with original CT (ground truth) to quantitatively assess the synthesis accuracy. The mean absolute error,
peak signal-to-noise ratio, and normalized cross-correlation indices were 60.87� 15.10 HU, 24.63� 1.73 dB,
and 0.954� 0.013 for 14 patients’ brain data and 29.86� 10.4 HU, 34.18� 3.31 dB, and 0.980� 0.025 for
12 patients’ pelvic data, respectively. We have investigated a learning-based approach to synthesize CTs from
routine MRIs and demonstrated its feasibility and reliability. The proposed PCT synthesis technique can be
a useful tool for MRI-based radiation treatment planning. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JMI.5.4.043504]
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1 Introduction
Magnetic resonance imaging (MRI) has several important
advantages over computed tomography (CT) for radiation treat-
ment planning. The principle advantage is a more accurate and
reliable organ-at-risk and target delineation with superior soft
tissue contrast offered by MRI over CT.1 A potential treatment
planning process with MRI as a sole imaging modality2,3 could
eliminate systematic MRI-CT coregistration errors (for example,
an inherent uncertainty of ∼2 mm in cranial MRI-CT registra-
tion was reported by Ulin et al.4), reduce medical cost, minimize
patient radiation exposure, and simplify clinical workflow.
Despite these advantages, MRI contains neither unique nor
quantitative information on the attenuation properties which
are required for accurate dose calculations and the generation
of reference images for patient setup based on two-dimensional
planar images.2 Synthesizing PCT images with electron density
information from MRIs has been proposed.5,6 Conventional
PCT synthesis techniques can be broadly categorized as
atlas-, segmentation-, sequence-based methods, and hybrid
methods. Atlas-based methods map a single or multiple CT
atlases to a newly acquired MRI to generate the corresponding
PCT of the new patient based on deformable registration
algorithms.7,8 However, these methods’ efficiency is highly
limited by the accuracy of intersubject registration algorithms.
Segmentation-based methods first manually or automatically
segment MR images into different classes, such as bone, air,
fat, and soft tissue, and then assign a uniform electron density

value to each class.9–11 However, segmentation-based methods
cannot reliably distinguish between bone and air regions due to
their similar MRI intensities. Sequence-based methods use spe-
cialized MR sequences, such as the ultrashort echo time (UTE),
or a mixture of standard and specialized sequences to acquire
different types of MRIs and perform some postprocessing on
these MRIs to generate the final PCT.12–14 The current image
quality of UTE sequences is inadequate for accurate delineation
of blood vessels from bone, as they both appear dark.15,16

Moreover, the use of nonstandard MR sequences may introduce
additional scanning time to the existing MR scanning workflow
and may increase the probability of discomfort and motion deg-
radation. Hybrid methods combine two or more of the above
methods into a mixed framework to generate a PCT.10,11,17

Recently, as machine learning has become more and more
popular in the medical imaging field, using machine-learning-
based methods to generate PCTs fromMRIs has been developed
and can be classified into the following three categories:

1. Dictionary-learning (DL)-based methods: These meth-
ods first rank the corresponding CT patches based on
the similarity of MR image patches and then linearly
or nonlinearly combine these top-ranked patches
together to generate a PCT patch and finally recon-
struct a whole PCT through combining all synthetic
patches together.18–22 However, these methods are sen-
sitive to MR intensities which can vary as a function of
scanning parameters for a given tissue.
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2. Random-forest (RF)-based methods: RFs constitute an
intuitive model that offers a flexible probabilistic
framework for solving the learning tasks that can be
used for learning MRI-CT mapping.23–25 However,
these methods are imperfect due to uninformative
and redundant components of extracted feature vec-
tors, which may introduce ambiguous binary splitting
in the decision trees of an RF to result in an erroneous
synthesis.

3. Convolutional-neural-network (CNN)-based methods:
A CNN provides a complex nonlinear mapping from
MRI to CT through a multilayer and fully trainable
model.26–28 However, CNN-based methods suffer from
a long training time and their performance can be
affected by many parameters.

In this work, we incorporate anatomical signature, alternat-
ing random forest (ARF), and iterative refinement (IR) model
into a learning-based framework to derive PCTs from standard
MRIs for MRI-based treatment planning. The contributions of
the paper are as follows: (1) a feature selection (FS) is intro-
duced to identify the most informative components of features,
which are served as an anatomical signature. (2) To reduce the
uncertainty of both MRI anatomical signature and CT target,
a joint information gain (JIG) is incorporated into the decision
trees of an RF. (3) To cope with a lack of global optimization in
RF-based methods, an ARF scheme is used to train an RF-based
model. (4) An IR model is introduced to enhance the accuracy of
PCT synthesis by combining the contextual information of
a PCT image and MRI anatomical signature.

This paper is organized as follows: we first provide an over-
view of our proposed MR-based PCT synthesis framework,
followed by the details on the FS, the construction of the
ARF with a JIG, and the IR model for synthesis improvement.
We then compare our methods with DL- and RF-based PCT
methods and display our contribution within the experimental
results.

2 Methods

2.1 System Overview

For a given pair of MR and CT training images, the CT image
was used as the regression target of the MR image. Prior to the
training stage, we performed image preprocessing to improve
the training quality by removing noise and uninformative
regions by a nonlocal means method.29 An intrasubject registra-
tion was performed to align each pair of MR and CT images, and
all pairs were then aligned into a common space. This registra-
tion is performed by a commercial software Velocity AI 3.2.1
(Varian Medical Systems, Palo Alto, California) using rigid
registration. In the training stage, for each MRI, we first
extracted multilevel features, i.e., discrete cosine transform
(DCT), local binary pattern (LBP), and pair-wise voxel differ-
ence features23 from multiscale images, which consisted of an
original and three derived images with a sequence of downsam-
pling factors (0.75, 0.5, and 0.25). Then, these extracted features
were concatenated as a patch-based feature vector. (The patch
size of MRI is 15 × 15 × 15 voxel size.) Next, we performed
an FS process through least absolute shrinkage and selection
operator to identify the anatomical signature from these
extracted features. The anatomical signature of each voxel,

together with the corresponding CT target, was used to train
a sequence of ARFs under an IR model. In the synthesizing
stage, the selected features (anatomical signature) were
extracted from a new MR image and then were fed into the
sequence of well-trained ARFs for the PCT synthesis. Figure 1
outlines the workflow schematic of our synthesis method.

2.2 Feature Selection

The patch-based features may contain noisy and redundant fea-
tures that could overfit a learning model, affecting the prediction
accuracy and degenerate the final PCT synthesis performance.
Therefore, an FS should be performed to identify the most
informative features, which are called as anatomical signature to
differentiate with original feature vector. As recommended in
Ref. 22, minimizing a logistic sparsity regression is used for
our FS, as follows:
EQ-TARGET;temp:intralink-;e001;326;358

w ¼ min
w

�Xn
j¼1

logð1þ expð−lðyjÞðwTfðxjÞ þ bÞÞÞ

þ μ
Xm
i¼1

jwij∕βi
�
: (1)

For each MRI patch centered at voxel xj, fðxjÞ denotes the
extracted feature vector which concatenates DCT, LBP, and
pair-wise voxel difference features at multiple scales, yj denotes
the CT voxel at the same position of xi, n denotes the number of
voxel samples xj, βi denotes the optimization scalar, which is
computed by discriminative power, i.e., Fisher’s score,30 μ is
a regularization parameter and we set μ ¼ 0.5, b is an intercept
scalar, lð·Þ denotes an anatomical label, andw ¼ fwig is a sparse
coefficient vector. Each component wi denotes the i’th compo-
nent’s importance of fðxjÞ and m denotes the length of w.

We first used label lðyjÞ ¼ 1 if yj belongs to nonair regions
and lðyjÞ ¼ −1 if yj belongs to air regions. After first FS, we
used lðyjÞ ¼ 1 if yj belongs to bone regions and lðyjÞ ¼ −1 if yj
belongs to soft tissue regions. The corresponding label was
obtained by setting the CT intensity range of ½−∞;−400Þ as
air, ½−400;300Þ as soft tissue, and ½300;þ∞Þ as bone. As stud-
ied in our previous work,22 the w is obtained by Eq. (1). The
anatomical signature, denoted as fsðxjÞ, is composed by a sub-
set of feature components with corresponding nonzero entries in
w. The total dimensionality of the original feature space is 2400.

Fig. 1 The flowchart of the proposed method.
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After FS, 63 selected informative features are adequate. These
selected components have superior power to distinguish among
bone, air, and soft tissue. An example is given in Fig. 2, (a) and
(b) show the sample voxels drawn from a pair of MR/CT
images. A sample belonging to the bone is highlighted by a
red asterisk, and a sample belonging to the soft tissue is repre-
sented by a green circle. Figure 2(c) shows a scatter plot of two
random features of the corresponding samples without any FS.
Figure 2(d) shows a scatter plot of the two top-ranked features
with a high Fisher’s separation score.30 It can be observed that
the selected features can better separate bone and soft tissue
voxels in an MRI.

2.3 Alternating Regression Forest

2.3.1 Joint information gain

An RF includes a series of decision trees, each of which is fed
with a random subset of training data and is trained independ-
ently from the others. Each decision tree recursively splits a
training sample S ¼ ffsðxjÞ; yjg from a parent node into two
disjoint child nodes, such that the uncertainty of the CT target
variables in the resulting subsets (child node) is minimized.
However, if the splitting of decision trees is only based on
CT target variables, two CT patches with a similar CT intensity
in their central voxels may come from two totally different loca-
tions with significantly different MRI anatomical signature and
vice versa. In Figs. 3(a) and 3(b), the red and yellow circles

denote the central voxel of the patches of MRI and CT, respec-
tively. In Fig. 3(a), these two MRI patches from two different
locations have totally different extracted features and anatomical
signatures, while in Fig. 3(b) the central voxel values of the two
corresponding CT patches have the similar intensity values.
Based on similar CT intensities, these two samples with differ-
ent MRI anatomical signatures will be distributed in a uniform
partition (child node), no matter which feature in anatomical
signature is chosen and which splitting function is applied for
a separation. Thus, the splitting procedure pertaining to the
uncertainty reduction of CT targets may induce ambiguity for
training a decision tree.

To cope with this issue, we proposed a JIG strategy to reduce
the uncertainty between an MRI anatomical signature and a CT
target:

EQ-TARGET;temp:intralink-;e002;326;396

HCðS; θÞ ¼
X
i

jyi − yj2∕jSj

þ λ
X
i

jfsðxiÞ −mðfsðxiÞÞj2∕jSj; (2)

where λ is a smoothing parameter, mð·Þ denotes the mean of
anatomical signatures, y denotes the mean of CT targets, and
jSj is the number of samples in S. Here, we empirically set
λ ¼ 0.05. The i in Eq. (2) means the i’th position of central loca-
tion in both CT and MR image. In first term, yi denotes the CT
patch whose central location is i. In second term, fsðxiÞ denotes

0 1
0

1

0 1
0

1

(a) (b) (c) (d)

Fig. 2 An example of discriminating the bone from soft tissue regions with and without FS. (a) and
(b) Axial MRI and CT images, where the sample voxels belonging to soft tissue are highlighted by
green circles, and sample voxels belonging to bone are highlighted by red asterisks. (c) Scatter
plots of random 2 features of original extracted features generated from MRI patches that centered
on corresponding samples. (d) Scatter plots of 2 top-ranked features with a high Fisher’s separation
score.

Fig. 3 An example of (a) a CT and (b) its corresponding MR image with highlighted patches and center
voxels.
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the anatomic feature vector of MR patch xi whose central loca-
tion is i. By minimizing Eq. (2), the binary splitting procedure
not only requires forwarding the training anatomical signatures
with similar CT targets into the same child node but also satisfy-
ing the restraint that the anatomical signatures themselves are
similar, which potentially eases the inference model in a leaf.
The splitting procedure continues until a stopping criterion is
met and then final leaf nodes are created.

2.3.2 Alternating random forest

Since how data are further split is only decided at a local node
level for an RF-based method, the training procedure is not glob-
ally supervised by an appropriate measurement from its whole
regressor’s performance. To cope with this issue, we introduced
an alternating RF concept to provide a global optimization.31

The global loss function is computed as a breadth-first
missing error that is measured by all weak inference learners
(regressor) at each depth:31

EQ-TARGET;temp:intralink-;e003;63;546

X
fxi;fsðxiÞg

Lðyi; Rd−1ðxi; θÞ þ rdðxi; θdÞÞ; (3)

where Lð·Þ is a differentiable loss function and
Rd−1ðxi; θÞ ¼

P
d−1
j¼1 rjðxi; θjÞ denotes a regressor, which is

trained from a root node to the child nodes at the (d − 1)’th
depth, θ is a collection of the thresholds, rdðxi; θdÞ denotes a
regressor for the d’th depth, and θd is a set of splitting thresholds
to be trained in the d’th depth by minimizing Eq. (2). Then, the
splitting function was optimized by maximizing the JIG and
minimizing the global loss at each depth:
EQ-TARGET;temp:intralink-;e004;63;412

arg max
θd

ðHCðS;θdÞ−γ
X

fxi;fsðxiÞg
Lðyi;Rd−1ðxi;θÞþrdðxi;θdÞÞÞ:

(4)

The term HCðS; θdÞ is the JIG in Eq. (2), the second term of
Eq. (4) is the global loss regularization in Eq. (3), and γ is a
parameter balancing the need for a regression. Here, we set
γ ¼ 0.05. Figure 4 briefly shows the brief architecture of an
ARF.

2.4 Iterative Refinement Model

It has been known that the context, i.e., the surrounding infor-
mation with respect to an object of interest, plays a vital role in
interpreting image content.32 Similarly, the synthesis of a PCT
could be enhanced by the information from its surrounding
neighbors. An IR model was used to iteratively leverage the
surrounding information by utilizing an autocontext method
(ACM) to improve the synthesis performance.32 An IR model
is used to characterize the context information from the previous
synthesis results and then uses such information as context fea-
tures,32 together with the anatomical signature extracted from
the input MR image, to recursively train a series of ARFs.
The process is then repeated to train a series of ARFs until
a synthesis error criterion is met. In the synthesizing stage,
a new MR image is fed into these well-trained ARFs with
the IR model to iteratively generate and refine the PCT. The
architecture of an IR model is shown in Fig. 5.

3 Experiments

3.1 Datasets

To test the proposed method, we applied it to 14 patients’ brain
data and 12 patients’ pelvic data. For the brain images, T1-
weighted MRI was captured using a GEMRI scanner with mag-
netization-prepared rapid gradient echo (MP-PAGE) sequence
and 1.0 × 1.0 × 1.4 mm3 voxel size (TR/TE: 950/13 ms, flip
angle: 90 deg) and CTwas captured with a Siemens CT scanner
with 1.0 × 1.0 × 1.0 mm3 voxel size. For the pelvic images,
MRI was acquired using a Siemens standard T2-weighted
MRI scanner with three-dimensional T2-SPACE sequence and
1.0 × 1.0 × 2.0 mm3 voxel size (TR/TE: 1200/123 ms, flip
angle: 95 deg) and CTwas captured with a Siemens CT scanner
with 1.0 × 1.0 × 1.2mm3 voxel size. We performed the leave-
one-out cross-validation method to evaluate the proposed method.
Our PCTs were compared with the original planning CT images
which served as ground truth. Three widely used metrics, mean
absolute error (MAE), peak signal-to-noise ratio (PSNR), and
normalized cross correlation (NCC), were used to quantify the
absolute difference, relative difference, and image similarity
within the body outline. They are defined as

EQ-TARGET;temp:intralink-;e005;326;302MAE ¼ jICT − IPCTj∕C; (5)

Fig. 4 The architecture of an alternating regression forest.
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EQ-TARGET;temp:intralink-;e006;63;440PSNR ¼ 10 log10ðC · Q2∕kICT − IPCTk22Þ; (6)

EQ-TARGET;temp:intralink-;e007;63;424

NCC ¼
X
x;y;z

C · ðICTðx; y; zÞ − μCTÞðIPCTðx; y; zÞ

− μPCTÞ∕σCT∕σPCT; (7)

where ICT is the ground truth CT, IPCT is the corresponding PCT,
Q is the maximum intensity value of ICT and IPCT, C is the num-
ber of image voxels within the body outline, μCT and μPCT are the
mean of CTand PCT intensities’ values, respectively, and σCT and
σPCT are the standard deviations of CT and PCT intensities’ val-
ues, respectively. Generally, better synthesis results are associated
with lower MAE, higher PSNR, and higher NCC values.

3.2 Parameter Setting

Generally, the maximum number of training data in a leaf node
is set to 5 for regression tasks, as recommended in the guidance
of a regression forest.23 In theory, the synthesis performance can
be improved with more decision trees and a deeper depth for
each decision tree. However, we need to balance the trade-off
between the computation time and the regression performance.
To achieve the optimal balance between the two, we conducted
a fourfold cross validation to decide the number of trees and the
maximum depth of each tree, as shown in Fig. 6. Figures 6(a1)–
6(a3) show the changes of the mean MAE, PSNR, and NCC
metrics with varying numbers of trees while fixing the other
parameters to its default values as shown in Table 1. Based

Fig. 5 The architecture of the proposed IR model.

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

Fig. 6 (a1)–(a3) MAE, PSNR, and NCC performance on brain data with varying number of trees, respec-
tively, and (b1)–(b3) MAE, PSNR, and NCC metrics as a function of the maximum depths of trees,
respectively.
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on these curves, the tree number of 20 is sufficient for a good
PCT synthesis. Figures 6(b1)–6(b3) show the changes of the
MAE, PSNR, and NCC metrics with different maximum depth
of trees while fixing the other parameters to the default as shown
in Table 1. A maximum depth of 20 is adequate for a good PCT
synthesis.

3.3 Influence of a Feature Selection

Figure 7 provides a detailed visual comparison between the pro-
posed RF method with FS (RF + FS) and without FS (RF) on the
brain dataset. To demonstrate the detailed difference with and

without an FS, two regions of interest (ROIs) inside red
boxes were zoomed in Figs. 7(c1)–7(c4). As illustrated in
Fig. 7, the RF + FS can better preserve the continuity, coalition,
and smoothness in the synthesis results as it preserves inform-
ative features in training the model. In Table 3, the comparison
between RF and RF + FS quantitatively describes the averaged
MAE, PSNR, and NCC results of RF with and without an FS
based on leave-one-out experiments. Compared with the RF
without an FS, the FR with an FS could significantly reduce
the MAE (p ¼ 0.005).

3.4 Influence of the Proposed Method Based on
a JIG and ARF

To evaluate the influence of the proposed JIG and ARF, all the
experiments were performed with the same training and test
samples images in our brain dataset. Figure 8 provides a com-
parison among the traditional RF-based method, the RF-based
method with a JIG (RF + JIG), and the ARF-based method with
a JIG (ARF + JIG). Again, Figs. 8(c1)–8(c6) provide the
detailed comparison of two ROIs in Figs. 8(b1)–8(b6) among
these three methods. In Table 3, the comparison between RF,
RF + JIG, and ARF + JIG quantitatively describes the averaged
MAE, PSNR, and NCC results of these three methods based on

Table 1 Default RF parameter setting.

Parameter Default value

Number of trees 20

Maximum number of training data in a leaf node 5

Maximum depth of tree 20

(a1)

(a2)

(b1)

(b2) (c2)

(c1) (d1)

(d2)

(a3)

(a4)

(b3)

(b4) (c4)

(c3) (d3)

(d4)

Fig. 7 Comparison with and without FS: (a1) and (a3) are the axial view of original CT scans, (a2) and
(a4) are the corresponding MRI scans, (b1) and (b3) are the PCTs by RF, (b2) and (b4) are the PCTs by
RF + FS, (c1)–(c4) are the close-up of the highlighted regions in (b1)–(b4), (d1) and (d3) are the difference
images between the original CT and the PCTs by RF, and (d2) and (d4) are the difference images
between the original CT and the PCTs by RF + FS.
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leave-one-out experiments. A smaller MAE, higher PSNR, and
NCC demonstrate the consistent improvement of the ARF +
JIG-based method over the RF-based method as well as the
RF + JIG-based method. The significant difference (p < 0.001

via t-test) in the MAE, PSNR, and NCC values between the RF
+ JIG-based and the RF-based methods demonstrates that the
JIG could significantly improve the synthesis performance of
an RF-based method. There is also a significant improvement
of the NCC between the ARF + JIG-based and RF + JIG-
based methods (p < 0.001 via t-test). Since the joint information
from both MRI and CT, as well as a breadth-wise global loss,

were introduced into our proposed ARF + JIG-based method,
the proposed method significantly shows a synthesis perfor-
mance improvement over the RF-based method.

3.5 Influence of an Iterative Refinement Model

The influence of the IR model was demonstrated by comparing
the generated PCTs with different refinement iterations. Figure 9
shows the PCT results at different refinement iterations in the
sagittal plane. Table 2 quantitatively shows the MAE, PSNR,
and NCC at different refinement iterations.

(a1)

(a2)

(b1)

(b2) (c2)

(c1) (d1)

(d2)

(b3) (c3) (d3)

(a4) (b5) (c5) (d5)

(b6) (c6) (d6)

(a3) (b4) (c4) (d4)

Fig. 8 Comparison of RF, RF + JIG, and ARF + JIG: (a1) and (a3) show the axial view of CT scan; (a2)
and (a4) are the corresponding MRI scans; (b1) and (b4) are the PCTs by RF; (b2) and (b5) are the PCTs
by RF + JIG; (b3) and (b6) are the PCTs by ARF + JIG; (c1)–(c6) show the highlighted region in greater
detail; (b1)–(b6), (d1), and (d4) are the difference images between the original CT and the PCTs by RF;
(d2) and (d5) are the difference images between the original CT and the PCTs by RF + JIG; and (d3) and
(d6) are the difference images between the original CT and the PCTs by ARF + JIG.
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3.6 Comparison of State-of-the-Art Methods

To further evaluate our proposed PCT generation method, we
compared our ARF + FS + JIG + IR-based methods with a
state-of-the-art DL-based approach,21 an RF-based approach
(RF + ACM),23 and a CNN-based approach, which is called
the generative adversarial networks (GAN) method.28 The
parameters of all the algorithms were set according to their
best performance. The comparison results of these three meth-
ods are shown in Fig. 10. Due to linear averaging of similar
patches, the DL-based method often results in a loss in
image quality and erroneous synthesis as shown in Figs. 10(b1),
10(b3), and 10(b5). Due to the uninformative patch-based fea-
tures, the RF + ACM-based method has some errors around the
bone boundary as shown in Figs. 10(c1), 10(c3), and 10(c5).
Compared with the results from the DL- and the RF +
ACM-based methods, the PCTs generated by our ARF + FS
+ JIG + IR-based method are much closer to the ground
truth CTs as shown in Figs. 10(d1), 10(d3), and 10(d5). Table 3
quantitatively shows the averaged MAE, PSNR, and NCC
results of these three methods. Our method obtained an average
MAE of 60.87� 15.10 HU, a significant improvement
over an MAE of 94.64� 23.91 HU using the DL-based
method, 77.86� 21.53 HU using the RF + ACM-based method
(p < 0.001 via t-test), and 64.86� 19.92 HU using the
GAN-based method (p ¼ 0.058 via t-test). Our method also
resulted in an average PSNR of 24.63� 1.73 dB versus
22.38� 1.86 dB, 22.91� 1.60 dB, and 23.21� 1.65 dB

(p < 0.01 via t-test), and an average NCC of 0.954� 0.013 ver-
sus 0.912� 0.035, 0.937� 0.021, and 0.938� 0.018 obtained
by the DL-, the RF + ACM-, and the GAN-based methods
(p < 0.01 via t-test), respectively. Since the bone has the

most significant effect on the PCT estimation, we specifically
showed the bone (≥300 HU) comparison of generated PCTs
in Fig. 11. Table 4 shows the averaged MAE in the three differ-
ent regions (bone, soft tissue, and air). Again, our method based
on ARF + FS + JIG + IR significantly reduces the MAE of the
bone, soft tissue, and air regions compared with the DL- and
RF + ACM-based methods (p < 0.01, t-test).

3.7 Results of the Pelvic Data

To further test our proposed method, we applied our proposed
method to the pelvic data. Figure 12 shows visual comparison
results between PCT and CT. Figures 13(a2)–13(c2) show
the quantitative results of the MAC, PSNR, and NCC for
each patient’s pelvic images. Overall, the average MAE was
29.86� 10.4 HU, the average PSNR was 34.18� 3.31 dB,
and the average NCC was 0.980� 0.025 within the body
outline.

4 Discussion
We presented a machine-learning-based approach to synthesize
PCT images from routine MR images. To the best of our knowl-
edge, this is the first work that incorporates the FS and JIG into
the RF-based learning framework for this PCT synthesis task.
Several mechanisms were also incorporated to improve the syn-
thesis performance, such as the IR strategy and the alternating
RF scheme. Our method significantly outperformed the state-of-
the-art DL- and RF-based methods for PCT synthesis. Recently,
Nie et al.28 proposed to use the GAN to generate PCT and
reported that the MAE was 92.5� 13.9 HU for the brain
data and 39.0� 4.6 HU for the pelvic data. The MAE from
our proposed method was 60.9� 15.1 HU for the brain data

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

Fig. 9 Comparison of the results at different iterations of the IR model: (a1) shows the axial view of CT
scan; (a2) is the corresponding MRI scan; (b1)–(e1) are the PCTs of initial ARF, ARF with 1 IR, ARF with
2 IR, and ARF with 3 IR, respectively; and (b2)–(e2) are the corresponding difference images between
the original CT and the PCT in (b1)–(e1).

Table 2 Performance at different iterations of the IR model on the brain dataset.

Iteration 1 2 3 4

MAE 63.185� 6.734 62.415� 6.494 61.735� 6.029 60.495� 5.910

PSNR 24.048� 1.901 24.444� 1.852 24.802� 1.880 24.923� 1.903

NCC 0.948� 0.016 0.949� 0.017 0.951� 0.017 0.951� 0.017
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and 29.9� 10.4 HU for the pelvic data. Compared with the
deep-learning-based method proposed by Nie et al., our method
obtained a much smaller MAE for both sites, which further
demonstrates the performance of our PCT synthesis method.

Although the proposed JIG and ARF can enhance the per-
formance, optimizing the proposed binary splitting procedure
is more complex than binary splitting in a traditional RF-
based method and takes more computation time (about 7 h ver-
sus 2 h in the RF-based method by Huynh et al.23 and 19 h in the
GAN-based method by Nie et al.28). Although we have tested
our algorithm on 14 patients’ brain data and 12 patients’ pelvic
data, in the future, we plan to enroll more patients to further
ascertain the robustness of our algorithm. In addition, in this

study, we only used routine T1-weighted (brain) or T2-weighted
(pelvis) MRIs to synthesize our PCTs. However, it is possible
for our method to generate PCTs using other sequence-based
MRIs if our training database includes these images. We plan
to combine several types of MRIs based on widely used sequen-
ces into our training database to generate PCTs using multise-
quence MRIs to test whether this could improve our accuracy
of PCT.

The accuracy of MRI-CT registration may affect our pro-
posed method from two folds: (1) the mismatches between
MRI and CT may affect our model training and (2) the mis-
matches between MRI and CT will affect our MAE, PSNR,
and NCC accuracy. To deal with such small mismatch effects

(a1)

(a2)

(c1)

(c2) (e2)

(e1)

(a3)

(a4)

(c3)

(c4) (e4)

(e3)

(a5)

(a6)

(c5)

(c6) (e6)

(e5)

(b1)

(b2)

(b3)

(b4)

(b5)

(b6)

(d1)

(d2)

(d3)

(d4)

(d5)

(d6)

Fig. 10 Comparison of the results from different methods: (a1), (a3), and (a5) show the axial, sagittal,
and coronal view of CT scan, respectively; (a2), (a4), and (a6) are the corresponding MRI scans; (b1),
(b3), and (b5) are the PCTs by DL; (c1), (c3), and (c5) are the PCTs by RF + ACM; (d1), (d3), and (d5) are
the PCTs by GAN; (e1), (e3), and (e5) are the PCTs by our final algorithm, i.e., ARF + FS + JIG + IR; (b2),
(b4), and (b6) are the difference images between the original CT and the PCTs by DL; (c2), (c4), and (c6)
are the difference images between the original CT and the PCTs by RF + ACM; (d2), (d4), and (d6) are
the difference images between the original CT and the PCTs by GAN; and (e2), (e4), and (e6) are the
difference images between the original CT and the PCTs by our final algorithm.

Journal of Medical Imaging 043504-9 Oct–Dec 2018 • Vol. 5(4)

Lei et al.: MRI-based pseudo CT synthesis using anatomical signature. . .



for our model training, we divided the whole image into multiple
small patches with dense overlap. Most of the patch pairs
between MRI and CT match very well. Moreover, not all mis-
matched patch pairs are located in the similar anatomical regions
for each patient, which do not significantly affect our model
training. In the synthesizing stage, for a new MRI feature arriv-
ing at each leaf node followed by the previous splitting rules, to
infer its correspondence to the CT target, an ensemble model is
introduced to generate the final estimation by computing the
median of all the nodes within each decision tree, and then com-
puting the median of all the decision trees. Thus, even if there
are some positioning differences in pair-wise MRI and CT
patches, the median estimation can avoid most of the potential
bias. However, our PCT is directly generated from MRI and has
same anatomical structures as the MRI, so the mismatches will
directly affect our MAE evaluation, which calculates the voxel-
based HU difference through a subtract processing between
planning CT and PCT.

The MR imaging acquisition parameters as well as magnetic
field inhomogeneity and patient-specific distortion may

influence the performance of the proposed method, with impli-
cations on dosimetry calculations and patient setup. In our study,
all MRI images were preprocessed using an N3 algorithm33 to
effectively reduce distortion before training or synthesizing.
Other innovative methods, such as a real-time image distortion
correction method,34 have been reported to have excellent per-
formance, and combining these preprocessing methods with our
method could increase the accuracy of the PCTs. Due to the high
fraction of air, large motion, and distortion, the lung with low
resolution and intensity in MRI is very unique and difficult site
for our MRI-based radiotherapy, which will be one of our future
plans. In this study, we demonstrated the accuracy of PCT in HU
numbers. Accurate HU numbers in PCT is of great importance
for its usage for dose calculation in MRI-only radiation therapy
treatment planning.35 For example, dose calculation is sensitive
around tissue and bone boundaries due to the significant
changes in electron density. In MR images, bony tissues pose
a significant susceptibility artifact, and its ambiguous boundary
with air may introduce synthesizing error of perturbation and
shift. Such effect on dose calculation accuracy especially for sur-
rounding tissues needs more related studies. In future, we need
to conduct studies to investigate how much those factors on MR
imaging will affect the dose calculation and patient setup during
our MRI-only-based cancer radiotherapy. These studies would
be important to further evaluate the clinical utility of our
method.

Table 3 Numerical results of the different methods on the brain
dataset.

Method MAE (HU) PSNR (dB) NCC

DL 94.64� 23.91 22.38� 1.86 0.912� 0.035

RF 82.62� 26.06 22.28� 1.92 0.927� 0.022

RF + FS 75.82� 19.69 23.08� 1.58 0.936� 0.019

RF + JIG 66.43� 18.18 24.09� 1.62 0.946� 0.015

ARF + JIG 65.33� 16.59 24.05� 1.91 0.948� 0.015

RF + ACM 77.86� 21.53 22.91� 1.60 0.937� 0.021

GAN 64.86� 19.92 23.21� 1.65 0.938� 0.018

ARF + FS +
JIG + IR

60.87� 15.10 24.63� 1.73 0.954� 0.013

(a1)

(a2) (d2)

(d1) (e1)

(e2)

(a3) (d3) (e3)

(f1)

(f2)

(f3)

(g1)

(g2)

(g3)

(b2)

(b1) (c1)

(c2)

(b3) (c3)

Fig. 11 Comparison of the results in the bone region: (a1)–(a3) are the bone from a ground truth CT,
(b1)–(b3) are the bone results of the DL-based method, (c1)–(c3) show the close-ups of the regions
inside red rectangles in (b1)–(b3), (d1)–(d3) are the bone results of the RF + ACM-based method,
(e1)–(e3) show the close-ups of the regions indicated by red rectangles in (d1)–(d3), (f1)–(f3) are
the bone results of the proposed ARF + FS + JIG + IR-based method, and (g1)–(g3) show the
close-ups of the regions indicated by red rectangles in (f1)–(f3).

Table 4 Numerical results of the three methods on the three different
regions of brain CT images.

MAE (HU)

Method Bone region Soft tissue region Air region

DL 492.51� 143.15 52.48� 16.17 23.20� 7.42

RF + ACM 369.14� 87.28 43.33� 12.90 22.39� 7.46

ARF + FS +
JIG + IR

323.83� 76.33 38.74� 11.28 21.98� 7.48
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In addition, the PCT generated by our method has potential
to be used in dose calculation for other treatment modality, such
as proton radiation therapy. However, proton dose deposition is
widely known to be more sensitive and has more uncertainty
than photon beams, thus a comprehensive study is necessary to
test its feasibility. The PCT generation in this study could also
be used to generate an attenuation correction map of PET.
This application was not the focus of this study and using
our method for PET attenuation correction will be a potential
future study.

5 Conclusion
We proposed a learning-based approach to synthesize a pseudo-
CT (PCT) image from a routine MR image for potential
MRI-based treatment planning, which combines alternating RF
with patch-based anatomical signature to effectively capture the
relationship between the CT and MR images. We demonstrated
that the proposed method is capable of reliably generating a CT
image from its MRI counterpart on brain and pelvic data. This
PCT synthesis technique could be a useful tool for MRI-based
radiation treatment planning.

Disclosures
The authors declare no conflicts of interest.

Acknowledgments
This research was supported in part by the National Cancer
Institute of the National Institutes of Health under
Award No. R01CA215718 and the Department of Defense

(DoD) Prostate Cancer Research Program (PCRP) Award
No. W81XWH-13-1-0269.

References
1. M. A. Schmidt and G. S. Payne, “Radiotherapy planning using MRI,”

Phys. Med. Biol. 60(22), R323–R361 (2015).
2. S. Devic, “MRI simulation for radiotherapy treatment planning,” Med.

Phys. 39(11), 6701–6711 (2012).
3. V. S. Khoo and D. L. Joon, “New developments in MRI for target

volume delineation in radiotherapy,” Br. J. Radiol. 79(Special issue 1),
S2–15 (2006).

4. K. Ulin, M. M. Urie, and J. M. Cherlow, “Results of a multi-institutional
benchmark test for cranial CT/MR image registration,” Int. J. Radiat.
Oncol. 77(5), 1584–1589 (2010).

5. J. M. Edmund and T. Nyholm, “A review of substitute CT generation for
MRI-only radiation therapy,” Radiat. Oncol. 12(1), 28 (2017).

6. E. Johnstone et al., “Systematic review of synthetic computed
tomography generation methodologies for use in magnetic resonance
imaging-only radiation therapy,” Int. J. Radiat. Oncol. 100(1), 199–217
(2018).

7. J. Uh et al., “MRI-based treatment planning with pseudo CT generated
through atlas registration,” Med. Phys. 41(5), 051711 (2014).

8. J. Sjolund et al., “Generating patient specific pseudo-CT of the
head from MR using atlas-based regression,” Phys. Med. Biol. 60(2),
825–839 (2015).

9. X. Yang and B. Fei, “Multiscale segmentation of the skull in MR images
for MRI-based attenuation correction of combined MR/PET,” J. Am.
Med. Inform. Assoc. 20(6), 1037–1045 (2013).

10. J. Kim et al., “Implementation of a novel algorithm for generating
synthetic CT images from magnetic resonance imaging data sets for
prostate cancer radiation therapy,” Int. J. Radiat. Oncol. 91(1), 39–47
(2015).

(b)(a) (c) (d)

Fig. 12 Comparison between PCT and CT for pelvic data: (a) the MRI, (b) the CT, (c) the PCT obtained
from proposed algorithm, and (d) the difference image between PCT and CT.

(a2)

(b2)

(c2)

(a1)

(b1)

(c1)

Fig. 13 MAE, PSNR, and NCC for (a1), (b1), and (c1) each brain and (a2), (b2), and (c2) pelvic patient.

Journal of Medical Imaging 043504-11 Oct–Dec 2018 • Vol. 5(4)

Lei et al.: MRI-based pseudo CT synthesis using anatomical signature. . .

https://doi.org/10.1088/0031-9155/60/22/R323
https://doi.org/10.1118/1.4758068
https://doi.org/10.1118/1.4758068
https://doi.org/10.1259/bjr/41321492
https://doi.org/10.1016/j.ijrobp.2009.10.017
https://doi.org/10.1016/j.ijrobp.2009.10.017
https://doi.org/10.1186/s13014-016-0747-y
https://doi.org/10.1016/j.ijrobp.2017.08.043
https://doi.org/10.1118/1.4873315
https://doi.org/10.1088/0031-9155/60/2/825
https://doi.org/10.1136/amiajnl-2012-001544
https://doi.org/10.1136/amiajnl-2012-001544
https://doi.org/10.1016/j.ijrobp.2014.09.015


11. J. Korhonen et al., “A dual model HU conversion from MRI intensity
values within and outside of bone segment for MRI-based radiotherapy
treatment planning of prostate cancer,” Med. Phys. 41(1), 011704
(2014).

12. J. M. Edmund et al., “A voxel-based investigation for MRI-only radio-
therapy of the brain using ultra short echo times,” Phys. Med. Biol.
59(23), 7501–7519 (2014).

13. J. Cabello et al., “MR-based attenuation correction using ultrashort-
echo-time pulse sequences in dementia patients,” J. Nucl. Med. 56(3),
423–429 (2015).

14. A. Johansson, M. Karlsson, and T. Nyholm, “CT substitute derived
from MRI sequences with ultrashort echo time,” Med. Phys. 38(5),
2708–2714 (2011).

15. S. H. Hsu et al., “Investigation of a method for generating synthetic CT
models from MRI scans of the head and neck for radiation therapy,”
Phys. Med. Biol. 58(23), 8419–8435 (2013).

16. M. S. Gudur et al., “A unifying probabilistic Bayesian approach to
derive electron density from MRI for radiation therapy treatment
planning,” Phys. Med. Biol. 59(21), 6595–6606 (2014).

17. M. Kapanen and M. Tenhunen, “T1/T2*-weighted MRI provides clin-
ically relevant pseudo-CT density data for the pelvic bones in MRI-only
based radiotherapy treatment planning,” Acta Oncol. 52(3), 612–618
(2013).

18. D. Andreasen et al., “Patch-based generation of a pseudo CT from
conventional MRI sequences for MRI-only radiotherapy of the
brain,” Med. Phys. 42(4), 1596–1605 (2015).

19. D. Andreasen, K. Van Leemput, and J. M. Edmund, “A patch-based
pseudo-CT approach for MRI-only radiotherapy in the pelvis,” Med.
Phys. 43(8), 4742–4752 (2016).

20. S. Aouadi et al., “Sparse patch-based method applied to MRI-only
radiotherapy planning,” Phys. Med. 32(Suppl. 3), 309 (2016).

21. A. Torrado-Carvajal et al., “Fast patch-based pseudo-CT synthesis from
T1-weighted MR images for PET/MR attenuation correction in brain
studies,” J. Nucl. Med. 57(1), 136–143 (2016).

22. Y. Lei et al., “Magnetic resonance imaging-based pseudo computed
tomography using anatomic signature and joint dictionary learning,”
J. Med. Imaging 5(3), 034001 (2018).

23. T. Huynh et al., “Estimating CT image from MRI data using structured
random forest and auto-context model,” IEEE Trans. Med. Imaging
35(1), 174–183 (2016).

24. X. F. Yang et al., “Pseudo CT estimation from MRI using patch-based
random forest,” Proc. SPIE 10133, 101332Q (2017).

25. D. Andreasen et al., “Computed tomography synthesis from magnetic
resonance images in the pelvis using multiple random forests and
auto-context features,” Proc. SPIE 9784, 978417 (2016).

26. D. Nie et al., “Estimating CT image from MRI data using 3D fully con-
volutional networks,” in Deep Learning and Data Labeling for Medical
Applications, G. Carneiro et al., Eds., pp. 170–178, Springer, Cham
(2016).

27. X. Han, “MR-based synthetic CT generation using a deep convolutional
neural network method,” Med. Phys. 44(4), 1408–1419 (2017).

28. D. Nie et al., “Medical image synthesis with deep convolutional
adversarial networks,” IEEE Trans. Biomed. Eng. 65(12), 2720–2730
(2018).

29. X. Yang et al., “A learning-based approach to derive electron density
from anatomical MRI for radiation therapy treatment planning,” Int.
J. Radiat. Oncol. 99(2), S173–S174 (2017).

30. M. W. Ayech and D. Ziou, “Automated feature weighting and random
pixel sampling in k-means clustering for terahertz image segmentation,”
in 2015 IEEE Conf. on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 35–40 (2015).

31. S. Schulter et al., “Alternating regression forests for object detection and
pose estimation,” in Proc of IEEE Int. Conf. on Computer Vision,
pp. 417–424 (2013).

32. Z. Tu and X. Bai, “Auto-context and its application to high-level vision
tasks and 3D brain image segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell. 32(10), 1744–1757 (2010).

33. N. J. Tustison et al., “N4ITK: improved N3 bias correction,” IEEE
Trans. Med. Imaging 29(6), 1310–1320 (2010).

34. S. P. M. Crijns, B. W. Raaymakers, and J. J. W. Lagendijk, “Real-time
correction of magnetic field inhomogeneity-induced image distortions
for MRI-guided conventional and proton radiotherapy,” Phys. Med.
Biol. 56(1), 289–297 (2011).

35. T. Wang et al., “MRI-based treatment planning for brain stereotactic
radiosurgery: dosimetric validation of a learning-based pseudo-CT
generation method,” Med. Dosim. (2018).

Biographies for the authors are not available.

Journal of Medical Imaging 043504-12 Oct–Dec 2018 • Vol. 5(4)

Lei et al.: MRI-based pseudo CT synthesis using anatomical signature. . .

https://doi.org/10.1118/1.4842575
https://doi.org/10.1088/0031-9155/59/23/7501
https://doi.org/10.2967/jnumed.114.146308
https://doi.org/10.1118/1.3578928
https://doi.org/10.1088/0031-9155/58/23/8419
https://doi.org/10.1088/0031-9155/59/21/6595
https://doi.org/10.3109/0284186X.2012.692883
https://doi.org/10.1118/1.4914158
https://doi.org/10.1118/1.4958676
https://doi.org/10.1118/1.4958676
https://doi.org/10.1016/j.ejmp.2016.07.173
https://doi.org/10.2967/jnumed.115.156299
https://doi.org/10.1117/1.JMI.5.3.034001
https://doi.org/10.1109/TMI.2015.2461533
https://doi.org/10.1117/12.2253936
https://doi.org/10.1117/12.2216924
https://doi.org/10.1002/mp.12155
https://doi.org/10.1109/TBME.2018.2814538
https://doi.org/10.1016/j.ijrobp.2017.06.437
https://doi.org/10.1016/j.ijrobp.2017.06.437
https://doi.org/10.1109/CVPRW.2015.7301294
https://doi.org/10.1109/CVPRW.2015.7301294
https://doi.org/10.1109/ICCV.2013.59
https://doi.org/10.1109/TPAMI.2009.186
https://doi.org/10.1109/TPAMI.2009.186
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1088/0031-9155/56/1/017
https://doi.org/10.1088/0031-9155/56/1/017
https://doi.org/10.1016/j.meddos.2018.06.008

