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Abstract. Multibeam electron beam systems will be used in the future for mask writing and for complementary
lithography. The major challenges of the multibeam systems are in meeting throughput requirements and in
handling the large data volumes associated with writing grayscale data on the wafer. In terms of future com-
munications and computational requirements, Amdahl’s law suggests that a simple increase of computation
power and parallelism may not be a sustainable solution. We propose a parallel data compression algorithm
to exploit the sparsity of mask data and a grayscale video-like representation of data. To improve the commu-
nication and computational efficiency of these systems at the write time, we propose an alternate datapath archi-
tecture partly motivated by multibeam direct-write lithography and partly motivated by the circuit testing literature,
where parallel decompression reduces clock cycles. We explain a deflection plate architecture inspired by
NuFlare Technology’s multibeam mask writing system and how our datapath architecture can be easily added
to it to improve performance. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.16.4.043503]
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1 Introduction
The trend of doubling the number of transistors per unit area
on integrated circuits according to Moore’s law is slowing
down. IEEE and AIP recently published a special issue of
a journal devoted to the end of Moore’s law.1 The high
cost of fabricating a mask set is a contributing factor to
the slowdown, and the high cost is partly due to the increase
in the number of mask layers and the decreasing throughput
of mask writers. The increase in the number of mask layers is
mainly due to the multiple patterning requirement at new
nodes, and variable-shaped beam mask writers are unable
to fulfill the throughput requirements of sub-10 nm nodes.
The aperture array-based multibeam mask writers introduced
by IMS Nanofabrication2 and NuFlare Technology3,4 have
been proposed to improve mask write times. These multi-
beam systems use a large number of smaller beams to
write patterns for the mask layers. Multibeam systems use
grayscale pixel-based writing where each beam provides a
dose according to digital data. This dose is transferred to
a single pixel or number of pixels.5,6 The multibeam systems
also face a throughput bottleneck described by Tennant’s
law7 (1999). Let areal throughput be the area of a wafer that
can be printed per unit time using direct-write-like lithogra-
phy technologies. Then

EQ-TARGET;temp:intralink-;sec1;63;208Areal throughput ∝ resolution5:

Besides the pixel throughput problem, multibeam systems
also have to process large amounts of data and communicate
grayscale data at high data rates. A recent paper4 by NuFlare
discusses the difficulties associated with data processing
and communication. These data processing and communica-
tion requirements will continue increasing in the future in

proportion to the square of the resolution. The current data-
path architecture of multibeam systems shown in Fig. 1(a) is
ill equipped to handle these requirements. In the current data-
path architecture, the GDSII or OASIS formatted data are
converted into a tool-specific format and transferred to the
mask writing tool. Data processing is next performed online
to do rasterization, proximity effect corrections, and other
corrections that result in pixel data and beam deflection
data. The data processing capability and datapath communi-
cation capacity affect the efficiency of this kind of datapath.
IMS and NuFlare have had some success in addressing
throughput requirements by parallel processing3,4 using
graphical processing units and by increasing the communi-
cation capacity2,4 of the datapath. However, these approaches
have limitations. In computer architecture, Amdahl’s law8

(1967) states that the speedup or throughput gain for the exe-
cution of a task with increased resources is always limited
by the fraction of the task that cannot benefit from the
improvement. In the case of parallel processing, the through-
put gain is limited by the part that cannot be parallelized.
Let Speedup denote the throughput gain, Fractionenhanced
be the proportion of the task benefiting from improvements,
and Speedupenhanced be the speedup in Fractionenhanced by
parallelism or other improvements. Then

EQ-TARGET;temp:intralink-;sec1;326;211Speedup ¼ 1

ð1 − FractionenhancedÞ þ Fractionenhanced
Speedupenhanced

:

Observe from Table 1 that an increase in datapath speed
by a factor of 10 improved the mask writing time only by a
factor of 1.5. Part of the throughput bottleneck can be attrib-
uted to the time needed to write the pixel data. Reference 4
also discusses a data transfer bottleneck arising from the
communication to the blanking aperture array. Our objective
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is to improve the communication and computational effi-
ciency of the aperture array-based multibeam mask writers.
For direct-write lithography systems, there have been multi-
ple proposals of datapaths in which a major component of
the data processing and the generation of pixel-based data
is performed offline (see, e.g., Refs. 6 and 9–14). Dai and
Zakhor9,10 initiated the study of the communication and com-
putation efficiency within datapaths by considering the hard-
ware constraints of some architectures, and they proposed
the Block C4 layout image compression algorithm. Yang
and Savari11,12 proposed the Corner2 algorithm and custom
run-length encoding schemes to reduce the hardware com-
plexity and improve the decoding speeds, and Chaudhary
et al.13 modified this algorithm for proximity-corrected gray-
scale data. Carroll et al.14 implemented a variation of a
Lempel-Ziv15,16 data compression algorithm in the reflective
electron beam lithography system.17 We began to consider
the impact of parallelism on aperture array multibeam
mask writers in Refs. 5 and 6. Our inspiration in those papers
was the IMS mask writer. While those papers proposed the
use of multiple simple run-length decoders, they did not
examine how to coordinate the operation of the decoders
to meet existing device constraints. Furthermore, the data
transfer to and the data fan-out at the control circuitry of
the blanking aperture array use metal transmission lines
operating at low clock frequencies,4 and earlier papers did
not consider the number of clock cycles in the communica-
tion of data. In this work, we introduce a datapath architec-
ture [see Fig. 1(b)] where the parallel decompression portion
is inspired by the very large scale integrated circuit testing
literature;18 this architecture addresses the synchronization

requirement among the decoders and shows how to reduce
the number of clock cycles needed to transfer typical
mask data. We also recommend that the data be compressed
by custom-designed parallel compression algorithms to
decrease the processing time, memory, and file sizes. In addi-
tion to data decompression, our proposed online processing
includes the generation of deflection data from a predefined
scanning strategy [see Fig. 1(b)].

The remainder of the paper is organized as follows. In
Sec. 2, we present the details of the existing multibeam
blanker system. In Sec. 3, we describe the scanning strategy
and the compression constraints. In Sec. 4, we describe the
compression scheme and the decompression architecture. In
Sec. 5, we discuss the experimental results, and we conclude
the paper in Sec. 6.

2 Multibeam Blanker System
The major component in both the NuFlare Technology3,4,19

and the IMS Nanofabrication2,20–22 multibeam mask writing
systems is the blanker. The multibeam blanker system
we consider is motivated by the 2016 NuFlare system.4,19

We focus on the NuFlare system in this paper because
NuFlare disclosed more information than IMS about their
circuit design and data communication system and because
we discussed certain aspects of the IMS system in Refs. 5
and 6. We follow NuFlare’s choice of 10-bit representations
as opposed to IMS’ 4-bit representation with beam overlaps
and point out that it is not straightforward to compare these
representations since IMS uses 5 nm × 5 nm pixels and
NuFlare uses 10 nm × 10 nm pixels. Furthermore, since
NuFlare Technology has not disclosed all the details about
its multibeam mask writing systems, we make various
assumptions to explain our understanding of the multibeam
blanker system; for example, we created Figs. 2–5. The mul-
tibeam system consists of two plates: namely, an aperture
plate and a deflection plate.2,3,19–22 The aperture plate con-
sists of an array of apertures that converts a broad beam into
multiple beams.

The deflection plate consists of an equal number of
apertures at the same coordinates as the aperture plate.
The deflection plate also contains a pair of electrodes at
each aperture, providing enough deflection voltage to deflect
the beam passing through the aperture.19 A grayscale dose
control for each beam is provided by controlling the deflec-
tion voltage for a discrete amount of time by means of a con-
trol circuit for each beam.19 The deflection control circuit of
each beam is connected by a bus to the other control circuits
to enable the communication of data within a row.19 Each
row’s data is provided by a “side pad” digital circuit,
which could be a field programmable gate array (FPGA)
or an application-specific integrated circuit (ASIC). The
deflection plate is a stand-alone device or a chip packaged
separately from the side pad. Figure 2 shows the deflection
plate design for an array with 16 beam apertures with four
rows and four columns.

Figure 2 shows a control circuit associated with each indi-
vidual beam. The control circuitry of each beam consists of
two parts, namely, a digital beam logic for the communica-
tion of 10-bit dose data with the ability to generate 1024
discrete time intervals and an analog circuit (mainly a differ-
ential amplifier) to drive the electrodes for the amount of
time specified by the digital beam logic.19 We do not

Fig. 1 (a) Current datapath architecture. (b) Proposed datapath
architecture.

Table 1 The effect of an increase in datapath resources in recent
IMS mask writing tools.2

Tools Datapath
Mask write time

100 mm × 130 mm

IMS MBMW-101 Beta 12G 15 h∕mask

IMS MBMW-101 HVM 120G 10 h∕mask
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consider the analog design of the amplifier circuit in this
paper and focus instead on the digital logic needed for each
beam. Figures 3 and 4 show one implementation of the
beam logic. The digital beam logic consists of a shift register
with a one-bit serial input to communicate 10-bit data and
a 10-bit countdown and “stop at 0” counter to provide 1024
time intervals. Registers23 are digital logic circuits that store
data in the form of binary numbers. Shift registers23 are the
registers that load the input bit into the most significant bit or
least significant bit of the register value and “shift” the stored
binary number by one position. The counter starts from
the 10-bit input dose value as the initial value, and the
value decreases by 1 at every clock cycle until the counter
value reaches zero, at which point the counter stops.

The beam logics require the supply voltage (VDD) and
the ground (GND) as inputs. Besides the supply input (VDD
and GND), a beam logic requires a clock signal input, a
reset signal input, an unload signal input to load the counter

with the shift register value as the initial value, and an enable
(trigger) input signal to start the counter. These input signals
should be synchronous and broadcast to all the control cir-
cuits of the beams, as simultaneous control of all the beams
requires that all the counters start at the same clock cycle.
Here, a synchronous signal means the input signal (reset,
unload, and enable) values are sampled only at the positive
edge of the clock signal. Let si and so denote the serial input
and the serial output to the shift register, respectively; they
can be alternately implemented with a 10-bit parallel input
and a 10-bit parallel output.19,24 An extra digital input shift
signal is also provided to control the shift register, i.e., the
data are moved in/out of the shift register only when the
shift signal is high (1). The shift signal is common to all
the control circuits in a row of the array.

As shown in Fig. 2, the beams are organized in the shape
of a grid with rows and columns. We connect the control
circuits of a row of beams in a beam array for the commu-
nication of the 10-bit dose data. The serial/parallel output of
one control circuit is connected to the serial/parallel input of
the next control circuit.19,24 This allows the data to be shifted
within a chain of beam logics. Figure 5 illustrates the con-
nection of four beam logics in a row. This type of commu-
nication system removes the need for addressing each 10-bit
dose value to a control logic. Let N be the number of beams
in a row. When no compression is used, N � 10 clock cycles
are required to transfer the 10-bit data to each beam logic in
a row. The clock, shift, unload, reset, and enable are all
common input signals to each beam logic block in a row.
Each beam logic also has a separate 10-bit output count,
which is the counter value and serves as the timer for the
beam deflection.

The beam array consists of multiple rows of beams in
parallel.19,24 The clock, enable, unload, and reset signals are
common to all the rows in the beam array. Here, all the beam
logic blocks receive the same set of signals to start all the
counters at a given time instance.19 The shift signals and

Fig. 2 Deflection plate of a 4 × 4 beam array with side pad circuitry. Each beam has a control circuit
connected to electrodes. The electrodes deflect the beams.

Fig. 3 Digital beam logic associated with the control circuit of each
beam.
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the serial inputs for the data are different for each row of
beams. Separate serial inputs and shift signals for each row
of beams are required for a data transfer protocol without
addressing.

3 Scanning Strategy and Compression Constraints
In earlier work, we proposed a zigzag scanning strategy and
a writing in stripes motivated by the IMS multibeam mask
writer.5 We believe the zigzag scanning strategy requires less
deflection of the multibeam array and covers the entire scan-
ning area in fewer steps. A reduction in the deflection of the
beam array could be desirable to reduce the settling time and
increase the frequency of the beam array deflection.
Furthermore, the use of a scanning strategy with predefined
steps would help in reducing the beam array deflection data
because it could be calculated in real time similar to raster
scanning. It differs from those for the vector scanning strat-
egies used in variable-shaped beam systems, where the coor-
dinates of positions must be specified.

The IMS multibeam system uses a beam size of 20 or
10 nm with a 4-bit dose control for each beam. It also
has 5 nm × 5 nm pixels with beam overlaps to provide
241 or 61 gray levels for the 5 nm × 5 nm pixels depending
on the beam size. The NuFlare multibeam system has a 10-
nm beam size and 10 nm × 10 nm pixels. Each beam has a
10-bit dose control. In contrast with the IMS system, the
beams do not overlap on the pixel grid to create the higher
dose levels. Therefore, each 10 nm × 10 nm pixel has 1024
gray levels assuming single pass writing. For both systems,
the distance between the individual beams in the X- and
Y-directions is 160 nm, i.e., 16 pixels in the NuFlare

multibeam system and 32 pixels in the IMS multibeam
system. Since the NuFlare system has no beam overlaps, its
horizontal and vertical movement step sizes will differ from
the zigzag scanning strategy of the IMS system. In Table 2,
we propose a zigzag strategy for our family of multibeam
arrays inspired by the NuFlare multibeam system.

For any choice of scanning strategy, after writing one set
of beam shots the entire beam array moves to a new position.
This imposes a synchronization constraint on the beam array
as the data for all the beams should be available before the
beam array moves to a new position. If we have a 512 × 512
beam array, then the entire beam array would require
2,621,440 bits at one position as each beam needs 10-bit
data and there are 262,144 beams. The next set of
2,621,440 bits of 262,144 beams will be needed when the
beam array moves to a new position. We can consider the
data of each set of 262,144 beams as a frame of a grayscale
“video” with dimension 512 × 512. Any compression
scheme and decompression architecture should operate with
these parameters. The decompression scheme should be able
to decode the frames in their given sequence. The data
inside the frames may be compressed in a variety of ways
as long as the synchronization constraint is satisfied. The
“video” analogy and constraints also allow the separate and
parallel compression of each frame as long as the sequence
of compressed frames does not change. Thousands of frames
can be potentially compressed in parallel to reduce the com-
pression time. However, there are some differences between
this communication problem and traditional “video” com-
munication; the latter application can take advantage of inter/
intraframe dependencies. For our problem, there are weaker

Fig. 4 Expanded view of the digital beam logic associated with the control circuit of each beam.
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intraframe dependencies in the data because of the large dis-
tance between the beams in a beam array; for example, in a
512 × 511 beam array, the distance between successive
beams in either the X- or Y-direction is 16 pixels. The inter-
frame dependencies are mainly governed by the choice of
scanning strategy. Our scanning strategy is described in
Table 2. Observe that the distance a beam moves from
one frame to the next in the X-direction is large, so there
does not appear to be any appreciable interframe dependen-
cies for our scanning strategy. However, a scanning strategy
that more closely resembles raster scanning might provide
interframe dependencies.

Simple design rules25 require a large fraction of the pixels
in a typical mask layer to have pixel values of zero; i.e., the
data are sparse. Figure 6 shows a pattern without correction
in which 50% of the pixel values are zeros. Complementary
lithography and multiple patterning further contribute to the
prevalence of sparse data, and our data compression scheme
is designed to take advantage of the existing sparsity within
mask data.

Fig. 5 Row of beam logics connected in a chain by the si inputs and
the so outputs.

Table 2 Overview of scanning strategy for a family of beam arrays.

Array
Number of
beams

Distance in pixels
between the centers

of two neighboring beams
in the same row or column

Horizontal movement of
array from one writing to
the next within a “stripe”

Vertical movement of array from one
writing to the next within a “stripe”

2N × ð2N − 1Þ
N odd

2N ð2N − 1Þ d ¼
ffiffiffiffiffiffiffiffiffiffi
2N−1

p
2d or ð2d − 1Þ pixels
depending on the iteration

þ1 or −1 pixels depending on position of
array within zigzag

8 × 7 56 2 þ3 every second iteration,
þ4 pixels for all other iterations

Progresses in the sequence n; n þ 1;
n þ 2, n þ 1; n; n þ 1; : : : for some n

32 × 31 992 4 þ7 every fourth iteration,
þ8 pixels for all other iterations

Progresses in the sequence n; n þ 1; : : : ; n þ 4,
n þ 3; : : : ; n þ 1; n, n þ 1; n þ 2; : : : for some n

128 × 127 16,256 8 þ15 every eighth iteration,
þ16 pixels for all other iterations

Progresses in the sequence n; n þ 1; : : : ; n þ 8,
n þ 7; : : : ; n þ 1; n, n þ 1; n þ 2; : : : for some n

512 × 511 261,632 16 þ31 every 16th iteration,
þ32 pixels for all other iterations

Progresses in the sequence n; n þ 1; : : : ; n þ 16,
n þ 15; : : : ; n þ 1; n, n þ 1; n þ 2; : : : for some n

Fig. 6 50% sparsity with simple design rules. λ is equal to the half
pitch.
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4 Compression Scheme and Decompression
Architecture

We first discuss a simple run-length code for data compres-
sion and explain the decompression architecture for it. We
will later propose a more effective scheme. As we mentioned
earlier, the majority of 10-bit symbols are zeros. In our
problem, we choose to represent a 10-bit zero symbol by
a single-bit “1” and to encode the 10-bit nonzero symbols
by the 11-bit string which concatenates the prefix “0” to
the original 10-bit string in order to reduce data volumes
and overall clock cycles. For example, two encodings of
10-bit symbols are illustrated below.
EQ-TARGET;temp:intralink-;sec4;63;617

1101011010 − − − − − − > ̱01101011010;

0000000000 − − − − − − > ̱1:

Observe that the maximum possible compression ratio
of this simple scheme is 10, which occurs when all
symbols are zero. The worst possible compression ratio is
10∕11 ¼ 0.91, which occurs when all symbols are nonzero.

The data for multiple beams are arranged in a column by
column fashion. If we take Fig. 2 as a reference in the num-
bering convention of a beam array, then the data are arranged
in a “frame” in the following sequence. Let Ui be the symbol
or beam dose associated with beam number i. For a beam
array with 16 beams organized in four rows and four
columns, U0 is the first symbol in a “frame” and U15 is
the last symbol. After this data are written and the beam
array moves, a new “frame” starts. A similar strategy is
applied to any size of beam array. The sequence of uncom-
pressed symbols is given below.

EQ-TARGET;temp:intralink-;sec4;63;402

U0; U4; U8; U12; U1; U5; U9; U13; U2; U6; U10;

U14; U3; U7; U11; U15:

To compare different communication schemes, we com-
pare the number of clock cycles they use on the hardware.
We first look at the number of clock cycles for uncompressed
data transmission. The serial communication of n 10-bit
symbols U0; · · · ; Un−1 to n beams with a single bit wire
will use n � 10 clock cycles. One could alternatively use
n � 10 bit parallel communication wires to communicate
data to all the beams, which should ideally take 1 clock
cycle. The parallel communication will not always be helpful
as n � 10 bits must be collected from a capacity constrained
channel and stored before they are transmitted to the n
beams. The process of collection and storage of data from
a serial source may offset the advantage of parallel commu-
nication, and there will be a significant and undesirable
increase in the hardware on the deflection plate. There can
be many degrees of parallelism between these two extremes,
but for uncompressed data transfer all of them have imple-
mentation trade-offs.

We know from the previous discussion that the com-
pressed symbol Ci corresponding to an uncompressed
symbol Ui will consist of either a single bit string or an
11-bit string.

EQ-TARGET;temp:intralink-;e001;63;107Ci ¼
�
1; if Ui ¼ 0000000000

0Ui if Ui ≠ 0000000000
: (1)

The compressed string is communicated to the side pad
digital circuit; after that, it needs to be decompressed and
transferred to the individual beams. An effective communi-
cation strategy should not only compress the data but should
also reduce clock cycles by means of data decompression.

The compressed string C0; · · · ; Cn−1 can be decoded in
multiple ways. We first look at the case when a single
decoder is used to decompress the data as shown in
Fig. 7(a). The function of the decoder is to collect the Ci
symbols and generate the Ui symbols. When the input Ci
symbol is 11 bits long, the transmission through a one-bit
wire to the decoder will take 11 clock cycles and the Ui sym-
bol can be generated in the last 10 of those 11 clock cycles.
When the input Ci symbol is one-bit long, the transmission
takes only one cycle and the generation of the Ui takes
the next 10 cycles. Hence, a single decoder always takes
11 clock cycles to generate each Ui from any Ci symbol.
This shows that a single decoder decreases throughput
by taking 11 clock cycles instead of the 10 needed in the
uncompressed case.

In the second case, we have two decoders as shown in
Fig. 7(b). We pass every other Ci to each decoder. Since
the Ci symbols are of variable lengths, we need some addi-
tional hardware to detect the symbol length. The detector in
Fig. 7(b) detects the length of Ci by checking the prefix and
directs the entire symbol to the corresponding decoder.
Consider the special case of two symbols C1 ¼ 1 and
C2 ¼ 1; they can be decompressed in parallel as shown in
Fig. 7(c). The parallel decompression would only take
13 cycles, i.e., 2 cycles for the communication of the com-
pressed symbols to the decoders and 11 cycles for parallel
decompression. Two decoders provide the opportunity for
the parallel decompression of Ci ¼ 1 symbols. Any other
combination of symbols will not reduce the number of
clock cycles. We also assume that the number of decoders
is known in advance.

We can extend and generalize this approach to multiple
decoders. Multiple decoders provide increased opportunity
of parallel decompression of Ci ¼ 1 symbols. This approach
should increase the parallelism and communication effi-
ciency for the uncompressed sparse data at the cost of
increased hardware complexity. We can use the set of
k decoders to decompress and transfer data to k nodes as
shown in Fig. 7(d). The compressed symbols Ci of length
one bit can again be decompressed in parallel, while the
Ci of length 11 bit are decompressed serially. The Ci of
11 bit length take 11 cycles, and the Ci of one bit take
one cycle plus 10 cycles every column because of parallel
decompression. The simple compression scheme is summa-
rized in Table 3.

Figure 8 shows the logical architecture of the parallel
decompression combined with the existing deflection plate
architecture. We assume that the deflection plate in Fig. 8
consists of four columns and k rows. The set of k decoders
are connected to the head column of the beam logic, and
they transmit the U1; · · · ; Uk symbols to the deflection
plate. The decompressed symbols are shifted further to their
desired beam logic by the chain of shift registers.

If the sole goal of the data compression scheme was
the effective communication of data from the storage device
to the side pad, then a more complex compression scheme
would better serve the purpose. Data compression is
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typically used to reduce the data transmission bottleneck
from capacity constrained channels. The data communica-
tion from a large storage device to the side pad digital circuit
of an FPGA or ASIC is also capacity constrained. Our simple
compression scheme will mitigate the data communication
problem. We next extend the compression scheme as shown
in Table 4 to improve the compression ratio and decrease
clock cycles. We introduce two extra symbols, namely, an
all zero frame (AZF) with prefix 001 and an all zero column
(AZC) with prefix 000. The AZF signifies that all the pixel
values in the video frame have a zero value, which occurs
when the M � N beam shots all have a zero dose value.
In this case, the shot data does not need to be communicated
to the deflection plate as the array should simply move to the
next position. In uncompressed data transfer, M � N � 10
clock cycles are needed, but the AZF symbol instructs the
beam array to move to the next position. The AZF symbol
can be detected in three clock cycles. The AZC symbol

signifies that all the pixels in a column of a frame have a
zero value. In this case, all the zero pixels can be generated
in parallel according to our previous discussion of the paral-
lel architecture. It takes three clock cycles to decode the AZC
symbol and M þ 10 clock cycles for the parallel generation
of zero symbols for a column using the parallel architecture.
The zero symbol (Z) has the same representation and
processing as in the simple compression scheme. The
nonzero symbol (NZ) now uses 12 bits with a prefix of
01 and 12 cycles to decode. A similar parallel architecture
with minor changes can be applied to the extended compres-
sion scheme.

The compression of data should happen offline as the
compression algorithm for the extended scheme can run
on thousands of processors. According to our “video” anal-
ogy, each frame can be compressed on a separate thread of
execution. Since there is no dependency between the frames
in this compression algorithm, the parallel compression

Table 3 Simple compression scheme and clock cycles for decompression.

Symbol Explanation Prefix Suffix Cycles to decode Cycles for uncompressed data transfer

Z 0000000000 1 — 1þ (10 every column) 10

NZ 10-bit value 0 10-bit value 11 10

Fig. 7 Multiple ways of decoding. (a) single decoder, (b) two decoders, (c) two decoders working in
parallel when both compressed symbols are “1,” and (d) k decoders for data decompression.
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of data should provide nearly linear speedup (execution time
inversely proportional to the number of processors). Figure 9
shows the compression of four frames in parallel on four dif-
ferent threads of execution.

5 Experiments and Results
We performed our experiments on two sets of data using the
extended compression scheme. One image is an inverse
lithography technology (ILT) mask motif pattern of contact
holes with a smallest element of 80 nm. This pattern was
enlarged by repeating it to generate a layout image of
dimension 30;017 × 33;300 pixels with each pixel having
dimensions of 10 nm × 10 nm. We also produce results for
23 layers of an image compression block (ICB) based on
the FREEPDK45 45 nm library with a smallest element

of 60 nm. The image size for the ICB data is 91;209 ×
90;970 pixels with each pixel having dimensions of
10 nm × 10 nm. We used the electron beam proximity
effect correction algorithm of GenISys, Inc., BEAMER_
v4.6.2_x64, to generate proximity-corrected images with
256 shot dose levels. Each pixel shot dose level was multi-
plied by four to create 1024 dose levels. This does not change
the nature of the data for our compression algorithm as
the nonzero/zero doses remain nonzero/zero.

The images were divided into stripes and frames
according to the scanning strategy of Table 2. Each frame
was subsequently compressed according to the extended
compression scheme. Two separate implementations of
algorithms were done. In one implementation, the frame
generation and the data compression were done serially.
In the other implementation, the frame generation and the
data compression were done in parallel. The implementa-
tions of the frame creation and compression algorithms are
in C++, and the parallelization was done by the OpenMP
library. The computation of the number of cycles to decode
was implemented in C++. The experiments were performed
on Intel i7-2600 CPU processors at 3.40 GHz with 8 GB of
RAM on a Windows7 Enterprise operating system. The
processor contains four cores.

Table 5 shows the results for the compression ratios and
the speedups. The compression speedup reported is the ratio
of the execution times of the serial and parallel compression
algorithms without write to memory. The decompression
speedup reported is the ratio of the computed uncompressed
transfer cycles to the computed decode cycles. The

Fig. 8 Logical decompression architecture with the deflection plate.

Table 4 Extended compression scheme for M ðrowsÞ × N ðcolumnsÞ array.

Symbol Explanation Prefix Suffix Cycles to decode Cycles for uncompressed data transfer

AZF all zero frame 001 — 3 M � N � 10

AZC all zero column 000 — M þ 10þ 3 M � 10

Z 0000000000 1 — 1þ (10 every column) 10

NZ 10-bit value 01 10-bit value 12 10

Fig. 9 Compression of four frames in parallel on four different threads
of execution.
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uncompressed data consist of the original image data and the
extra zero padding for the frames at the edge of the image.
The definition of the compression ratio is as follows:
EQ-TARGET;temp:intralink-;e002;63;568

Uncompressed data

¼ Original dataþ Zero padding data for edge frames;

(2)

EQ-TARGET;temp:intralink-;e003;63;502Compression ratio ¼ Uncompressed data size

Compressed data size
: (3)

Figure 10 shows the plot of the compression speedup
with respect to the number of threads. We can see that
the compression speedup increases with more threads. It is
not a linear speedup in the number of threads probably due to
the frame generation part of the algorithm and the memory
accesses. The speedup of a single thread is not exactly equal
to one as the serial and parallel codes were different. The
compression ratio and decompression throughput are higher
for the ICB data as that data are more sparse. In the ILT case,
the throughput and compression ratios are higher for the
512 × 511 beam array compared with the 128 × 127 beam
array while the reverse occurs for the ICB data. Observe
that the 512 × 511 beam array has a larger frame size and

column size than the 128 × 127 beam array, and the proba-
bilities of the AZF and AZC symbols are lower for a larger
beam array when the sparsity is lower. The nonuniformity in
decompression clock cycles per frame could be a concern for
some datapath systems. We report the clock cycles
per frame results in Figs. 11 and 12. Figure 11 shows the
histogram of clock cycles that every frame takes for
layer 1 and layer 2 of the ILT data with a 128 × 127 beam
array. Figure 12 shows the plot of clock cycles taken by
each frame in one stripe of layer 2 of the ILT data with
a 128 × 127 beam array. Layer 1 has 99.6% sparsity and
layer 2 has 92.2% sparsity. We can see that even for
layer 2 the maximum number of clock cycles taken by any
frame stays well below the maximum possible cycles in
the uncompressed data communication case (128 × 127 × 10

Table 5 Data compression ratios and speedups with parallel decompression architecture and parallel compression speedup.

Data type and beam array (M × N)
Uncompressed

(MB)
Compressed

(MB)
Compression

ratio
Decompression

speedup
Compression

speedup (8 threads)

23 layers ICB (128 × 127) 230,471.5 3141.4 73.4 24.9 3.2

23 layers ICB (512 × 511) 267,885.6 4372.3 61.3 22.4 2.4

2 ILT layers (128 × 127) 2500.4 262.6 9.5 6.6 3.1

2 ILT layers (512 × 511) 3730.2 309.1 12.1 7.6 2.0

Fig. 10 Compression speedup with respect to the number of threads
in the quadcore machine.

Fig. 11 Histograms of clock cycles in the ILT data with a 128 × 127
beam array. (a) Layer 1. (b) Layer 2.
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cycles) or the compressed data communication case (128 ×
127 × 12 cycles).

6 Conclusion and Future Work
To try to improve the communication and computational effi-
ciency of multibeam mask writing systems, we propose a
datapath architecture that uses parallel data compression
and decompression and is inspired by multibeam direct-
write tools and circuit testing. Our parallel compression
algorithm will help to address two important problems in
mask writing—namely, data volume and data preparation
time. Our decompression architecture can be attached to
the existing deflection plate architecture. We also show
that video- and pixel-based representations are effective file
formats for multibeam systems. In the future, we would
like to implement the parallel architecture in hardware.
We would also like to evaluate a recent scheme24 proposed
by NuFlare Technology offering a new circuit design and
other architecture changes.
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