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Abstract

Background: Planned improvements in semiconductor chip performance have historically
driven improvements in lithography and this is expected to continue in the future. The
International Roadmap for Devices and Systems roadmap helps the industry plan for the future.

Aim: The 2021 lithography roadmap shows requirements, possible options, and challenges for
the next 15 years.

Results: Critical dimensions in logic chips are now small enough that stochastics, i.e., random
variations in photon, molecules, and photoresist image forming processes, introduces random
variations in sizes and stochastic-driven defects. As critical dimensions get smaller, stochastics
becomes a bigger challenge. The roadmap projects that despite projected improvements in tools,
photoresist, device design, and patterning processes, resist dose to print will still have to roughly
triple over the next 10 years to maintain acceptable stochastics unless major process or chip
design changes are made. This will raise patterning costs substantially. Other patterning options
are under development but they also have challenges related to defects. Edge placement error
(EPE) is also a challenge for future devices. Long-term, logic device requirements will drive
stacked devices, and yield and process complexity will be key challenges.

Conclusions: Logic devices will drive leading edge lithography. Improved extreme ultraviolet
lithography is a leading candidate but other options are possible. Key short-term challenges are
stochastics, EPE, and cost. Resist dose to print is expected to rise substantially as critical dimen-
sions shrink unless substantial process innovation occurs. For the long term, the challenges will
be yield and process complexity when logic devices switch to 3D scaling
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1 Introduction

The first semiconductor roadmap was perhaps Moore’s observation that chip computing power
increased exponentially with time.1,2 This led semiconductor producers to plan for regular chip
improvements. The equipment and materials suppliers to those chip producers also needed to
have an idea how technology would progress in the future and so the International Technology
Roadmap for Semiconductors (ITRS) roadmap for semiconductors was created. Chip manufac-
turers collaborated and created projections of future needs and challenges to provide a public
description of where the industry was going and what it would need. This roadmap has evolved
into the International Roadmap for Devices and Systems or IRDS Roadmap.3 This roadmap
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differs from the ITRS one in that it is derived more top down than bottom up. Instead of being
driven by stated needs of semiconductor producers, it is developed by projecting future progress
in device performance and then determining what types of devices and structures will be needed
to provide that future performance. It has many sections. This paper focuses on the lithography
section of the 2021 update of the lithography roadmap.

2 Requirements

The More Moore section of the IRDS roadmap projects improvements in traditional logic and
memory chips. The projected improvements are driven by the need for big data, the internet of
things, cloud computing, and general needs for improved performance. It predicts that high-
performance logic devices will drive resolution improvement and that dynamic random-access
memory (DRAM) devices will trail in resolution to logic. Non-volatile memory has switched to
mostly 3D scaling and will not be driving resolution. Projected dimensions for key logic levels
are shown in Fig. 1. Dimensions get smaller for the next 10 years and then are predicted to stop
shrinking as logic switches to 3D scaling.

Figure 2 shows the projected lithographic requirements for logic and DRAM taken from the
2021 lithography roadmap. Note that the name of the node is in quotation marks because the
node name no longer represents an actual physical dimension in any logic product.

Historically, one of the key challenges highlighted by lithography roadmaps has been res-
olution. Future generations of chips were projected to require better resolution than current
lithography systems could provide. This is no longer the case. Extreme ultraviolet lithography
(EUV) systems already in manufacturing use can resolve the smallest line and space dimension
on the roadmap if double patterning is used. For contact holes and other hole type levels, double
exposure with current tools can already resolve the minimum pitch needed until the “1.5 nm” is
2025. The “1.5 nm” node will be doable with double exposure with high NA EUV tools expected
to be in use at the time.4 After that, no further resolution improvements are projected to be
needed.

The cells containing resolution data are colored yellow, “manufacturable solutions are
known,” where double patterning with EUV can already produce that dimension. Where
EUV double patterning will not suffice without high NA EUV or where the lithography com-
mittee considers the double patterning pattern quality is questionable, the cells are coded red,
“manufacturable solutions are not known.” The major lithographic challenges in the next 10
years are mostly related to noise and defects. Overlay is also expected to be a challenge.

3 Possible Options

Part of the lithography roadmap is a description of potential solutions to future challenges. These
are shown in Figs. 3 and 4 for lines and spaces and for contact holes, respectively. In these
figures, the horizontal direction is time and also the minimum CD that needs to be patterned.
The rows reflect different logic and memory nodes. The gray bars indicate when a node is

Fig. 1 Projected logic critical dimensions.
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Fig. 3 Line and space potential solutions.

Fig. 2 Projected lithographic requirements for logic and DRAM. Cells that are white indicated that
manufacturable solutions exist to meet this requirement and are being optimized, cells that are
yellow indicate that manufacturable solutions are known that could be implemented and cells that
are red indicate that manufacturable solutions are not known.
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expected to be in production. The white bars indicate the period when a patterning option has
been selected and is being implemented but is not yet in production. During the time period right
before such an implementation, a chip producer has to do work to select the patterning option
that will be used from a limited set of possibilities. This is labeled as “narrow options.”

For lines and spaces, EUV double patterning can provide enough resolution for any projected
future critical dimension, but may not end up being the preferred solution. For contact holes and
other hole type patterns, EUV double patterning at NA ¼ 0.33 may not provide enough reso-
lution and new solutions may be needed. Higher NAwith EUV double patterning is a potential
solution here.

4 Stochastics

Stochastics refers to random variations in the components of the imaging process and can be
thought of as noise. Noise in imaging has multiple sources. The major ones are random var-
iations in the aerial image due to photon shot noise and chemical variation due to randomness
in the numbers and positions of the chemical components that make up resist. In EUV, there is
also noise in the generation and propagation of secondary electrons, which drive the radiation
chemistry in EUV resists. These noise factors affect pattern quality by influencing line edge
roughness (LER), line width roughness (LWR), and critical dimension uniformity (CDU). In
EUV, noise also contributes to certain sorts of defects, such as missing contacts and line opens
and bridges. LER, LWR, and CDU requirements scale with resolution, so that as dimensions get
smaller, these requirements get tighter. Stochastic variations do not scale in the same way as
critical dimensions do, so their significance increases as critical dimensions decrease in size.
This is a conflict that the lithography community is always working to resolve. The advent
of EUV has brought noise issues to the fore. Not only are there 14 times fewer photons for
a given exposure energy (as measured in energy per unit area), but also printed features sizes
are roughly two or more times smaller than for ArF immersion, resulting in more sensitivity to all
sources of noise. Noise limits the minimum feature size that can be printed with EUV.

One control factor for noise is the dose to print used for photoresist. Slower photoresists tend
to show less noise than faster photoresists.5 But EUVexposure throughput is worse with slower
resist. EUV exposure tools cost well over a one hundred million dollars, so efficient usage and
fast throughput for these tools is important. If the need for low noise imaging in the future forces
the use of slow EUV resists, this could affect the semiconductor industry’s progress along the
projected IRDS roadmap. For the 2020 IRDS roadmap, the lithography team did scaling cal-
culations to project expected dose to print as a function of critical dimension.

Our proxy for noise issues was the expected CDU for contact hole printing. Any variation in
photon statistics, electron statistics, or chemical variation for small contact holes should directly

Fig. 4 Contact hole potential solutions.
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translate into a CD variation. The starting point for our calculations was the logic “7 nm” node.
This node is in volume production using EUV for some critical levels. We assumed that fabs
producing this node used the fastest EUV resist possible that still gave acceptable defect and
noise levels. The roadmap shows the minimum contact hole dimension and the minimum target
CDU that will be needed for each node. We used a CDU specification for contact holes of 15% of
their printed CD. This gives an expected three sigma variation for 7 nm contact hole dimension
of 3.82 nm. Smaller CDUs will require proportionally smaller CDU. This will force the use of a
slower resist, all other things being equal. By calculating how much the resist photo-speed will
have to change to provide this lower CDU, we can project future photo-speeds that will be
needed, assuming a similar single exposure resist process is used to print all the CDs in question.

One can consider the CD variation as coming from two sources: the shot noise in the photons
in the exposure and from the variation in all chemical- and electron-related processes occurring
in the photoresist. The shot noise will scale as the square root of the dose to print. If all the CDU
variation came from just this factor, then dose to print would have to double every time the target
CD shrunk 30% for the contact hole CD variation to be the same fraction of the new node as it
was of the old node. On the other hand, if all CDU was due to random resist processes, then the
resist would have to improve 20% to 30% each node to reduce CDU to target levels. Neither of
these limiting cases is realistic and it is known that resist feature size variation comes from both
sources. It would be nice to separate the contribution from each source of variation, project the
improvements of each source of variation separately, and combine the individual sources of
variation separately to project overall photo-speed changes. However, we were unable to find
a satisfactory breakdown of noise sources suitable for this task,6–8 so we used a different
methodology.

The k4 equation for projecting local critical dimension uniformity (LCDU) was introduced in
2019 by Geh.9 It calculates LCDU as a function of the quality of the aerial image as measured by
the normalized image log slope (NILS), the dose to print, the energy of the photons used for
imaging, and a dimensionless factor, k4:

EQ-TARGET;temp:intralink-;sec4;116;412
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�
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The k4 factor measures the quality of the process and the photoresist used to image the contact
holes in the same way that the Rayleigh k1 factor characterizes the resolution of a given resist and
process.10 The photon energy is set by the wavelength used for process in question, so for our
purposes it is a constant since EUV lithography is assumed for all exposures. The NILS is
affected by exposure tool factors, such as NA, aberrations, and flare, the illumination conditions
used, the feature size, and by mask effects. We chose to project that NILS would be roughly
constant from node to node at a value of 2.5. This is equivalent to assuming that exposure tool,
reticle, process, and design improvements will occur at a rate sufficient to compensate for the
loss in NILS due to smaller feature sizes and implies substantial improvement in imaging from
node to node.

As described later, we used these assumptions to project future dose to print for EUV resists
used to print critical dimensions. We presented this work in 2020 at the SPIE Microlithography
Conference.11 At that same conference, a revision to the k4 formula was described.12 In the
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porates resist blur (σ) and the pitch (p) of the feature being measured for LWR. This new term
adjusts for variations in the k4 of a resist that were observed to be a function of pattern pitch:
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This new factor, blur pitch, is necessary because resist blur affects the effective NILS of the
image in the resist. In the original k4 equation, the same resist printed at different pitches will
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give different k4 values. With the revised equation, k4 is constant through pitch. However, in our
projection of EUV dose to print, it is implicit that a different resist will be used for each node and
for each critical dimension and also implicit that resist will be optimized for the particular dimen-
sion being printed. As the critical dimension shrinks, so will the optimum resist blur. The opti-
mum resist blur for reaction diffusion is reported as 35% of the half pitch CD.13 This means that
optimized resists for each CD will have a constant ratio of σ to p. Reducing blur proportionally is
not trivial. Factors such as secondary electron blur have to be addressed along with traditional
factors such as acid diffusion. Historically, resist developers have reduced blur as needed, and we
assumed they will continue to do this, but this is not a given. Thus, the blur pitch factor in the
equation earlier will be a constant. The original k4 equation thus shows appropriate scaling for
extrapolating dose to print assuming resist blur is optimized for each successive critical dimen-
sion. Note that this methodology assumes that loss of CD control due to stochastic effects is the
limiting factor in choosing resists. But stochastic effects also can create unwanted defects such as
missing or merged contact holes. It has been reported that defects of this sort are more common
than simply extrapolating a CD distribution using its mean and standard deviation would
predict.14–16 Understanding this sort of defect formation’s effect on photo-speed and yield is
something that will be worked on for the next roadmap.

To estimate how fast k4 will improve, we turned to historical data for resist improvement. In
2002, Dammel17 reviewed historical resist resolution improvements and translated those
improvements into equivalent k1 improvements. He found a consistent yearly improvement
in resolution and a rate of improvement that was similar for both I line and KrF resists.
This resolution improvement per year translates into a 6% improvement per logic node, assum-
ing 2-year apart logic nodes.

Given a prediction for resist improvement, our prediction for constant NILS, and the road-
map’s requirements for LCDU, we can then calculate the photo speed that will make the k4
equation work. Inserting values for NILS, k4, and the 7 nm node LCDU target into the formula
for k4 gives a nominal dose to print of 36 mJ∕cm2 for 7 nm critical dimension contact holes.
Using a 6% improvement in k4 for each successive future node and using the targeted LCDU
gives a projected dose to print for each future node. The projected doses to print for each logic
node are shown in Fig. 5 along with the percentage increase in dose to print each node compared
to the previous node. The results are shown graphically in Fig. 6. Note that the projected doses to
print start dropping in 2031 because logic switches to 3D scaling and critical dimensions no
longer shrink, but resist is projected to continue to improve.

The dose to print is projected to rise to over 100 mJ∕cm2 in 2028. This prediction is in line
with recent stochastic simulations of EUV resist chemistries.18 These simulations included

Fig. 5 EUV dose to print roadmap.

Fig. 6 EUV dose to print versus critical dimension.
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electron blur, and they predicted that no combination of resist composition factors will result in a
resist that images 10 nm lines and spaces without unacceptable defect levels unless the dose to
print is over 100 mJ∕cm2. The match of our macroscale k4-based prediction with this literature
prediction based on detailed physics gives confidence that a 6% improvement per node was
realistic.

A sensitivity analysis shows that if the starting k4 value or starting NILS values assumed
for the 7 nm logic node are varied, then the dose to print for 7 nm node patterns will vary, but
the percentage increases in dose to print from node to node will be the same. However, the
rate of increase in dose to print is sensitive to the improvement in resist as measured by k4.
Figure 7 shows the expected dose to print as a function of node for different rates of improve-
ment in k4.

If resist stochastics do not improve with resist optimization, then resist dose to print will
increase fivefold over 5 nodes. If resist stochastics improve so much that k4 improves 15% every
node, the dose to print increases less than 50% over the same five nodes. Given this large depend-
ance on the rate of resist stochastic improvement, it is useful to consider the factors that might
make improvement slower or faster than the published roadmap’s estimate of 6% improvement
per node.

In published studies of EUV resist improvement, some have shown very little improvement
from year to year. (Reference 19 shows new resist falling on the same LER photospeed curve as
old resists.) New resists have fallen along the existing trade-off between dose to print and line
roughness. But some recent papers have shown quite spectacular improvements in resists for
particular applications or particular imaging conditions.20 Part of this dichotomy may be because
there two classes of EUV resists in current use. There are chemically amplified resists that use
mostly or all organic chemistry and there are mostly inorganic resists that use metal oxides as the
key EUV imaging component. Chemically amplified systems operate by principles that were
well established when they were applied to KrF and ArF imaging. It is hard to expect rapid
improvement in resists based on well-established mechanisms that have already been optimized
for stochastics in ArF applications. And some might argue that the source of noise is well under-
stood and there is a lower limit to the LWR, LER, or CDU one can achieve.21 The inorganic
resists are a new class of resists not used for previous wavelengths, so one might expect they will
improve faster than EUV chemically amplified resists will. The metal-based resists for EUV
have already matched conventional chemically amplified resist in performance.22 However, the
inorganic resists are only available in negative tone, giving an advantage to organic-based chemi-
cally amplified resists in certain applications.

The methodology described here is high level and does not look at details of how to do the
actual improvements we project. For example, it does not look at specific issues in resist such as
electron blur or competing EUV caused reactions. It does not consider alternative processes,
such as DSA repair of defects that may enable low EUV dose to prints. It is an extrapolation

YEAR OF PRODUCTION 2018 2020 2022 2025 2028
G54M36 G48M30 G45M24 G42M21 G40M16

Logic industry "Node Range" Labeling (nm) "7" "5" "3" "2.1" "1.5"
IDM-Foundry node labeling i10-f7 i7-f5 i5-f3 i3-f2.1 i2.1-f1.5
Mainstream device for logic finFET finFET finFET LGAA LGAA

EUV Single Patterning
minimum hole pitch (via, contact, cut) 51 42 34 28 23
Minimum hole  CD size on mask (wafer scale) [2] 31 25 20 17 14
Printed Contact Hole CD 25 21 17 14 11
Contact Hole LCDU requirement (15% of printed 
CD) (nm) [3]

3.82 3.18 2.55 2.12 1.70

Photospeed Extrapolation in mJ/cm2

No Improvements in k 4 36 52 82 118 184

k 4  improves 6% per node 36 46 64 81 112

k 4  improves 10% per node 36 42 54 63 79

k 4  improves 15% per node 36 38 43 44 50

Fig. 7 Increase in dose to print for different rates of k4 improvement.
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based on our understanding of how technology has improved in the past. It shows what chal-
lenges there are but does not give a solution for solving them. Historically, the industry has met
difficult challenges in the past with both innovation and incremental improvements. The entire
lithographic committee hopes this continues to happen in the future.

The IRDS considers that 6% improvements in k4 would also represent a substantial rate of
resist improvement. But, in the end, this 6% value is a prediction of the future by a committee of
experts, not an experimentally determined number. Research in experimental psychology is not
kind to such predictions,23 at least in the field of politics. The author of this article makes the
following suggestion. Any interested reader of this article can send their own prediction of the
improvement in k4 for each logic node to the corresponding author’s email address. If there are
enough responses, the results will be included in the next available edition of the IRDS lithog-
raphy roadmap.

The projected rise in dose to print would impose large costs on EUVusers due to reduction in
throughput and/or increases in exposure tool costs. One alternative is the use of EUV double
exposure. This will increase litho costs but provide improved stochastics due to the larger printed
dimensions in photoresist. Research is already underway comparing single exposure to double
exposure for EUVapplications.24,25 Another strategy is to accept bad stochastics but find process
alternatives that improve pattern quality. Double patterning is one such process.26 Directed self-
assembly also shows potential for enabling use of much faster resists. (A paper was presented
at the SPIE Microlithography Conference of 2020, “Enabling Moore’s law with DSA,” by
G. Singh, E. Han, and F. Gstrein. Unfortunately, no proceedings paper is available. A fol-
low-on paper was presented in 2021 by Ref. 27). Process improvements can also help. An exam-
ple of a process improvement is printing larger vias than needed to get less CDU and then
shrinking them afterward by etch or some other process. New resist types and processes could
also arise. Work has recently been reported on dry deposited and developed resists,28 but there is
not enough published data to compare their stochastics to current materials.

5 Challenges

There are other challenges besides noise-related pattern quality. Edge placement error (EPE) is a
leading challenge for future nodes. Requirements for EPE are functions of the final feature size,
and EPE requirements shrink as CDs get smaller. Processes that relax printed CD requirements,
such as double patterning, often make EPE worse. Maintaining acceptable NILS as printed fea-
ture size decreases will require improvements in masks, exposure tools, and source mask opti-
mization along with possible chip design changes to enable easier imaging. Higher NA EUV
exposure tools with an NA of 0.55 are projected to be available in 2023 or 2024. These higher
NA tools will improve NILS for a particular feature size compared to lower NA imaging. These
tools will have half the exposure field size of current tools and may require field stitching for
some product designs. They will require improved reticles. The higher illumination and imaging
angles in the exposure tool may reduce depth of focus due to focus sensitive EPE and also reduce
image contrast. Solutions to these challenges are not yet demonstrated.

The industry is actively investigating alternative printing techniques, such as nanoimprint,
directed self-assembly, and direct write. Nanoimprint has shown substantial recent progress29

but still has not shown sufficient productivity for use in volume memory chip production or
sufficiently low levels of defects to be considered for leading edge logic use. It also needs
improvements in overlay to be used for logic. Directed self-assembly still has not been dem-
onstrated in volume production. Direct write does not have sufficient throughput for high-vol-
ume chip productions but has advantages for low-volume production where leading-edge
dimensions are not required. Recent papers have described new direct write tools under
development.30,31

For the long term, when logic starts scaling vertically instead of by shrinking critical dimen-
sions, yield and process complexity will be critical challenges. The roadmap predicts three-
dimensional logic will be in production in 2031, but addressing its challenges and developing
such devices will have to start much sooner than that. The 2021 Lithography Difficult Challenges
are shown in Fig. 8.

Neisser: International Roadmap for Devices and Systems lithography roadmap

J. Micro/Nanopattern. Mater. Metrol. 044601-8 Oct–Dec 2021 • Vol. 20(4)



6 Conclusions

The IRDS roadmap projects future challenges for semiconductors and possible solutions to those
challenges. It shows that logic devices will drive shrinking critical dimensions and improvements
in patterning for roughly the next 10 years. After that, logic will switch to vertical scaling. The
lithography section of the IRDS roadmap addresses these patterning challenges. It includes pro-
jected patterning requirements and possible patterning options. A major challenge is noise in
imaging. Requirements for low defects and good pattern quality will drive increases in EUV
dose to print as printed features get smaller. Even assuming substantial improvements in resists,
tools, and other imaging infrastructure, a dose to print of over 100 mJ∕cm2 is projected in 2028 if
alternative processes or designs are not implemented that mitigate noise effects. This estimate is
sensitive to the rate of improvement projected for resist stochastics. Even assuming that

Fig. 9 Current IRDS lithography team membership.

Fig. 8 IRDS 2021 lithography difficult challenges.
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stochastics are controlled well enough to give sufficient LWR and CDU, other factors such as
missing or merged features, or inability of resist to function reliably at reduced dimensions, may
be a roadblock to future EUV use. Other major challenges are improved EPE, and the develop-
ment and implementation of high NA EUV imaging. The industry is actively pursuing alternative
patterning technologies, particularly nanoimprint lithography, directed self-assemble, and direct
write. For the long term, as semiconductor scaling changes to 3D scaling, particular patterning
challenges will be yield and process complexity.
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