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Abstract. We used 35 years of brightness temperature data (1978 to 2013) from the scanning
multichannel microwave radiometer (SMMR) and special sensor microwave/imager (SSM/I) to
analyze the freezing, ablation, and duration time of ice on Nam Co Lake and validated the results
using data from the advanced microwave scanning radiometer for Earth observation system and
moderate resolution image spectroradiometer. The results indicate that the SMMR and SSM/I
data can be applied to monitor lake ice phenology variability for a long time and the results are
reliable. Since 1978, the duration of Nam Co lake ice has decreased by 19 to 20 days, with the
freezing onset date delayed by 9 days and the ablation date advanced by 9 to 10 days. Between
1978 and 2010, there was a negative correlation between temperature and the duration of lake ice
in Nam Co; after 2000, the temperature increased significantly in the Nam Co Basin. This caused
a clear downward trend of lake ice duration. Therefore, the freezing onset date, ablation end date,
and duration of lake ice are effective indicators of regional climate change. © The Authors.

Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-

duction of this work in whole or in part requires full attribution of the original publication, including its

DOI. [DOI: 10.1117/1.JRS.7.073477]

Keywords: lake ice; climate change; scanning multichannel microwave radiometer; special sen-
sor microwave/imager; Nam Co Lake.

Paper 13294 received Aug. 9, 2013; revised manuscript received Oct. 18, 2013; accepted for
publication Oct. 21, 2013; published online Nov. 26, 2013.

1 Introduction

The influence of climatic change on the geophysical system is manifested primarily by a sig-
nificant increase in glacial melt runoff and a significant decrease in lake ice cover.1,2 As the
world’s third pole,3 the Tibetan Plateau bears the largest ice reserve outside of the two
poles,4 and its response to global climate change is more sensitive than that of other parts
of China.5 The lake surface area in the Tibetan Plateau accounts for more than half of the
total in China.6 This large number of lakes with huge areas not only sensitively responds to
climate change but also plays an important role in the climate change.7 They influence the cli-
mate by changing the underlying surface conditions due to the changes of lake area or physical
status.8 Because these lakes are located in the high-altitude Tibetan Plateau with its cold climate,
they are less disturbed by human activities. Therefore, their variations and changes essentially
reflect the effects of natural environmental changes due to the climate changes.9

The Nam Co Basin holds a large number of modern glaciers and is the second largest salt-
water lake in the Tibetan Plateau. It is, therefore, an ideal site to study the natural responses to
climate change.10 A more thorough perspective of local climate change was obtained by Wu and
Zhu through averaging data from the nearest meteorological stations.11 They found an increase
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of both temperature and precipitation in the period from 1971 to 2000. An obvious contribution
to the lake rise connected to the rise of the temperature is an increased inflow of glacier melt
water. Bolch et al.12 and Kang et al.13 reported dramatic glacier retreat of ∼10 m∕year in the
Nyainquentanghla range in the last 30 years. Consequently, the response of lake area and water
level in Nam Co Lake and basin to global climate change has been an important research topic
for scholars in China and abroad.14–16

Due to the seasonality of lake ice, temperature variation can explicitly impact the freezing
and ablation time of the lake ice. Therefore, the lake ice condition and the freezing and ablation
times are good indicators of climate change.17,18 Lake ice can reflect climate change at both
large and small scales; meanwhile, the freezing and ablation speed, maximum thickness, and
ice temperature gradient of lake ice are also important indicators of regional climate change.19,20

Relevant parameters of lake ice can be obtained through field observations or meteorological
and hydrological records, but field observations are time-consuming and labor-intensive, especially
in large, sparsely populated areas with numerous lakes. Meanwhile, weather stations
and hydrological stations in the Tibetan Plateau are very sparse and are not evenly distributed.
It is difficult, if not impossible, to obtain lake ice records that cover a large area. Traditional
ground-based stations are usually located on the shore, and they can only document the freezing
and ablation of the lake surface within view of the recording stations due to sight limitation.
For large lakes, the recording of ground observations cannot accurately reflect the freezing
and ablation time of the entire lake. Remote sensing provides a convenient and prompt approach
to monitor lake ice. It can acquire high-temporal resolution imagery over a large scale, which
compensates for the shortcoming of the uneven distribution of manual observation stations,
weather stations, and hydrological stations and provides a powerful tool for lake ice monitoring.
Latifovic and Pouliot20 employed advanced very-high-resolution radiometer data to monitor
lake ice according to the variation curve of lake reflectivity. Moderate resolution image spectror-
adiometer (MODIS) data were also applied to calculate the freezing and ablation times of lake ice
according to the curve of surface temperature variation.21 Despite the important role of high-res-
olution optical remote sensing data in the monitoring of variation of lake ice phenology, it is vul-
nerable to the impact of clouds, and thus its application is subject to certain restrictions. Microwave
remote sensing data have the all-weather and all-time advantages and are widely applied to lake ice
monitoring. Howell et al.22 applied the variation in the backscattering coefficients of microwave
data to monitor lake ice variation in Great Bear Lake and Great Slave Lake. Che et al.23 applied
passive microwave remote sensing data spanning nearly 30 years to analyze the lake ice variation
in Qinghai Lake of China, but no scholars have yet studied the long time series of lake ice variation
in Nam Co Lake. In this paper, we used passive microwave data from the scanning multichannel
microwave radiometer (SMMR) and special sensor microwave/imager (SSM/I) to obtain the
freeze-up (FU) and break-up (BU) times of NamCo Lake ice from 1978 to 2013. Advanced micro-
wave scanning radiometer for Earth observation system (AMSR-E) and MODIS data were used to
validate the results and examine the variation trends as well as the influence of temperature on the
variation in the FU and BU time of lake ice.

2 Study Area Description

Nam Co, the second largest salt lake in China, is located in the central part of the Tibetan Plateau
(30°N, 90°E), with a location of 90°16’ to 91°03’E and 30°30’ to 30°55’N (Fig. 1). It belongs to
the Qiangtang Plateau in the northern Tibetan Plateau.8 The area of Nam Co is 1920 square
kilometers, with an altitude ∼4718 m above average sea level (a.s.l).24 Climatologically, the
Nam Co Basin belongs to the semiarid zone with cold and dry winter and humid summer.
The area is at the margin of influence of the Indian monsoon with a mean annual precipitation
of 414 mm (Nam Co Station), mostly in the period from June to September.8 The major tribu-
taries coming from hilly areas enter the lake from the West and from the East. The southern
tributaries originate from Nyainqêntanglha Mountains, which is a highly glaciated range that
reaches 7162 m a.s.l. The maximum depth of the lake is ∼100 m.25 The large water volume
prevents the lake from freezing before the end of January. It usually becomes completely
ice-free in June.26
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3 Data and Methods

3.1 Data

3.1.1 SMMR and SSM/I

The SMMR and SSM/I sensors are part of the Pathfinder Program of the United States National
Aeronautics and Space Administration. The SMMR began collecting data on October 26, 1978,
and ended on August 20, 1987. It observed at five frequencies of 6.6, 10.7, 18, 21, and 37 GHz,
each with two polarizations, horizontal and vertical. The spatial resolution varies significantly
with frequency. The resolution at 6.6 GHz is 148 km, and the highest resolution (27 km) is at
37 GHz. The SSM/I began to operate on July 9, 1987, and is still in operation. It observes at four
frequencies of 19.35, 22.2, 37, and 85.5 GHz, with two polarizations, except for 22.2 GHz with
only the vertical polarization. The spatial resolution is 12.5 km at 85.5 GHz and 25 km for the
other three frequencies. The study in this paper primarily uses 37 GHz of SMMR and 19 and
37 GHz of SSM/I. We did not use the frequency of 85.5 GHz since it is affected by weather.23

Because Nam Co Lake is located in a mid-latitude area, there are data-free regions between
adjacent orbits of the satellite. The data sampling period of SMMR was 2 days, which resulted in
the data-free time of 2 or 4 days, possibly 6 to 8 days due to the occasional influence of missing
pixels. The data sampling period of SSM/I was 1 day, which resulted in the data-free time of 1 to
3 days, with occasionally 3 to 5 days due to missing pixels. What is more, SSM/I data are miss-
ing from December 3, 1987, to January 12, 1988. Because the freezing time of Nam Co Lake is
usually in January or February, there could be one chance to miss the freezing onset date for the
winter season from late 1987 and early 1988. Although Che et al.23 proposed that the combi-
nation of data from the ascending and descending orbit can reduce the impact of data-free days,
the effect is not obvious, most likely due to the different latitude of Nam Co Lake. Additionally,
although low-frequency brightness temperature data are less affected by weather conditions, the
brightness temperature of the same pixel could be different due to different imaging times of
ascending and descending orbits of the same day. This decreases the feasibility of applying
ascending and descending orbit data to reduce the influence of data-free days.

We used the vector boundary of Nam Co Lake from a global database of lakes27 to extract the
lake brightness temperature from the passive microwave images. Although the area of Nam Co

Fig. 1 Location of the study area, Nam Co Lake.
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Lake changed during 1978 to 2012,8 its variation is negligible with respect to the 25-km res-
olution of the image. To avoid the impact of mixed pixels, we extracted only the relatively pure
pixel at the center of the lake for the analysis (relatively pure pixel means that land is <5%). The
freezing of the lake surface begins along the shore and extends toward the center. For Nam Co
Lake, with its relatively regular rectangular shape, we can assume that the entire lake surface is
frozen if the center of the lake is frozen. In this paper, we assign one cycle from August 1 of each
year to July 31 of the following year.

3.1.2 AMSR-E

The AMSR-E was launched by the United States in 2002 aboard the Aqua satellite, and it col-
lects data through 12 channels at six frequency bands. The spatial resolution differs significantly
with the various frequencies. The spatial resolution at 37 GHz is ∼12.5 km, whereas the highest
resolution can be up to 6.25 km at 89 GHz. The data sampling interval is 1 day, and usually there
is data missing for one day after a continuous observation of 4 days. By combining the data from
the ascending and descending orbits, we can completely eliminate the impact of missing data.
The AMSR-E brightness temperature data with higher spatial resolution from 2002 to 2011 were
selected to validate the ice phenology of Nam Co Lake acquired based on SSM/I data.

3.1.3 MODIS

The MODIS is a sensor onboard satellites Terra (launched in 1999) and Aqua (launched in
2002). As the new generation of optical remote sensing instrument with image and spectrum
integrated, it can acquire global observation data every day. Within the electromagnetic range
from 0.4 to 14 μm, it contains 36 discrete narrow-spectral bands with spatial resolutions of 250,
500, or 1000 m.28 MODIS has multiple products, and generally L1B products or reflectance
products are selected for validation. In this study, we use the MOD09GA product for dates
in 2003 with a 500-m resolution and less cloud cover (the data in other years were covered
by cloud, which are not suitable for validation). We further validated the ice phenology of
Nam Co Lake acquired based on SSM/I data through visual interpretation of the MODIS
imagery because it is the most direct and accurate way to judge the ice existence.

3.2 Methods

Figure 2 is an example showing the brightness temperature of one full year. There is a significant
difference in the brightness temperatures of ice and water, with the brightness temperature of ice
clearly higher than that of water (high platform value or high value domain). This is consistent
with what was found in Che’s study.23 Kouraev et al.17,29 applied the polarization ratio and fre-
quency gradient to calculate the ablation time of lake ice. Che et al.23 directly applied the

Fig. 2 Brightness temperature variation of Nam Co Lake (high platform value indicates the freeze-
up period of the lake).

Ke, Tao, and Jin: Variability in the ice phenology of Nam Co Lake in central Tibet. . .

Journal of Applied Remote Sensing 073477-4 Vol. 7, 2013



difference in brightness temperature to calculate the freezing and ablation times of lake ice, and
also added the criterion of a brightness temperature >200 K on the descending orbit or >240 K

on the ascending orbit to obtain more accurate results. In this paper, however, we did not apply
this 200- and 240-K criterion because the difference between data from the ascending orbit ver-
sus the descending orbit is not obvious in the same polarization mode, and noise with consid-
erable fluctuations cannot be effectively distinguished. Instead, we applied the method of
brightness temperature difference search to determine the freezing and ablation times of lake
ice, using the following formulas:

min½MeanðBti þ Bti−1 þ Bti−2 þ Bti−3Þ −MeanðBti þ Btiþ1 þ Btiþ2 þ Btiþ3Þ�; (1)

max½MeanðBti þ Bti−1 þ Bti−2 þ Bti−3Þ −MeanðBti þ Btiþ1 þ Btiþ2 þ Btiþ3Þ�; (2)

where minðÞ and maxðÞ are the computations of maximum and minimum, respectively, MeanðÞ
is the computation of average, and Bti is the brightness temperature on the i’th Julian day.
To accurately extract the freezing and ablation dates of the lake ice, we can apply the method
of combining the equations above. It means that we can conduct a search and verify whether the
result on the curve is accurate or not.

In addition, the results calculated by the method of searching for the maximum and minimum
may not be the real position of freezing and ablation because the maximum or minimum does not
appear at the location where freezing begins or ablation ends due to the impact of noise.
Therefore, a method is proposed to amplify the difference between the data from the frozen
and nonfrozen periods, which can also further reduce the influence of noise. It acts as an aux-
iliary method to verify the correctness of the results calculated by Eqs. (1) and (2). The formula is
as follows:

R ¼ MedianðBtÞ − Bt
MaxðBtÞ − Bti

; (3)

where Bti is the brightness temperature of the i’th day at a certain frequency, MedianðBtÞ is the
median annual brightness temperature at this frequency, and MaxðBtÞ is the maximum annual
brightness temperature at this frequency. Similarly, we used the brightness temperature data for
Nan Co Lake during 2005 to 2006 as an example to clearly identify the FU period of the
lake (Fig. 3).

3.3 Error Analysis

Due to the impact of the aforementioned sampling period and missing data, without considering
the computational error, the error of the final computation results in the worst case can be up to

Fig. 3 Identification of the freezing period of Nam Co Lake after the difference amplification.
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8 days (for SMMR) or 5 days (for SSM/I). This error postpones the calculated freezing time and
advances the ablation time. The reason is that the freezing and ablation times of lake ice are
derived by calculating the starting and ending locations of high platform values. Due to the
presence of missing data, if data happen to be missing before the starting location or after
the ending location of the calculated high platform values, it is impossible to determine whether
the computation result is the exact time for the starting and ending of high platform values. For
example, if the freezing date we calculated from SMMR is January 23, then the previous data
available might be January 17 and the next one after 23rd might be January 29. However, if the
freezing date we calculated from SSM/I is January 23, the previous data available might be
January 20 and the following one might be January 25. Therefore, the error in the freezing
and ablation times of lake ice calculated from SMMR data is larger than that for SSM/I because
of the low data sampling period of SMMR, and there is no feasible method to reduce this type
of error.

In this paper, it is approximated that the freezing condition of a pure pixel in the central part
of the lake can reflect the ice phenology of the entire lake. However, in the course of validation
with optical images, it was found that the region of last freezing and first ablation in Nam Co
Lake is to the west of the lake center, while the region of first freezing and last ablation is to
the east of the central pixel. There is land in the east and west sides of the center pixel, and
these mixed pixels might cause certain errors. Therefore, we used only the central pixel for
the calculation, so that the eventually calculated freezing time is always earlier than the actual
date of complete lake-wide freezing and the calculated ablation time is later than the actual
start date.

Moreover, due to the characteristics of the data and the actual freezing process, the jumping
phenomenon of high platform values on the brightness temperature curve is not obvious for
some years. When the lake surface freezes, it shifts from a low value to the high platform
value along a steep slope; it later slowly changes back to the low value upon ice ablation
(Fig. 4). The results obtained through the method of searching for the maximum and minimum
are most likely not located at the initial position of high platform values, and the correction
through visual interpretation cannot accurately pinpoint the initial location of high platform val-
ues. Generally speaking, the transition from low values to the high platform values means that
the lake surface starts to freeze, and the lake surface is completely frozen when it reaches the high
platform values; the transition from the high platform values to low values means the lake surface
starts to thaw, and it is completely thawed when it returns to low values. In this situation, the
results obtained through the difference amplification method in this paper reflect the time when
the lake surface begins to freeze and when it is completely thawed. The kind of error due to
computational methods is slightly different according to the data quality. There is a certain ran-
domness causing the error to be larger or smaller, but it is generally not more than 3 days. This is
because if the error is more than 3 days, it will be obvious during visual interpretation and thus
the results can be corrected.

Fig. 4 An example for the imperfect high platform values.
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4 Results and Discussion

4.1 Variability in Ice Phenology

Based on the SMMR and SSM/I passive microwave brightness temperature data from 1978 to
2013, we derived the variation of ice phenology in Nam Co Lake. The results indicate that the
frozen period of Nam Co generally begins in January or February and ends in April or May every
year; the average ice duration is ∼100 days [Figs. 5(a) and 5(b)]. The average freezing time is
January 21. The earliest freezing time was January 4 in 1985 and 1996; the latest was February 8
in 1999, and the freezing times in 1990, 2009, and 2010 were also in February. The earliest
ablation time was April 5 in 2010, and the latest was June 2 in 1986, with a difference of nearly
two months. There are 16 years in which the ablation time was later than May, including seven
years when the ablation time was later than May 10; six of those years were prior to 1990, and the
last one was 1997. The longest duration of lake ice was 130 days, which occurred in 1986, and
the shortest duration was 59 days, which occurred in 2010. Since 2000, there have been only
three years when the duration of lake ice was >100 days. Between 1978 and 2000, there were
only six years when the duration time of lake ice was <100 days. In the past 35 years, the freez-
ing time of Nam Co Lake has become later by approximately 9 days on average, whereas the
ablation time was advanced by approximately 9 to 10 days. The duration of lake ice has
decreased by ∼19 to 20 days. One point that should be noted here is, from 1978 to 2000,
the average freezing time was January 19, the average ablation time was April 22, and the aver-
age duration time was 102 days. For 2000 to 2013 period, however, the average freezing time
was January 23, the average ablation time was April 14, and the average duration time was
90 days.

Kropáček et al.16 used MODIS 8-day composite data for 2001 to 2010 to analyze the lake ice
phenology of the Tibetan Plateau and found that the average freezing time of Nam Co is
February 13 and the average ablation time is April 4. Our analysis indicates that the average
freezing time for 2001 to 2010 is January 23 and the average ablation time is April 13. The
possible reason for this deviation could be that Kropáček applied MODIS 8-day composite
data, so the result cannot be accurate to a single day; instead, it can only be the start date
plus an integer multiple of 8. In addition, optical imagery is vulnerable to clouds, so the
error is at least 8 days, or even 16 days if there are clouds on all 8 days. Another possible reason
could be that the resolution of MODIS is much higher than that of the 25-km resolution of
passive microwave imagery, and the coarse resolution can only identify the overall ice phenology
of the lake surface. By contrast, MODIS can distinguish fine ice situations in small ranges; for
example, the passive microwave data can only use the central pixel to represent the entire lake,
whereas MODIS image can observe the entire lake. Che et al.23 applied passive microwave
remote sensing data to monitor the lake ice in Qinghai Lake, which is also located in the
Tibetan Plateau. Their results are essentially consistent with the trend of variation in the freezing,
ablation, and duration times of Nam Co lake ice in this study. The longest duration of lake ice in
Qinghai Lake appeared in 1986, and there was a trough in freezing time in 1997, which is most
likely due to the same climatic background as Nam Co Lake.

4.2 Validation

As shown in Table 1, the results from AMSR-E and SSM/I are very close. The maximum differ-
ence in freezing time between the two datasets is 3 days in 2004; the maximum difference in
ablation time is 4 days in 2009. This indicates that it is feasible to apply this method to calculate
the freezing and ablation times of lake ice based on SSM/I data.

The computation results for SSM/I indicate that the freezing time in 2003 was January 17 and
the ablation time was April 30. As shown by the high-resolution MODIS imagery (Fig. 6), Nam
Co Lake fully entered the FU period on January 20, which is 3 days’ difference from the com-
putation result based on SSM/I data. It is inferred from the image of snow-covered mountains
(Fig. 7) during thawing to the south of Nam Co Lake that, except for April 27, all three other
images were affected by clouds (the image on April 29 was not used because the cloud coverage
area on this day is relatively large). However, we can see that the lake ice was not completely
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melted on April 28, while it was completely melted on May 1. Therefore, the error is 1 day
at most.

According to the verification result with AMSR-E and MODIS data, the error is much
smaller than the error (systematic error) in the data themselves or the error in the aforementioned
theoretical analysis. Therefore, it is feasible to apply the SMMR and SSM/I data to monitor the
freezing and ablation times of lake ice, and the results are reliable.

4.3 Relationship Between Lake Ice Phenology and Annual Average
Temperature

The annual average temperature of the Nam Co Basin was −0.12°C for 1971 to 1991 and 0.22°C
for 1991 to 2000. The increase in temperature is very obvious.11 However, the annual average
temperature for 2000 to 2010 was 1.67°C, indicating that the increase in temperature has sig-
nificantly accelerated.30 The results of Wang et al.31 also indicate that an upward trend in temper-
ature in the Nam Co Basin is obvious. The comparison [Fig. 8(a)] between the duration time of

Table 1 Comparison of freezing, ablation, and duration times of lake ice based on special sensor
microwave/imager (SSM/I) and advanced microwave scanning radiometer for Earth observation
system (AMSR-E) data (2003 to 2011).

Year AMSR-E FU SSM/I FU AMSR-E BU SSM/I BU AMSR-E Dur (day) SSM/I Dur (day)

2003 1/16 1/17 4/28 4/30 102 103

2004 1/24 1/21 4/10 4/7 77 77

2005 1/27 1/27 4/29 5/1 92 94

2006 1/31 1/30 4/14 4/14 73 74

2007 1/23 1/21 5/5 5/6 102 105

2008 1/28 1/30 5/7 5/7 100 98

2009 2/3 2/3 4/23 4/27 79 83

2010 2/6 2/5 4/8 4/5 61 59

2011 1/27 1/28 5/7 5/7 100 99

Note: FU is the time of freeze-up, BU is the time of break-up, and Dur is the ice duration.

Fig. 5 Variability in ice phenology on Nam Co Lake from 1978 to 2013. (a) Freezing up (FU) and
breaking up (BU) timing. (b) Lake ice duration.
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lake ice and average temperature in corresponding years during 1979 to 2010 for Nam Co Lake
indicates a negative correlation between them. The trend of the two curves is essentially the same
whereas the peak values are opposite, which further indicates that the response of lake ice to
temperature is very sensitive. Over the past several decades, the temperature has increased and
the duration of lake ice has decreased. The comparison between the freezing and ablation times
of lake ice and annual average temperature [Fig. 8(b)] indicates a negative correlation between
the ablation time of lake ice and annual average temperature; the peak values of the curves are
opposite and the agreement is very high. The freezing time of lake ice is positively correlated

Fig. 6 Moderate resolution image spectroradiometer (MODIS) image of lake ice freezing on Nam
Co Lake in 2003 (combination of bands 5, 4, and 3 of MOD09GA data).

Fig. 7 MODIS image of lake ice ablation of Nam Co Lake in 2003 (combination of bands 5, 4, and
3 of MOD09GA data).

Ke, Tao, and Jin: Variability in the ice phenology of Nam Co Lake in central Tibet. . .

Journal of Applied Remote Sensing 073477-9 Vol. 7, 2013



with annual average temperature, and the trends of the two curves are essentially the same.
However, there is no strict linear relationship between the annual average temperature and the
length of duration time, freezing time, and ablation time of lake ice. For example, the average
temperature in 1997 was the lowest from 1979 to 2010, whereas the duration time of lake ice was
not the longest, nor was the ablation time the latest. The main reason for this disagreement is that
the freezing and ablation times have a higher correlation with monthly average temperature, and an
abrupt temperature change in a short time will affect the freezing and ablation status of lake ice.

5 Conclusion

Based on our results, we suggest that it is feasible to apply the SMMR and SSM/I data to cal-
culate the freezing, ablation, and duration times of lake ice for a long time and that the results
are reliable. From 1978 to 2013, the duration of Nam Co lake ice decreased by ∼19 to 20 days.
The freezing date of lake surface has been delayed approximately 9 days, and the ablation date of
the lake surface has advanced by 9 to 10 days. The duration of lake ice has a negative correlation
with annual average temperature, and therefore, the duration time of lake ice can be used as an
indicator of regional climate change.

For remote alpine lakes such as Nam Co Lake, it is necessary to obtain information about the
ice phenology of the lake and analyze regional climate change through remote sensing methods.
The freely available long time series of passive microwave remote sensing data with high revisit
periods plays a pivotal role in the study of the response of lake ice phenology to climate warm-
ing. However, there are many factors that affect the variation in lake ice phenology, such as
terrain, wind direction and speed, salinity, and water depth in addition to temperature. How
these factors impact Nam Co lake ice and how the lake ice responds to global warming in
the future are still not answered and are beyond the scope of this study. Therefore, the application
of high-resolution multisource remote sensing data to comprehensively analyze the freezing and
ablation of lakes and their response to climate change is an important area of research for the
future.
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