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Abstract. Both the evergreen redberry juniper (Juniperus pinchotii Sudw.) and deciduous honey
mesquite (Prosopis glandulosa Torr.) are destructive and aggressive invaders that affect range-
lands and grasslands of the southern Great Plains of the United States. However, their current
spatial extent and future expansion trends are unknown. This study was aimed at: (1) exploring
the utility of aerial imagery for detecting and mapping intermixed redberry juniper and honey
mesquite while both are in full foliage using the support vector machine classifier at two sites in
north central Texas and, (2) assessing and comparing the mapping accuracies between sites.
Accuracy assessments revealed that the overall accuracies were 90% with the associated
kappa coefficient of 0.86% and 89% with the associated kappa coefficient of 0.85 for sites 1
and 2, respectively. Z-statistics (0.102 < 1.96) used to compare the classification results for both
sites indicated an insignificant difference between classifications at 95% probability level. In
most instances, juniper and mesquite were identified correctly with <7% being mistaken for
the other woody species. These results indicated that assessment of the current infestation extent
and severity of these two woody species in a spatial context is possible using aerial remote sens-
ing imagery. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the
original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073588]
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1 Introduction

Invasive plant species are well known for their successful exploitation of natural resources (e.g.,
water, space, light, and nutrients). This ensues their aggressive and competitive behavior, prolific
seed production, and seed longevity.1,2 Invasive weeds are capable of moving from small, man-
ageable infestation to larger areas reaching levels where control is either economically prohibi-
tive and/or cause significant ecological damage.3 Because of their rapid spreading potential and
threat to biodiversity and ecosystem processes, invasive plant species have been a long-standing
concern to natural resource managers, ecologists, and biological conservationists.4–6 Invasion
may alter nutrient cycling, regional hydrologic processes, carbon sequestration, herbaceous
production, diversity and composition, and soil erosion characteristics.2,5,7–9 Some invasive
species can dominate the vegetative canopy and eventually can form monotypic stands.10

Weed infestation is considered a major reason for loss in global biodiversity including species
extinction.6,7,11–17

There is an abundance of redberry juniper (Juniperus pinchotii Sudw; juniper hereafter) and
honey mesquite (Prosopis glandulosa Torr; mesquite hereafter) across vast areas of the southern
Great Plains of the United States. Both species are native to the region but they are considered
“native invasives.” Their encroachment into grasslands and rangelands has been widely attrib-
uted to reduced fire intensity and frequency and livestock overgrazing.15,16,18–20 Although
there is a common ground that fire suppression and livestock grazing have facilitated woody
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invasion in the region, some argue that decreased lumbering, increased carbon dioxide emission,
landscape fragmentation, and climate change have also accelerated encroachment.21,22 However,
invasion by both mesquite and juniper species may also be beneficial to wildlife habitat,23,24

ecosystem carbon storage,25 recreational activity,8 soil stabilization24 and bio-energy produc-
tion.8,18 Furthermore, juniper and mesquite encroachment in this region has given rise to
increased above- and below-ground biomass, root density, soil nitrogen and carbon, and soil
microbial biomass pool.26–28

Numerous remote sensing studies have been conducted for detection and mapping of a large
number of native and non-native invasive plant species using imagery.4,6–8,11,24,29–33 Remote
detection of invasive plant species using geospatial imagery may substantially improve monitor-
ing, planning, and management practices by overcoming some of the shortcomings of ground-
based surveys such as observer bias and inaccessibility to certain locations. Remote sensing
techniques for accurate mapping of invasion offer a unique set of advantages including repeat-
ability, large area coverage, and cost-effectiveness over ground-based methods over time and
space.34–36

Extent of mesquite distribution has been well reported from southwestern United
States, South America, Australia, and India,37–40 while that of juniper distribution is well
recorded.19,41–43 As both species occupy a significant area of grasslands and rangelands,
their invasion has raised several environmental concerns around the world. Information
about their specific canopy coverage and distinction from surrounding land cover classes, how-
ever, is lacking. In addition, since management practices and mode of interaction with ecosytem
process differ between these species, accurate identification of these species is critical, especially
when they occur in intermixed stands. Our objectives were to: (1) explore the ability of a gray
scale near infrared (NIR) band of multispectral aerial imagery to detect and map land cover types
dominated by juniper and mesquite at two sites in north central Texas, (2) use this method of
analysis to separately map juniper and mesquite canopy cover, and (3) assess and compare the
mapping accuracies between the sites.

2 Materials and Methods

2.1 Study Area

The study sites were located near the town of Crowell, about 132 km west of Wichita Falls and
241 km east of Lubbock in north central Texas (Fig. 1): site 1 (Whatley Ranch), 34°4’N, 99°44’
W, elevation 436 m in Foard County; and site 2 (Copper Breaks State Park), 34°6’N, 99°45’W,
elevation 443 m in Hardeman County. The land area of each site was 187 ha. The 30-year mean
annual rainfall at Crowell is 616 mm.16 The sites were characterized by similar soil types and
dominated by juniper and mesquite with varying densities. Herbaceous understory consists of
numerous cool season (C3) and warm season (C4) grass species dominated by perennial C4

grasses, tobosagrass (Pleuraphis mutica Buckl.) and buffalograss (Bouteloua dactyloides [Nutt.]
J.T. Columbus). Other grasses are C3 mid-grass Texas wintergrass (Nassella leucotricha [Trin.
and Rupr.] Pohl.), C3 annual grass Japanese brome (Bromus japonicus Thunb. ex Murray)
and other C4 mid-grasses such as vine mesquite (Panicum obtusum Kunth), sideoats grama
(Bouteloua curtipendula [Michx.] Torr.), and dropseeds (Sporobolus spp.).16 Soils are fine-
silty, mixed, thermic Typic Calciustolls of the Quanah series and fine-silty, montmorillonitic,
thermic typic Haplusterts of the Hollister series.16

2.2 Remote Sensing Imagery

A county-level color infrared aerial image of Hardeman County, covering both sites, was
obtained from the National Agricultural Imagery Program (NAIP) provided by the Natural
Resources Conservation Service Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/).
The NAIP image was a 3-band digital aerial image with a spatial resolution of 1-m taken on
August 12, 2010. The image was projected to the Universal Transverse Mercator North
American Datum 1983 Zone 14 North by the provider. The image was extracted for the
study sites using ArcGIS (ESRI Inc., Redlands, California).
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2.3 Imagery Classification

After visually evaluating a few classification methods (minimum distance, maximum likelihood,
spectral angle mapper, neural net, etc.) in Environment for Visualizing Images (ENVI; Exelis
Visual Information Solutions, Boulder, Colorado), the support vector machine (SVM) classifier
was selected for our objectives due to its superior ability to detect live vegetation. The SVM is a
supervised machine learning method that performs classification based on the statistical learning
theory. The SVM classifies data by separating a hyperplane that provides the best separation
between classes in a multidimensional feature space. This hyperplane is the decision surface
on which the optimal class separation takes place. The optimal hyperplane is the one that
maximizes the distance between the hyperplane and the nearest positive and negative training

Fig. 1 Location of study sites in Hardeman and Foard Counties in north central Texas, United
States.
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example called the margin. From a given set of training samples, the optimization problem is
solved to find the hyperplane that leads to a sparse solution. Although the SVM is a binary
classifier in its simplest form, implementation of the SVM classifier in ENVI was extended to
more than two classes by splitting the problem into a series of binary class separations (ENVI
User’s Guide).

In order to represent more complex shapes than linear hyperplanes, a variety of kernels
including the polynomial, the radial basis function, and the sigmoid can be used for performing
SVM classification in ENVI. The SVM was employed using the radial basis function kernel for
performing the pairwise classification. A penalty parameter also can be introduced to the SVM
classifier to allow for misclassification during the training process. The penalty parameter was
set to its maximum value, whereas a classification probability threshold of zero was used in order
to classify all pixels (ENVI User’s Guide). Default settings of this classifier were used for image
classifications. During the classification process, only NIR band of the NAIP imagery was
chosen using the spectral subset option in ENVI.

2.4 Extraction of Training Samples

The 1-m NAIP image allowed clear, visual identification of all dominant land cover classes
based on the spectral contrast among the live vegetation (juniper, mesquite, herbaceous) and
senescent herbaceous or nonvegetative components (paved road, shadow, exposed soil,
water) [Figs. 2(a), 2(b), 3(a), and 3(b)]. Previous studies have found significant differences
in reflectance between Ashe juniper (Juniperus ashei Buchholz), mesquite, water, exposed
soil, and herbaceous plants.24,31,44,45 In addition, reflectance variation within a deciduous
crown is greater than that within a coniferous tree crown because of the nonconical shape, larger
branches, and shaded area caused by the neighboring branches.46 Thus, respective training sam-
ples to perform image classification were manually extracted from isolated trees and areas on the
image.47 Training samples consisted of 5 to 10 polygons, each having 25 to 50 pixels, from pure
canopy or each land cover type at identified locations on the ground and on the image. The SVM
analysis was performed for the following land cover classes: juniper, mesquite, live herbaceous,
senescent herbaceous, bare ground, water, shadow, and paved road. Exposed soil, shadow, dirt
roads, live and senescent herbaceous land cover classes were grouped together into a nonwoody
class that resulted in a five-category final classification map for each site: juniper, mesquite,
nonwoody, water, and paved road.

2.5 Accuracy Assessment

Accuracy assessment for classification was made by constructing an error matrix for each clas-
sified image, which compares, on a group by group basis, the relationship between reference
categories on the ground and corresponding classified categories on the image. Error matrices for
each classification map were generated by comparing the classified classes with the ground veri-
fication data. Error matrices were computed to evaluate the classification accuracy including the
overall, producer’s, and user’s accuracies.

There is no single established standard for selection of the image and ground areas for com-
parison.46,48–50 Because a pixel in an image represents only an arbitrary location on the ground,
and positional errors of maps and global positioning system receivers become significant with
smaller pixel sizes, areas based on geographic information system polygons are used fre-
quently.48 However, using individual pixels is appropriate if a per-pixel classification is assessed
for accuracy.51,52 This avoids problems caused by generating “homogeneous” polygons on a
landscape. It has also been observed that pixel positional error results in conservative bias
of the accuracy assessment.53 Therefore, the unavoidable positional error introduced into this
assessment would result in lower or conservative estimates of mapping accuracy.49

Field validation (accuracy assessment) was performed using verification data (ground control
points) at sites. Verification data for 250 locations at each site were randomly generated using the
“create random points” function in ArcGIS [Figs. 2(a) and 3(a)]. The verification points were
loaded into a real time differential Trimble GeoXH Global Positioning System (Trimble
Navigation Limited, Sunnyvale, California) equipped with the ArcPad (ESRI Inc. Redland,
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California) software package and a 4-m external antenna, providing a submeter horizontal accu-
racy (10-cm), and navigated prior to image classification at sites. This created an unbiased field
validation method that was visited at sites without any prior knowledge of whether specific
locations were delineated for the respective land cover categories by the classification method.
Actual land cover type on each of the 250 locations was assessed at the sites and assigned to
points that were navigated using the GPS unit. Subsequent to image classification, these points
were overlain on the land cover map and a one-to-one matching was performed to contract an
error matrix for each site.

In addition to accuracy assessment for classified maps and individual land cover classes,
kappa coefficients and kappa variances were determined from the error matrix and a two-tailed
Z-test (Zα∕2 ¼ Z0.025) was performed to compare image classification between sites at the 95%
confidence level.54–56 The kappa statistic is an estimate of agreement or accuracy between the
imagery-derived classification map and the ground verification data. This is characterized by:
(1) the major diagonal and (2) the chance agreement by taking into account of the row and
column totals estimates. Kappa values range between 0 and 1, with values >0.80 representing
strong agreement between the classified map and ground truth and values <0.40 representing

Fig. 2 The color infrared imagery with 1-m spatial resolution and validation points represented
with (a) yellow dots, (b) grayscale infrared imagery, and (c) classified imagery for site 1.
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poor agreement. Values between 0.40 and 0.80 indicate moderate agreement with the ground
truth data.57

3 Results

Figures 2(a), 2(b), 3(a), and 3(b) show the CIR composite (a) and the grayscale NIR NAIP
images (b) for sites 1 and 2, respectively. The CIR composite imagery reveals distinct spatial
patterns of juniper, mesquite, herbaceous, and other land cover classes on each site. On the CIR
composite image, mesquite is characterized by a lighter reddish tone, juniper by a dark reddish
color, herbaceous plants by a grayish to pinkish response (along intermittent stream segments),
exposed soil and paved road by a white to light blue color, and water by black or blue tones
[Figs. 2(a) to 3(a)]. On the corresponding gray scale NIR image, juniper has a distinct darker
gray tone than mesquite which in turn is darker than the herbaceous species (along intermittent
stream segments). Exposed soil (bare ground or dirt road) has the brightest white color with
distinct shape and spatial geometry on both images. Paved road has a similar gray color as
the herbaceous species, but with same spatial characteristics of dirt road. Water varies from
having dark gray to bright color with a texture noticeably differing from the other features
[Figs. 2(b) to 3(b)].

Image classification resulted in 27.74% juniper, 24.45% mesquite, 0.91% water, 0.36% road,
46.54% nonwoody for site 1 [Fig. 2(c)], whereas 35.43%, 4.87%, 1.01%, 2.03%, and 56.66%
were classified as juniper, mesquite, water, road, and nonwoody land cover classes, respectively,
at site 2. Land cover classes were identified with the overall accuracy of 90.4% with the asso-
ciated kappa coefficient of 0.86 for site 1 and 89.2% with kappa coefficient of 0.85 for site 2
(Table 1). The producer’s accuracies ranged from 85.7% for water to 100% for road, while the

Fig. 3 The color infrared imagery with 1-m spatial resolution and validation points represented
with (a) yellow dots, (b) grayscale infrared imagery, and (c) classified imagery for site 2.
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user’s accuracies varied from 50% for water to 100% for paved road at site 1 (Table 1). The
highest and the lowest producer’s accuracies were found for nonwoody (91.67%) and water
(77.78%) classes, respectively, at site 2 (Table 1). The classification for the same site had
the highest and the lowest user’s accuracies of 94.20% and 53.85%, respectively, for the juniper
and water land cover classes (Table 1). The Z-statistics (0.102 < 1.96) indicated an insignificant
difference between the classifications for sites at 95% probability level.

Both sites were similar in the degree to which juniper was misidentified as mesquite and
mesquite was misidentified as juniper. Juniper was misidentified as mesquite 4.2% and
3.0% of the time at sites 1 (3/72) and 2 (2/67), respectively. In contrast, the error for misidenti-
fying mesquite as juniper was slightly higher at 6.6% and 5.3% at sites 1 (4/61) and 2 (1/19),
respectively. Averaged over both sites, misidentification of juniper as mesquite was 3.6% and
mesquite as juniper was 6.0%.

4 Discussion

This study evaluated the usefulness of geospatial aerial imagery to detect and map intermixed
juniper and mesquite distribution on rangeland settings, a land cover type typical for much of the

Table 1 Error matrices for image classifications generated from the reference and classified
data for study sites.

Actual category

Classified C Juniper Mesquite Water Road Nonwoody Row total UA (%)

Site 1 Juniper 69 3 0 0 1 73 94.52

Mesquite 4 57 0 0 4 65 87.69

Water 2 4 6 0 0 12 50.00

Paved Road 0 0 0 3 0 3 100.00

Nonwoody 3 2 1 0 91 97 93.81

Column total 78 66 7 3 96 250 250.00

PA (%) 88.46 86.36 85.71 100.00 94.79

OA (%) 90.40

KC 0.86

KV 0.01

Site 2 Juniper 65 2 0 0 2 69 94.20

Mesquite 1 18 0 0 2 21 85.71

Water 2 1 7 2 1 13 53.85

Paved road 0 0 0 34 4 38 89.47

Nonwoody 4 1 2 3 99 109 90.83

Column total 72 22 9 39 108 250

PA (%) 90.28 81.82 77.78 87.18 91.67

OA (%) 89.20

KC 0.85

KV 0.01

Note: Classified C: classified category; UA: user’s accuracy; PA: producer’s accuracy; OA: overall accuracy;
KC: kappa coefficient; KV: kappa variance.
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south central and southwestern US. Accurate and timely information concerning current extent
of juniper and mesquite over large and inaccessible areas using a relatively cost-effective and
quick method can be used for various fields of rangeland ecology and management. We used
freely available NAIP imagery currently over the study region for mapping mesquite and juniper
at the species level.

Our accuracy assessment indicated that land cover classes were successfully mapped with an
overall accuracy > 89% with the individual class accuracies ranging from 50% to 100%. The
lowest class accuracy (50%) was found for water. This probably resulted from: (1) similar spec-
tral patterns for juniper tree shadow and water bodies in presence of dense aquatic weeds, and
(2) few validation points randomly generated for the water land cover class. Separation of differ-
ent rangeland woody species on an image has received limited attention in the literature.
Phenological, structural, and spectral characteristics of plant species have been utilized to dis-
tinguish one woody species from another. In a study in central Texas, reflectance spectra of
honey mesquite, Ashe juniper, senescing grass, mixed herbaceous, and some other woody plants
were recorded in late summer using a hyperspectral handheld field spectroradiometer.45

Mesquite had higher visible and NIR reflectance than Ashe juniper. The shift from higher to
lower reflectance occurred around 720 nm. A similar observation was made by the authors
in Ref. 44 who reported that Ashe juniper had lower visible and NIR reflectance compared
to mesquite in the spectrum they examined.

Some juniper and mesquite plants with small canopies might have been classified as non-
woody land cover with the classification method employed in this study. We found that a juniper
plant with a 1.75-m canopy diameter and 2.3-m2 canopy area was undetected with the algorithm
used to classify the same imagery. Visual inspection of ground-level images of this plant revealed
that the plant was growing on 100% bare soil which suggested that small plants may remain
undetected on such soils. Accurate monitoring of semiarid vegetation using remote sensing is
hindered by the effects of bare soil because of an “overexposure” effect that washes out smaller
objects on the image.58 The correlation between measured woody-plant cover from image clas-
sification and ground-based measurements depends strongly on the: (1) image resolution,
(2) size of the plants or clusters under surveillance, and (3) time of image acquisition.59–63

In a southern New Mexico study, only 29% of shrubs with canopy areas <2-m2 in size were
correctly classified, while 87% of all shrubs with canopies >2-m2 were detected using an
image with a spatial resolution 0.86 m.61

In contrast to these studies, a study in Arizona found that the overall classification accuracy
for mapping shrub cover dominated by velvet mesquite (Prosopis velutina) derived from a 1-m
spatial resolution image was greater than 0.6-m resolution image.59 An image with a spatial
resolution of 1-m or less was recommended to estimate percent cover and the areas of individual
shrubs in the south-central Mohave Desert in California.60 An optimal pixel size of 6-m or less
has been suggested for studying functional properties of chaparral and grassland in southern
California using hyperspectral data.62 It is likely that in our study, several newly recruited mes-
quite and juniper trees with canopy areas <1-m2 were missed in the 1-m image unless the trees
were clustered. However, it is also very likely that mesquite or juniper cover within mesquite or
juniper clusters and thickets was overestimated because small gaps between canopies were
missed. The same conclusion can be given regardless of image pixel size for individual
trees or shrubs of different species within a dense patch of other woody species.

We are uncertain as to why a slightly higher level of inaccuracy occurred in misidenti-
fying mesquite as juniper (average 6.0% over both sites) compared to misidentifying juniper
as mesquite (avg. 3.6%). Due to within-canopy and canopy versus canopy shading effects,
there may have been portions of mesquite canopies that exhibited a darker red spectral color
and these in some cases were misidentified as juniper canopies. The potential for this error
toward a darker color is probably greater than for sunlight portions of juniper canopies be-
coming sufficiently lighter red or pink to the point of being mistaken as mesquite canopies.
This may be due to the conical canopy shape and more uniform reflectance of evergreen
juniper species compared to deciduous species as has been noted.46 Regardless, the error
margins of cross misidentification between these two woody species were in all cases <7%
and were thus not a large concern but more sites with an equal mix of the two species need
to be assessed.
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Our ability to utilize aerial images for quantifying trends and patterns of woody plant cover
depends on several factors.59 Spatial, spectral, and radiometric resolutions along with the image
scale, image processing methods, atmospheric haze, shadow, terrain effects, angle between the
sensor and vegetative layers, relative contrast between vegetative layers and background, canopy
architecture, crown size and height, and plant density greatly influence detection capabilities of
remotely sensed image.64,65 In cases where canopies of individuals of the same plants or different
plants overlap, it cannot be reliably determined from top-down perspective whether a given
image object represents one large plant, multiple plants of the same species, or multiple plants
of different species.59

5 Conclusions

Remote sensing techniques offer a unique set of algorithms for detecting and mapping plant
species and can potentially characterize the extent of an invasion by distinguishing the invading
species from the rest of the vegetation mosaic in a timely and spatial manner. This study inves-
tigated the use of aerial imagery with 1-m spatial resolution and the SVM classifier for separating
juniper, mesquite, and co-occurring herbaceous vegetation in two grassland environments that
had been invaded by woody species mesquite and juniper. Given the economic and ecological
consequences of invasion by these woody plants, our results clearly indicate that aerial imagery
is a valuable tool for identifying and mapping the extent invasion with a high level of accuracy.
The 1-m scale level of resolution appeared to be adequate in mapping both mesquite and juniper
with the exception of mapping very small plants with <1-m-diameter canopies. For these plants a
higher resolution image may be necessary. This might be critical if the goal is to detect the very
early stages of invasion with juvenile plants. These maps can be used for monitoring and plan-
ning control measures for both species studied. The ability of the support vector machine (SVM)
classifier to accurately separate juniper canopies from those of mesquite also has advantages in
estimating biomass levels of each species and determining the extent and type of treatments
required for woody invasion mitigation, which can be different for different shrub species.
The use of 1-m spatial resolution aerial imagery for obtaining estimates of infestation by unde-
sirable rangeland species was shown in this study and it is recommended that this methodology
and technology should be considered when high scale maps are needed for research and land
management purposes.
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