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Abstract. Identification of flowering trees in urban areas is challenging due to weak spectral
signals and the high heterogeneity of urban landscapes. We hypothesized that a soft classifier,
such as mixture tuned matched filtering (MTMF), would be better able to identify pixels includ-
ing blooming cherry trees than a hard classifier such as maximum likelihood (ML). To test this
hypothesis, we compared the accuracy of MTMF and ML in classifying blossoms of Somei
Yoshino cherry trees (Prunus × yedoensis) in an urban park in Tokyo using IKONOS imagery.
An accuracy assessment demonstrated that the MTMF classifier (overall accuracy: 62.2%, kappa
coefficient: 0.507, and user’s accuracy of SY: 48.1%) performed better than ML in identifying
flowering SY (overall accuracy 48.7% with kappa accuracy: 0.321 and user’s accuracy of
blooming SY: 38.9%). Our results suggest that both methods are able to classify cherry blossoms
in an urban landscape, but MTMF is more accurate than ML. However, the producer’s accuracy
of MTMF (72.7%) was slightly lower than ML (77.7%), suggesting that the accuracy of MTMF
could decrease due to the limited number of available bands (four for IKONOS) and the exist-
ence of endmembers, such as dry grass in this study, with stronger signals than flowers. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.9.096046]
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1 Introduction

Plant phenology is gaining attention as an important indicator of global and local climate
changes. Ground observations on a large spatial scale are expensive and time consuming,
so remotely sensed data have been used to detect changes in plant phenology, such as
leaf-out, senescence and dormancy,1–3 and flowering.3–7 Most studies have focused on changes
in basic vegetation indices, such as the Normalized Difference Vegetation Index (NDVI).3–5

However, vegetation indices do not utilize the full information content of remotely sensed
imagery in the way that image classification methods can,8 especially for phenological events.
Vegetation indices typically focus on certain spectral bands that represent the spectral reflec-
tance of canopy greenness, and therefore provide less information on flowering status, flower
abundance, and flowering dates.9 Moreover, the spectral bands used by vegetation indices
may sometimes represent ground features such as soil that can cause errors in classifying
land cover type.10

Image classification approaches have been used to identify tree species and their composi-
tion,8 to detect land use changes,11,12 and to identify plant conditions13 based on the spectral
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signal of canopy greenness. Two approaches have been used in previous studies: (1) hard clas-
sification and (2) soft classification. Hard classification selects the class label with the greatest
likelihood of being correct and unambiguously assigns each pixel to a single class.14,15 The deci-
sion boundaries of the feature space are well defined for hard classification. In soft classification,
pixels are assigned based on the relative abundance of each class in the spatially and spectrally
integrated multispectrum of each pixel.14 Therefore, the decision boundaries of the feature space
are considered fuzzy14 in soft classification because each pixel can have multiple or partial class
memberships.15,16 Due to its ability to assign multiple classes to a single pixel, soft classification
has been widely used to monitor mineral, soil, and vegetation status, especially in highly hetero-
geneous areas, because it can divide multiple spectral responses within a pixel and provide pro-
portional information for each class.

Cherry blossoms of Prunus species flower synchronously in the spring in temperate zones of
the northern hemisphere. Cherry blossoms are of interest because they provide social and eco-
nomic benefits from cherry blossom viewing, and they provide important information on the
long-term impacts of climate change.17,18 However, identification of cherry blossoms is chal-
lenging because urban environments are highly heterogeneous and the flowers produce a weak
spectral signal. Therefore, we hypothesized that a soft classifier approach may be more useful to
identify cherry blossoms in urban areas due to its ability to separate multiple spectral responses
from different land cover types.

In this study, we explore the ability of hard and soft classifiers to identify cherry blossoms in
an urban landscape from high-spatial resolution images. We chose the most common cherry
cultivar in Japan, Somei Yoshino (hereafter SY) (Prunus × yedoensis), for identification of
cherry blossoms. We used maximum likelihood (ML) as a hard classification method and mix-
ture tuned matched filtering (MTMF) as a soft classification method. We compared the accuracy
of these two classifiers using high-spatial resolution IKONOS imagery of an urban park in
Tokyo, Japan.

2 Materials and Methodology

2.1 Study Site

The study was conducted in Yanagisawanoike Park, Hachioji City, Tokyo, Japan (35.6154° N,
139.3767° E, altitude 128 m). The dominant tree cultivar in the park is a deciduous cherry, Somei
Yoshino (Prunus × yedoensis). It is mixed with other cherry cultivars, such as Kanzakura
(Prunus sato-zakura “Sekiyama”), Mamezakura (Prunus incisa), and Shidarezakura
(Prunus sapchiana), as well as other deciduous trees, such as Japanese red pine (Pinus densi-
flora) and hornbeam (Carpinus laxifolia), and evergreen trees, including camphor
(Cinnamomum camphora), Chinese evergreen oak (Quercus mysinaefolia), and Japanese
black pine (Pinus thunbergii). The mean canopy size of the flowering SY trees was 5 m
and the mean height was 3 m.

2.2 Materials

2.2.1 Remotely sensed data

We used a multispectral IKONOS image [four bands: blue (445–516 nm), green (506–595 nm),
red (632–698 nm), and near infra-red (NIR; 752–853 nm)] with 4-m resolution. The IKONOS
data were recorded over the study area on April 1, 2006, and were purchased from Pasco, Japan.
The image was chosen because SY was in full bloom at the time according to information pro-
vided by the Japanese Meteorological Agency (JMA). The purchased data were radiometrically
corrected and geo-referenced to the Universal Transverse Mercator (UTM) coordinate system,
zone 54, WGS84 datum. We conducted reflectance data conversion on the image to estimate
areas of blooming SY. To avoid multiple spectral responses, asphalt roads and lakes were masked
using a threshold approach. Each feature of the study site in IKONOS image was first digitized
and overlaid in Google Earth and was approximately measured.
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2.2.2 Spectral data collection

To validate the spectral reflectance of flowering SY in the IKONOS image, we collected spectral
reflectance data of flowering SY in Yanagisawanoike Park using a spectroradiometer (ASD
Fieldspec Pro) in April 2014. The data were collected at a spectral range of 0.35-2.5 μm
with a spectral interval of 3.3 nm. The spectral reflectances of 10 flowers from five blooming
SY individuals were measured in a laboratory under dark conditions using a spectroradiometer
mounted at a nadir position 20 cm above the target with a 25-deg field of view. We recorded 10
readings for each sample and calculated the average of the spectral data. The sensor was cali-
brated using a white Spectralon panel prior to data collection.

2.2.3 Ground data collection

In addition to the spectroradiometer measurements, we collected XY-coordinates of flowering
SY trees, soil, dry grass, and evergreen trees using a handheld GPS unit (Garmin GPSmap
60CSx) on April 1, 2014. According to the park manager and Google Earth, the SY trees
on this date were the same as in the 2006 imagery. We used these coordinates as reference
data to assess classification accuracy.

2.3 Methodology

2.3.1 Methods used to identify flowering SY

We used two types of image classifications to identify flowering SY from IKONOS imagery:
hard classification and soft, or fuzzy, classification. We used ML for hard classification, as it has
been widely used for many purposes, such as discrimination of tree species.19,20 We used MTMF
for soft classification because it has been used to identify targets in highly heterogeneous areas,
such as urban areas, by decomposing the pixel into its constituent classes and estimating the
proportion of each class.

Maximum likelihood classification. To obtain optimal classification using ML, we first
examined spatial and spectral information for a set of training pixels. We collected spatial infor-
mation on texture using the gray level co-occurrence matrix method on the IKONOS image with
a 3 × 3 pixels window. We calculated the mean, variance, entropy, homogeneity, contrast, dis-
similarity, second moment, and correlation of pixels for each training area (Fig. 1). Because there
was spatial variability and contrast among classes, we used textural analysis in addition to the
spectral information to improve the classification results.

We extracted spectral information from training pixels of the IKONOS image (Fig. 2). The
spectral pattern of each class varied enough to discriminate the classes. Dry grass had a higher
reflectance, and evergreen trees had a lower reflectance, compared to flowering SY. However, the
spectral patterns and magnitudes of soil and evergreen trees were almost identical. Therefore, we
conducted a spectral separability test to determine the distinctness of each class.

We applied transform divergence (TD) to the IKONOS image to select the features with
the greatest degree of statistical separability. TD is used to evaluate spectral variability
among classes of training areas. ATD value of 1.90–2.00 indicates good to excellent separation
between classes, while a value <1.70 indicates poor class separation.21 The TD results demon-
strated good class separability (TD ¼ 2.00) among flowering SY, soil, dry grass, and evergreen
trees. However, the TD value was 1.73 for flowering SYand dry grass and 1.83 for flowering SY
and evergreen trees, indicating weak separabililty of these classes. Soil and evergreen trees had
an even lower separability, with a TD value of 1.65. However, we were able to distinguish classes
with a lower separability based on spatial evaluation (Fig. 1). Therefore, we used flowering SY,
soil, dry grass, and evergreen trees as the training classes for ML classification. To obtain optimal
accuracy of the ML classification, we supplemented the four spectral bands of the IKONOS
imagery with four bands of local texture information (variance). Thus, a total of eight bands
were used in this classification.
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Mixture tuned matched filtering. MTMF is a linear process of unmixing that is widely
used to identify plant species.22–24 There are two phases in the MTMF algorithm: the matched
filter (MF) calculation to estimate abundance, and the mixture tuning (MT) calculation to iden-
tify false-positive results.

MT assesses the probability of an MF estimation error for each pixel based on mixing fea-
sibility. Abundances in MTMF must obey two critical feasibility constraints: (1) they must be
non-negative, and (2) the abundances for each pixel must sum to one. Calculated infeasibility
represents the distance of the pixel from the line connecting the target spectrum and the back-
ground mean, measured in terms of standard deviations using the appropriate mixing distribution
for the MF score of that pixel. MT and MF scores can be jointly interpreted to provide good
subpixel detection and false-positive rejection.25

The endmember of MTMF is a spectrum representing ground surface materials.26 In this
study, we assigned a single endmember for MTMF classification of flowering SY by selecting
10 pure pixels of flowering SY. We averaged the spectral data from the IKONOS imagery for
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Fig. 1 Mean values of textural features calculated from training pixels. Textural analysis con-
ducted on the IKONOS image included mean, variance, entropy, homogeneity, contrast, dissimi-
larity, second moment, and correlations for each class.
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these 10 data points to create a single composite target spectrum that was used as the endmember
for MTMF classification.

2.3.2 Infeasibility scores

Infeasibility scores are used to confirm the classification of flowering SY from the MTMF clas-
sifier. The best match is indicated by an MF score close to one and an infeasibility score close to
zero.27 However, according to Brelsford and Shepherd,28 certain spectral signatures can generate
large positive MF scores that are indicated as false positives in MTMF. In this study, we used the
cumulative distribution function to identify an infeasibility score for 36 points where flowering
SY was confirmed by GPS ground truthing. These 36 points were distributed across 40 pixels in
the IKONOS imagery. We assigned the MF scores of these 40 pixels to five groups to identify the
best infeasibility score, which lies between 0.01 and 0.1 and represents the highest MF score
(0.8 ≤ MF ≤ 1.2) (Fig. 3).

2.3.3 Accuracy assessment

We assessed the accuracy of MTMF and ML classifications of flowering SY compared to
ground-truthed data. We calculated both user’s and producer’s accuracy for both classification
methods. According to Congalton and Green,29 producer’s accuracy is the ability of the
IKONOS imagery to classify a certain target (number of individual classes correctly classi-
fied/total number of reference data), while user’s accuracy is the probability that a classified
pixel actually represents that category (number of pixels classified on the map/number of pixels
in the image that actually represent that category). The percentage of all classes correctly clas-
sified was evaluated using overall accuracy and the kappa coefficient, which measures the level
of agreement of the overall accuracy. We calculated the overall accuracy and kappa coefficient as
in Eqs. (1) and (2):
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OA ¼
Pq

k¼1 nkk
n

; (1)

K̂ ¼ n
Pq

k¼1 nkk −
Pq

k¼1 nkþ × nþk

n2 −
Pq

k¼1 nkþ × nþk
; (2)

where q is the number of rows in the matrix, nkk is the number of observations in row k and
column k of the error matrix, nkþ and nþk are the marginal totals of row k and column k, respec-
tively, and n is the total number of observations.

The number of flowering SY trees in Yanagisawanoike Park is limited by the presence of a
lake. This made it impossible to take a random sample of at least 50 plots for each land cover
class, which is ideal. Laba et al.30 had a similar problem due to the limited areas of certain
vegetation classes, and suggested using the largest possible number of plots. The numbers
of training and test pixels used for each class in ML and MTMF classifications are shown
in Table 1.

3 Results

The percentages of each land cover feature in the IKONOS image of the park were: 19% SY
trees, 19% asphalt roads, 18% deciduous trees, 17% evergreen trees, 15% pedestrian roads, 8%
grass areas, and 4% lake [Fig. 5(a)].

The MF scores, which represent the abundance of pixels in each category, ranged from—
2.698 to 2.947 [Fig. 5(b)]. Pixels representing masked asphalt road and lake had negative MF
scores. Thus, the MF scores were interpreted as zero target abundance similar to previous stud-
ies.31–33 The 36 points of flowering SY were distributed across 40 pixels with 0.8 ≤ MF ≤ 1.2

[Fig. 5(b)], indicating more than 80% flowering SY per pixel. Pixels with MF scores < 0.8 rep-
resented bare soil and MF scores >1.2 represented dry grass and evergreen trees. Infeasibility
scores from the MTMF classification ranged from 0.01 to 16.854. Each MF score in the MTMF
classification had its own infeasibility score that indicated the class to which the pixel belonged.
Pixels identified as flowering SY had infeasibility scores ranging from 0.001 to 0.1 (Fig. 4).

The IKONOS image used in this study had high variation and contrast among the training
classes. Therefore, we supplemented the image with four gray level co-occurrence (variance)
bands for the ML classification. However, the TD showed that separability of flowering SY,
dry grass, and evergreen trees was poor. The ML classification identified most of the soil pixels
as evergreen trees [Fig. 5(c)], even though texture analysis was conducted before ML
classification.

The MTMF classification had 62.2% overall accuracy and a kappa coefficient of 0.507, com-
pared to 48.7% overall accuracy and a kappa coefficient 0.321 for the ML classification. User’s
accuracy of the MTMF classification of flowering SY (48.1%) was higher than that of ML clas-
sification (39.4%). The poor overall accuracy of the ML classification was primarily due to
misclassification of soil (user’s accuracy: 37%, producer’s accuracy: 25%). ML misclassified
60.6% of flowering SY as dry grass or evergreen trees [Fig. 5(c)]. However, the producer’s

Table 1 Number of training pixels and test pixels for each class for maximum likelihood (ML) and
mixture tuned matched filtering (MTMF) classifications.

ML classification MTMF classification

Training pixels Test pixels Test pixels

Flowering SY 10 36 36

Soil 12 40 40

Dry grass 18 40 40

Evergreen trees 15 40 40
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accuracy of the MTMF classification (72.2%) was lower than that of the ML classification
(77.7%). MTMF tended to misclassify flowering SY as dry grass or soil.

4 Discussion

Our results indicate that, in terms of overall accuracy and Kappa coefficient, MTMF classified
flowering SY in an urban park more accurately than ML. However, the producer’s accuracy of
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sents flowering SY with MF scores ranged from 0.8 to 1.2) and (c) maximum likelihood (ML) clas-
sification of the IKONOS image.
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the MTMF classification was slightly lower than the ML due to misclassification of flowering
SY pixels as soil or dry grass (Table 2). This may be due to the limited number of available bands
for ML (four bands for IKONOS). MTMF can achieve higher classification accuracy by using
hyperspectral data. Williams and Hunt22 demonstrated that MTMF classification worked well to
identify leafy spurge in hyperspectral airborne visible infrared imaging spectrometer (AVIRIS)
images. In addition, the existence of an endmember with a stronger signal than flowers, such as
dry grass in this study, may have limited the user’s accuracy of MTMF classification. Therefore,
additional endmembers may be needed to improve the performance of MTMF for classifying
flowering SY trees.

In contrast, the ML classifier identified flowering SY with a relatively high producer’s accu-
racy (Table 2). However, misclassification of soil as evergreen trees may be the cause of the low
overall accuracy. Most of the pixels representing soil were assigned as evergreen trees, and pixels
of deciduous trees were often assigned as soil. Cherry blossoms precede the leaf flushing of other
deciduous trees, which had no leaves at the time of the imagery. Because soil has higher reflec-
tance than branches or trunks, deciduous trees were often misclassified. Therefore, adding a
training class for deciduous trees could improve the accuracy of ML classification.

Plant leaves, rather than flowers, have often been used3–5 to observe plant phenology from
remotely sensed data because the spectral signal of flowers is generally weaker than that of
leaves. We confirmed that cherry blossoms of SY have weaker spectral signals than dry
grass (Fig. 2), but MTMF classification has considerable potential in terms of enabling their
accurate separation (Figs. 3 and 5).

5 Conclusion

Our results suggest that MTMF classification is more accurate than ML classification for iden-
tifying plant flowering phenology in a highly heterogeneous urban landscape. However, the

Table 2 Accuracy assessment for maximum likelihood (ML) and mixture tuned matched filtering
(MTMF) classifications of flowering SY trees. The values for each class represent the number of
ground-truthed points used to evaluate the accuracy of classification.

ML classifier

Class Label

Reference

Sum
User’s

accuracy (%)
Overall

accuracy (%)
Kappa

coefficientA B C D

Somei Yoshino A 28 7 20 16 71 39.4 48.7 0.321

Soil B 1 10 2 2 22 37

Dry grass C 5 3 18 2 28 64.2

Evergreen trees D 2 20 0 20 42 47.6

Sum 36 40 40 40 156

Producer’s accuracy (%) 77.7 25 45 50

MTMF classifier

Somei Yoshino A 26 10 10 8 54 48.1 62.2 0.507

Soil B 5 26 5 5 41 63.4

Dry grass C 5 4 25 5 39 64.1

Evergreen trees D 0 0 0 20 20 100

Sum 36 40 40 40 156

Producer’s accuracy (%) 72.2 65 62.5 50
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number of spectral bands can limit the producer’s accuracy of MTMF classification. Therefore,
utilization of hyperspectral data with high-spatial resolution such as AVIRIS might be useful for
identifying flowering phenology in urban ecosystems.
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