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Abstract. Spectral-domain optical coherence tomography (SDOCT) is a noncontact and noninvasive
imaging technology offering three-dimensional (3-D), objective, and quantitative assessment of optic nerve head
(ONH) in human eyes in vivo. The image quality of SDOCT scans is crucial for an accurate and reliable inter-
pretation of ONH structure and for further detection of diseases. Traditionally, signal strength (SS) is used as an
index to include or exclude SDOCT scans for further analysis. However, it is insufficient to assess other image
quality issues such as off-centration, out of registration, missing data, motion artifacts, mirror artifacts, or blurri-
ness, which require specialized knowledge in SDOCT for such assessment. We proposed a deep learning
system (DLS) as an automated tool for filtering out ungradable SDOCT volumes. In total, 5599 SDOCT ONH
volumes were collected for training (80%) and primary validation (20%). Other 711 and 298 volumes from two
independent datasets, respectively, were used for external validation. An SDOCT volume was labeled as
ungradable when SS was <5 or when any artifacts influenced the measurement circle or >25% of the peripheral
area. Artifacts included (1) off-centration, (2) out of registration, (3) missing signal, (4) motion artifacts, (5) mirror
artifacts, and (6) blurriness. An SDOCT volume was labeled as gradable when SS was ≥5, and there was an
absence of any artifacts or artifacts only influenced <25% peripheral area but not the retinal nerve fiber layer
calculation circle. We developed and validated a 3-D DLS based on squeeze-and-excitation ResNeXt blocks
and experimented with different training strategies. The area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, and accuracy were calculated to evaluate the performance. Heatmaps were
generated by gradient-weighted class activation map. Our findings show that the presented DLS achieved a
good performance in both primary and external validations, which could potentially increase the efficiency and
accuracy of SDOCT volumetric scans quality control by filtering out ungradable ones automatically. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.6.4.041110]
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1 Introduction
Optical coherence tomography (OCT) is a noncontact and
noninvasive imaging technology offering objective and quanti-
tative assessment of human eye structures, including the cornea,
macula, and optic nerve head (ONH) in vivo. The introduction
of spectral-domain optical coherence tomography (SDOCT) in
recent years has improved scanning speed and axial resolution,
enabling high-resolution, three-dimensional (3-D) volumetric
imaging that has made a great contribution to the wide applica-
tion in clinics.1 However, poor scan quality due to patients’ poor
cooperation, operators’ skills, or device-dependent factors (e.g.,
inaccurate optic disc margin delineation) can affect the metrics
generated from the SDOCT.2,3 Specifically, insufficient image
quality potentially leads to inaccurate measurements of retinal
nerve fiber layer (RNFL) thickness, which is an important

metric for detection of optic neuropathy such as glaucoma, a
leading cause of irreversible blindness.4 Other morphologies
from ONH, such as neuroretinal rim and lamina cribrosa,5 are
also used to assess glaucoma, which also require sufficient
quality of SDOCT volumetric data for such assessment. Thus,
it is necessary to filter out ungradable scans and reoperate on
patients with subpar images before any clinical assessment.

Conventionally, signal strength (SS) is the main parameter
to include or exclude SDOCT scans for further quantitative
analysis.6 For the Cirrus high-definition SDOCT, image quality
is indicated by SS ranging from 0 (worst quality) to 10 (best
quality), representing the average of signal intensity of SDOCT
volumetric scans, and scans with SS of 6 or above are usually
defined as sufficient for further analysis.7–9 However, even with
acceptable SS, it is still hard to assess other SDOCT image qual-
ity issues, such as off-centration, out of registration, signal loss,
motion artifacts, mirror artifacts, or blurriness of SDOCT volu-
metric data.3 Such image quality assessment indeed requires
highly trained operators and interpreters with specialized
knowledge in SDOCT, which is a big challenge due to the
lack of manpower and insufficient training time in clinics. In
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addition, it is impractical for human assessors to grade every
SDOCT volumetric scan, which could be a time-consuming and
tedious process in busy clinics.

Previous studies have proposed traditional computer-aided
systems using hand-crafted features for automated image quality
control in natural images.10 However, the hand-crafted features
were based on either geometric or structural quality parameters
such as signal-to-noise ratio, which do not generalize well to
new datasets. Moreover, unlike natural images, the gradability
of medical images is not simply related to pixels, signals, noises,
or distortion of an image itself. Human assessors’ judgment on
whether the quality of the entire image is sufficient for disease
detection or further analysis is essential for discriminating the
gradability of medical images.

Machine learning, under the broad name of artificial intelli-
gence (AI), adopts a class of techniques called deep learning
(DL).11 In terms of image processing, convolutional neural net-
works (CNNs) are proven to be useful in image-related tasks.
It is more efficient to extract and weigh features automatically
rather than in a hand-crafted manner. Currently, CNN has been
used for image quality control in various medical imaging, such
as magnetic resonance imaging (MRI),12 ultrasound imaging,13

and fundus photography.14 Generally, using DL for image qual-
ity control can be achieved with either unsupervised or super-
vised methods. Unsupervised anomaly detection is mainly used
in highly imbalanced datasets to detect rare cases. It learns fea-
tures from only one kind of input, then computes the similarity
between the future input and the learned one. Generative-based
works, such as variational autoencoder-based methods15 and
generative adversarial networks-based methods,16 are com-
monly applied on more than one neural network. Nongenera-
tive models, such as one-class neural networks,17 require a
pretrained deep autoencoder as well. Hence, a higher computa-
tional cost and a larger graphics processing unit (GPU) memory
are needed for applying anomaly detection, especially on 3-D
image tasks, which would be impractical in our study. The
second method is binary classification, a supervised anomaly
detection method to train a CNN model to recognize input
images as binary labels. With residual connections proposed
from ResNet,18 deeper CNNs can be trained without degradation
by reducing gradient vanishing or exploding problems. Other
variants such as ResNeXt further improved the performance
on classification benchmarks such as ImageNet data.19 Apart
from those, SENet proposed squeeze-and-excitation (SE)
blocks, which introduced a channel-wise attention mechanism
in a simple plug-in manner that could be applied in any DLmod-
els, and it surpassed other architectures in the competition
ImageNet 2017.20 Since the ground-truth label of each
SDOCT volumetric scan is from highly trained human asses-
sors, a model trained in a supervised manner would be better
in our study. As far as we know, though CNN has been applied
in medical imaging quality control, there is still a lack of DL-
based method for quality control of SDOCT volumetric scans.

In this study, we aim to develop and validate a 3-D deep
learning system (DLS) using SDOCT volumetric scans as input
for filtering out ungradable volumes. We hypothesize that the
3-D DLS for filtering out ungradable SDOCT volumetric scans
without hand-crafted features would perform well in both
primary and external validations. The DLS would eventually
increase the accuracy and efficiency of SDOCT volumetric data
quality control and further make a contribution on accurate
quantitative analysis and detection of diseases.

2 Materials and Methods

2.1 Data Acquisition and Data Pre-Processing

The dataset for training and validation was collected from the
existing database of electronic medical and research records at
the Chinese University of Hong Kong (CUHK) Eye Center and
the Hong Kong Eye Hospital (HKEH) dated from March 2015
to March 2019. The inclusion criteria were any subjects who
have undergone ONH SDOCT imaging by Cirrus SDOCT (Carl
Zeiss Meditec, Dublin, California). A total of 5599 SDOCT
volumetric scans from 1479 eyes were included for the devel-
opment of the DLS. These data were from normal subjects or
patients with any pathologies, and most of the patients had
glaucoma. Two nonoverlapping datasets collected from Prince
of Wales Hospital (PWH) and Tuen Mun Eye Center (TMEC)
in Hong Kong were used as two external validation datasets,
including 711 SDOCT scans from 509 eyes and 298 scans from
296 eyes, respectively. (Table 1)

An SDOCT volume was labeled as ungradable when SS
was <5 or when any artifacts influenced the measurement circle
or >25% of the peripheral area. Artifacts included (1) off-
centration, (2) out of registration, (3) missing signal, (4) motion
artifacts, (5) mirror artifacts, and (6) blurriness. An SDOCT
volume was labeled as gradable when SS was ≥5 and absence
of any artifacts or artifacts only influenced <25% of the periph-
eral area but not the RNFL calculation circle. The RNFL calcu-
lation circle was a circle of 3.46 mm in diameter evenly around
its center based on the location of the optic disc, and it was
automatically placed by Cirrus SDOCT machine (Cirrus User
Manual). Before starting to grade, two highly trained human
assessors were tested. A separated set of images containing
200 SDOCT volumetric scans were reviewed by the two asses-
sors and kappa value of 0.96 was achieved, which indicated an
almost perfect agreement.21 Disagreed cases were further dis-
cussed with the senior assessor, a trained doctor with more than
5 years of clinical research experience in glaucoma imaging.
After training and testing, two assessors worked separately to
label each SDOCT volumetric scan from all the datasets as
ungradable or gradable. Disagreements between the two asses-
sors were resolved by consensus, and the cases without consen-
sus were further reviewed by the senior assessor to make the
final decision (examples are shown in Fig. 1).

Data augmentation strategies, including random flipping,
random rotating, and random shifting, were used to enhance
the training samples and alleviate overfitting. The original
SDOCT volumes were with size of 200 × 200 × 1024 in three
axes, x axis, y axis, and z axis, respectively. To mimic the real
SDOCT imaging in the clinics, some data augmentation meth-
ods were only applied on one or two axes for the whole volume.
For instance, 20% chance random flipping and 15-deg random
rotation were applied on only x (200) and y-axes (200), respec-
tively. The color channel was set to 1 since all OCT images were
grayscaled.

2.2 Irrelevancy Reduction and Attention Mechanism

Generally, for this specific task, i.e., discriminating the ungrad-
ability from an SDOCT scan, there is a high level of information
that could disturb the ungradable features, such as the anatomic
changes of ONH, the shadow of vessels, and the noise speckles
in the choroid or vitreous. Hence, the features in ungradable
SDOCT volumes do not follow any specific feature patterns,
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which may lead the neural networks to misinterpret the
appearance of those aforementioned irrelevances as ungradable
features. To address the problem, we trialed two methods—irrel-
evancy reduction and attention mechanism—for a better model
performance.

Irrelevancy reduction omits the parts of irrelevant signals that
should not be noticed by the signal receiver, which potentially
improves the performance.22 Intuitively, denoising was used as
one of the strategies to reduce the irrelevancies of OCT scans
since the noise of SDOCT scan impeded the medical analysis
either visually or programmatically.23 Thus, in experiment 1,
we used a model based on ResNet blocks to compare the per-
formance between the original and the irrelevancy reduced data.
For denoising, we used nonlocal means24 as the strategy, which
performed both vertically (along x, z facets) and horizontally
(along x, y facets) with different sets of parameters. Vertically,
the template window size was set to 10, whereas the search win-
dow size was set to 5 with a filter strength of 5. Horizontally, the

template window size was set to 5, and search window size was
set to 5 with a filter strength of 5.

In experiment 2, we applied a self-attention mechanism by
combing the SE block that introduced a channel-wise attention
mechanism to the ResNet model. The self-attention mechanism
could make the model pay attention to the more important areas
and extract features automatically in the original SDOCT vol-
umes. Furthermore, we experimented on the combination of
data denoising and the attention mechanism by training the
SE-ResNet model with denoised volumes, with the aim of
achieving a better performance.

In experiment 3, we substituted the ResNet blocks with
ResNeXt blocks with the consideration of the performance
improvement. Then we fine-tuned the cardinality of transforma-
tion layers to reduce the GPU cost.

2.3 Development and Validation of the Deep
Learning System

The model for the DLS was implemented with Keras and
Tensorflow, on a workstation equipped with i9-7900X and
Nvidia GeForce GTX 1080Ti. Figure 2(a) shows the building
block of the ResNet model. First, there were 32 filters with 7 ×
7 × 7 kernel convolution layer with the stride of 2, along with a
3 × 3 × 3 max pooling with the same stride setting. Second, the
obtained feature maps went through 18 ResNet blocks. A pool-
ing size 2 with stride 2 average pooling was performed every
three blocks to aggregate the learned features. Channel-wise
batch normalization and rectified linear unit activation were per-
formed after all convolution operations. Finally, a global average
pooling followed by a fully connected softmax layer was used
to produce the binary output as gradable or ungradable. This
ResNet-based model was taken as the benchmark model. Next,
we further experimented with the SE-ResNet-block20 [Fig. 2(b)]
and SE-ResNeXt-block19 [Fig. 2(c)], as the basic building block.
In each SE-ResNet or SE-ResNeXt block, the SE reduction ratio
was set to 4 and the cardinalities of the transformation layer
were set to 8, with 32 filters. The constructed models are
depicted in Fig. 2(d).

A total of 1353 ungradable and 4246 gradable SDOCT
volumetric scans collected from CUHK Eye Center and HKEH
were randomly divided for training (80%) and primary valida-
tion (20%). In each set, we kept the similar distribution of
ungradable versus gradable scans and distributed the eyes from
the same patient to the same set in order to prevent data leakage
and biased estimation of the performance. Cross entropy and
Adam were used as the loss function and the optimizer.
During the training, 3000 volumetric scans were selected with
data balancing. Batch size was set to 1 due to the limited GPU
memory. The initial learning rate was set to 0.0001, and then
reduced by multiplying 0.75 in every two epochs. In addition,
to validate the generalizability of the proposed DLS, SDOCT
scans from PWH (181 ungradable versus 530 gradable) and
TMEC (60 ungradable versus 238 gradable) were utilized for
external validation separately.

3 Experiments and Results

3.1 Evaluation Metrics

In the experiments, the area under the receiver operating char-
acteristic (ROC) curve (AUC) with 95% confidence intervals
(CIs), sensitivity, specificity, and accuracy were used to evaluate

Table 1 Summary of all the study subjects.

Ungradable Gradable P value

Training and primary validation dataset

No. of SDOCT volumes 1353 4246 —

No. of subjects 260 549 —

Gender (male/female) 139/121 229/320 0.002

Age, years (mean� SD) 63.2� 15.8 57.0� 17.1 0.003

No. of eyes 402 1077 —

Eye (right/left) 222/180 533/544 0.050

External validation dataset 1 (PWH)

No. of SDOCT volumes 181 530 —

No. of subjects 80 227 —

Gender (male/female) 50/30 102/125 0.009

Age, years (mean� SD) 73.6� 10.5 68.3� 11.9 0.367

No. of eyes 122 387 —

Eye (right/left) 60/62 204/183 0.497

External validation dataset 2 (TMEC)

No. of SDOCT volumes 60 238 —

No. of subjects 42 158 —

Age, years (mean� SD) 61.7� 14.5 60.7� 12.4 0.177

Gender (male/female) 23/19 77/81 0.603

No. of eyes 60 234 —

Eye (right/left) 35/25 114/120 0.185

Note: OCT, optical coherence tomography; SD, standard deviation.
Unpaired t -test for numerical data and chi-square test for categorical
data were used for comparison between ungradable and gradable
groups. All the hypotheses tested were two-sided, and p-value
<0.05 were considered to be significant which were values in bold.
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Fig. 1 Examples of ungradable SDOCT images due to different kinds of artifacts. (a) SDOCT signal loss
on both eyes (double bordered boxes) and off-centration artifact on left eye (dashed box). (b) SDOCT
signal out of register superiorly on both eyes (dashed boxes). (c) SDOCT signal loss in the measurement
circle on both eyes (double bordered boxes) while the SS was above 6. (d) Motion artifacts on both eyes
(black arrows) resulting in inaccurate segmentation while the SS was above or equal to 6 in both eyes.
(e) Mirror artifacts in the peripheral area on both eyes (double bordered boxes) and the SDOCT signal out
of register superiorly on both eyes (dashed boxes). (f) SDOCT signal loss on right eye and blurriness
artifact on left eye. OD, right eye; OS, left eye.
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the diagnostic performance of the DLS discriminating ungrad-
able or gradable scans. Training-validation loss curves were
observed (Fig. 3). Heatmaps were generated by gradient-
weighted class activation map (Grad-CAM)25 to evaluate the
performance qualitatively.

3.2 Performance Comparison

We tested the feasibility of irrelevancy reduction and attention
mechanism in experiments 1 and 2, respectively. We also
explored whether the performance would improve by combining
the two approaches. Experiment 3 was further performed by
refining the model structures. The experimental results were
shown in Table 2 and Figs. 3 and 4.

In experiment 1, we developed ResNet models fed with
original volumes and denoised volumes, respectively. We can

observe from the training-validation loss curves in Figs. 3(a) and
3(b) that the ResNet model trained with original volumes was
highly overfitted, whereas the model trained with irrelevancy
reduced volumes fitted better with some level of oscillation.
As a result, ResNet trained with denoised volumes reached
much better AUCs than the one trained with original volumes
(primary validation: 0.806 versus 0.640, external validation 1:
0.645 versus 0.535, external validation 2: 0.792 versus 0.697).

In experiment 2, the SE block was implemented to introduce
the channel-wise attention to the benchmark model, which could
help the method suppress the noisy features for the more essen-
tial features to discriminate ungradable patterns. As illustrated in
Figs. 3(c) and 3(d), with the introduced attention mechanism,
the training-validation loss was well converged without signifi-
cant oscillations. As shown in Table 2 and Fig. 4, the SE-ResNet
model fed with original volumes performed much better than

Fig. 2 A diagram illustrating the architecture of basic building blocks and the architecture of different
models. (a) The architecture of ResNet building block. (b) The architecture of SE-ResNet building block.
(c) The architecture of SE-ResNeXt building blocks. We used eight transformation layers along with 32
filters for each transformation layer. (d) The architecture of different models. Despite the difference in
building blocks, the architectures of the ResNet, SE-ResNet, and SE-ResNeXt models were the same.
BN = batch normalization, GAP = global average pooling, Conv = convolutional, Avg = average.
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the ResNet with original volumes in both primary and external
validations (primary validation: 0.905 versus 0.640, external val-
idation 1: 0.815 versus 0.535, external validation 2: 0.858 versus
0.697). We further evaluated the performance of SE-ResNet
model fed with the denoised volumes, which also led to much
higher AUCs compared to the ResNet model with the same input
(primary validation: 0.943 versus 0.806, external validation 1:
0.811 versus 0.645, external validation 2: 0.844 versus 0.793).

In experiment 3, we replaced all the ResNet blocks with
ResNeXt blocks with the aim of achieving a better performance.
We then fine-tuned the cardinality of ResNeXt transformations

to 8. As illustrated in Figs. 3(e) and 3(f), SE-ResNeXt model
obtained more stable and better-fitted training-validation curves,
compared to experiment 2. Furthermore, the performance of
SE-ResNeXt model fed with original and denoised volumes were
increased with the AUCs of 0.938 (95% CI: 0.919 to 0.957) and
0.954 (95% CI: 0.938 to 0.970), respectively, as shown in Fig. 4.
More importantly, the overall diagnostic of SE-ResNeXt fed with
denoised volumes was the best with sensitivity of 86.2% (95%
CI: 80.0% to 92.4%), specificity of 92.6% (95% CI: 86.8% to
96.9%), and accuracy of 91.0% (95% CI: 87.3% to 93.5%) in
primary validation and sensitivities of 69.1% (95% CI: 58.0%

Fig. 3 Training-validation loss curves of different models along training epochs. During the training, we
observed the cross-entropy loss to measure the model training effect. Theoretically, a good model shall
keep the lowest loss and should have the smallest difference between the training-validation losses without
significant oscillation. (a) The highly overfitted ResNet model trained with original SDOCT volumes. (b) The
highly overfitted ResNet model trained with denoised SDOCT volumes. (c) The stable and well-fitted SE-
ResNet model trained with original SDOCT volumes. (d) The stable and well-fitted SE-ResNet model
trained with denoised SDOCT volumes. (e) The stable and better-fitted SE-ResNeXt model with denoised
SDOCT volumes. (f) The stable and best-fitted SE-ResNeXt model with denoised SDOCT volumes.
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to 84.5%) and 78.3% (95% CI: 61.7% to 91.7%), specificities of
81.3% (95% CI: 64.0% to 89.4%) and 82.8% (95% CI: 71.9% to
94.6%), and accuracies of 78.2% (95% CI: 68.8% to 82.7%) and
82.6% (95% CI, 74.2% to 89.9%) in the external validations,
respectively, as shown in Table 2. The results showed that the
SE-ResNeXt-based model with denoised SDOCT volumes stood
out of all other models fed with either original or denoised
volumes.

In general, the model with denoised scans was better than the
one with original scans with a significant improvement on the
primary dataset and similar performance on external validations.
The introduced SE blocks achieved a comparable result even on

original volumes. It proved that either irrelevancy reduction
or attention mechanism could significantly improve the perfor-
mance, compared to the benchmark model—ResNet—fed
with original volumes. Moreover, our proposed method combin-
ing both irrelevancy reduction and attention mechanism has
achieved the highest AUCs in our experiments in both primary
and external validations (primary validation: 0.954 versus 0.640
to 0.943, external validation 1: 0.816 versus 0.535 to 0.815,
external validation 2: 0.857 versus 0.697 to 0.857). Referring
to other diagnostic metrics, such as sensitivity, specificity, and
accuracy, this model also outperformed the other models in both
primary and external validations in general.

Table 2 The performance comparisons of the 3-D DLS using different training strategies in both primary and external validations.

Strategies AUC (95% CI) Sensitivity, % (95% CI) Specificity, % (95% CI) Accuracy, % (95% CI)

ResNet with original volumes

Primary validation 0.640 (0.594 to 0.686) 53.3% (46.7 to 60.0) 67.5% (63.9 to 71.3) 63.9% (60.9 to 66.9)

External validation 1 0.535 (0.484 to 0.587) 45.3% (1.0 to 66.3) 67.4% (45.9 to 98.1) 62.2% (50.9 to 76.9)

External validation 2 0.697 (0.616 to 0.779) 60.0% (45.0 to 80.0) 80.7% (57.6 to 89.1) 76.2% (61.4 to 82.2)

ResNet with denoised volumes

Primary validation 0.806 (0.772 to 0.841) 71.9% (65.7 to 77.6) 74.9% (71.6 to 78.2) 74.1% (71.2 to 77.1)

External validation 1 0.645 (0.598 to 0.693) 51.4% (41.4 to 62.4) 74.9% (66.8 to 82.1) 68.9% (63.6 to 73.1)

External validation 2 0.793 (0.732 to 0.853) 75.0% (58.3 to 91.7) 74.8% (53.8 to 87.4) 75.2% (60.7 to 83.2)

SE-ResNet with original volumes

Primary validation 0.905 (0.875 to 0.934) 82.9% (77.1 to 89.1) 93.3% (88.2 to 96.2) 90.6% (87.3 to 92.6)

External validation 1 0.815 (0.779 to 0.852) 68.0% (59.7 to 80.7) 83.2% (68.1 to 87.9) 79.2% (70.6 to 82.3)

External validation 2 0.858 (0.801 to 0.915) 78.3% (63.3 to 90.0) 81.1% (73.5 to 92.9) 81.4% (75.2 to 88.7)

SE-ResNet with denoised volumes

Primary validation 0.943 (0.925 to 0.961) 83.1% (77.1 to 88.6) 93.1% (87.6 to 96.4) 90.6% (87.1 to 92.7)

External validation 1 0.811 (0.774 to 0.847) 68.0% (59.1 to 80.1) 83.2% (69.1 to 88.3) 79.2% (71.3 to 82.7)

External validation 2 0.844 (0.784 to 0.847) 78.3% (63.3 to 91.7) 81.5% (73.5 to 93.7) 81.5% (75.2 to 89.3)

SE-ResNeXt with original volumes

Primary validation 0.938 (0.919 to 0.957) 84.8% (78.6 to 91.0) 91.6% (86.2 to 95.6) 89.7% (86.4 to 92.4)

External validation 1 0.801 (0.764 to 0.838) 68.0% (53.6 to 86.2) 78.9% (58.7 to 90.6) 76.1% (66.1 to 82.4)

External validation 2 0.854 (0.796 to 0.912) 76.7% (61.7 to 90.0) 84.9% (74.0 to 95.4) 83.2% (75.8 to 90.3)

SE-ResNeXt with denoised volumes

Primary validation 0.954 (0.938 to 0.970) 86.2% (80.0 to 92.4) 92.6% (86.8 to 96.9) 91.0% (87.3 to 93.5)

External validation 1 0.816 (0.780 to 0.852) 69.1% (58.0 to 84.0) 81.3% (64.0 to 89.4) 78.2% (68.8 to 82.7)

External validation 2 0.857 (0.800 to 0.914) 78.3% (61.7 to 91.7) 82.8% (71.9 to 94.6) 82.6% (74.2 to 89.9)

Note: AUC, area under the receiver operator characteristic curve; CI, confidence interval; DLS, deep learning system.
Primary validation: CUHK Eye Center and HKEH;
External validation 1: PWH, Hong Kong;
External validation 2: TMEC, Hong Kong.
The bold values were the highest values in respective categories.
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Fig. 4 The AUC of different models in the primary validation dataset and two external validation datasets.
(a) AUCs of the ResNet model trained with original SDOCT volumes. (b) AUCs of the ResNet model
trained with denoised SDOCT volumes. (c) AUCs of the SE-RexNet model trained with original SDOCT
volumes. (d) AUCs of the SE-ResNet model trained with denoised SDOCT volumes. (e) AUCs of the
SE-ResNeXt model trained with original SDOCT volumes. (f) AUCs of the SE-ResNeXt model trained
with denoised SDOCT volumes. In general, the AUCs of the SE-ResNeXt model outperformed both
ResNet and SE-ResNet models. Particularly, the SE-ResNeXt model trained with denoised data achieved
the highest AUCs in both primary and external validations and an overall better diagnostic performance
with regard to other metrics, such as sensitivity, specificity, and accuracy.
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3.3 Qualitative Evaluation

We generated heatmaps (Fig. 5) based on the best performing
model—SE-ResNeXt fed with denoised volumes—where the
red-orange color represented more discriminative areas for

ungradable information. We observed that for the truly discrimi-
nated ungradable volumes, there was no regular pattern in the
area highlighted by the DLS due to the variances from different
artifacts. However, in general, we still found that the DLS could
detect ungradable features well, especially signal loss, mirror

Fig. 5 Examples of truly classified cases and the corresponding heatmaps generated by Grad-CAM.
Referring to the color distribution of the color bar, the red-orange color represented more discriminative
areas for ungradable information, which were of value 1 to 0.8, whereas the blue-purple color repre-
sented the nondiscriminative areas that were of value 0.2 to 0: (a) cross-sectional SDOCT B-scan and
en-face SDOCT C-scan of an ungradable volume with signal loss; (b) cross-sectional SDOCT B-scan
and en-face SDOCT C-scan of an ungradable volume with mirror artifact; (c) cross-sectional SDOCT B-
scan and en-face SDOCT C-scan of an ungradable volume due to blurring; and (d) cross-sectional
SDOCT B-scan and en-face SDOCT C-scan of a gradable volume. In general, for the truly discriminated
ungradable volumes, the DLS could well detect ungradable features, especially signal loss, mirror arti-
facts, or blurriness, as illustrated in (a), (b), and (c). On the other hand, there was seldom warmer color in
the truly discriminated gradable volumes, but relatively highlighted regions were mainly distributed in the
vitreous or choroid, as illustrated in (d).
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artifacts, or blurriness. Area with the appearance of these arti-
facts was exactly covered by warmer color.

4 Discussion
In this study, we developed and validated a 3-D DLS to discrimi-
nate ungradable SDOCT ONH volumetric scans automatically.
The proposed method, SE-ResNeXt fed with denoised volumes,
achieved best performance in both primary and external vali-
dations. Experimental results show that ungradable SDOCT
volumetric scans can be discriminated without any human inter-
ventions. It may potentially increase the efficiency of SDOCT
image quality control and further help with disease detection,
which could be a novel application in clinics.

Our proposed DLS offers a powerful tool for filtering out
ungradable scans in clinics. Currently, one of the main chal-
lenges for SDOCT image quality control is the irregular ungrad-
able feature patterns due to varying artifacts. Using traditional
index for the quality assessment, such as SS, is insufficient to
assess different kinds of artifacts such as off-centration, out of
register, motion artifacts, and mirror artifacts. Scans with accept-
able SS could also be ungradable for disease detection, as illus-
trated by the examples in Figs. 1(c) and 1(d). Nevertheless,
manually assessing all the scans would be tedious and imprac-
tical in clinics. To address this problem, a DLS with the pro-
posed SE-ResNeXt model was developed and trained for the
auto-assessment. From experiment 1, we found that the overall
diagnostic performance improved significantly by denoising,
which indicated that the irrelevant information in SDOCT scans
could strongly affect the model training. Better performance and
better generalizability were obtained by reducing the irrelevant
information. In experiment 2, we introduced the attention
mechanism to further extract the important features out of the
whole SDOCT volume automatically. The AUCs of SE-
ResNet models were significantly increased, compared to
ResNet models. In addition, the results proved that the combi-
nation of attention mechanism and irrelevancy reduction, the
nonlocal means denoising, showed a more stable training-vali-
dation curve and outperformed either one of the previous two
strategies. It proved that the channel-wise attention could help
the model learn from noisy data with a much stable loss and a
better generalizability.

In experiment 3, we replaced all the ResNet blocks with
ResNeXt blocks for a better performance and a lower GPU cost.
Our final proposed model was developed by SE-ResNeXt struc-
ture and trained with denoised full-size SDOCT volumes.
According to the activation heatmaps in Fig. 5, the proposed
model learned ungradable features similar to what human asses-
sors would observe. Referring to the color distribution of the
color bar, the red-orange color represented more discriminative
areas for ungradable information, which were of value 0.8 to 1,
whereas the blue-purple color represented the nondiscriminative
areas that were of value 0 to 0.2. In general, we found that the
DLS could well detect the ungradable features such as signal
loss, mirror artifacts, and severe motion artifacts. Meanwhile,
some ungradable features, i.e., blurriness or optic disc disloca-
tion, were highlighted on the whole retina. There was seldom
warmer color in the truly discriminated gradable volumes, but
the relatively highlighted regions were mainly distributed in the
vitreous and choroid for almost every truly detected gradable
volumes. It might be caused by the appearance of more noise
speckles in vitreous and choroid, compared to retina. The results
from all the experiments illustrated that our proposed model

trained with the denoised full-sized volumes was the best-fitted
model that also achieved the optimum diagnostic performance
among all the models in both primary and external validations.

It is hard to apply traditional computer-aided image quality
control to a new dataset since the hand-crafted features are usu-
ally based on the objective features, either geometric or struc-
tural quality parameters, while some features are subjective in
the real-world cases. A previous study on MRI image quality
control also proved that deep neural networks got an overall bet-
ter performance compared with the traditional machine learning
method.26 In our work, the proposed DLS achieves good perfor-
mance on two totally unseen datasets from different clinics,
which means the model has a good generalizability that may
be applied to other clinics directly.

At present, multiple DLSs have been developed based on
OCT in ophthalmology, such as referable retina diseases detec-
tion,27,28 glaucoma quantification and classification,29–31 and
antivascular endothelial growth factor treatment.32 These studies
perfectly underscored the promise of DL to lower the cost of
disease interpretation from OCT images. Hence, it would be
necessary to filter out ungradable images beforehand for a better
precision. However, at present, most of the ungradable images
were filtered out manually before ground-truth labeling for
abnormalities. Thus, our DLS could potentially be incorporated
with other DLSs for further disease detection. Another impor-
tant future application of our DLS is to be installed in SDOCT
machines so that operators could be informed to repeat image
acquisitions immediately if the DLS classifies the acquired
image as ungradable. It would largely alleviate the burden of
image quality control manually and efficiently provide images
with better quality for further analysis.

There are several points to strengthen the training and evalu-
ation of our proposed model. First, highly trained SDOCT
human assessors reviewed both volumetric scans and reports
rather than reviewing printout reports only for the precise label-
ing. Second, the external validation datasets were collected from
different eye clinics, which enlarged the distribution variances of
the dataset. Third, we generated activation heatmaps to visualize
the discriminative regions for the model output reasoning.
However, in our study, only optic disc scans from one type
of SDOCT device were used, which might limit the applicability
to other devices. In the next version, we shall develop a DLS
trained with more kinds of scans, such as macular scan, from
various types of devices. In addition, 3-D CNNs consume higher
GPU memories, which might cause great extra cost for clinic
usage. In the future, a model compression shall be applied to
save the GPU memory cost.

5 Conclusions
Image quality control for the SDOCT volumetric scans is vital
for accurate disease detection. Since it is time-consuming and
requires the expertise of human graders, manual assessment for
every volumetric scan would be tedious and even unfeasible,
especially in a clinical center without experienced graders. To
improve the efficiency and accuracy of image quality control,
a computer-aided system based on DL was developed in our
study.

The proposed DLS utilized irrelevancy reduction methods
and an attention mechanism for the best diagnostic performance
with the highest AUCs, better sensitivity, specificity, and accu-
racy in both primary and external validations, compared with
other experimented models. Combining the observation from
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the heatmaps, it proved that the proposed DLS learns similar
features as human assessors do. Hence, as an automated filtering
system, our proposed DLS could give more accurate and reason-
able predictions. It would further advance the research on
SDOCT image quality control as well as make SDOCT more
feasible and reliable for disease detection.

Disclosures
No conflict of interest exists for any of the authors.

Acknowledgments
The work described in this paper was supported by the Re-
search Grants Council – General Research Fund, Hong Kong
(Reference No. 14102418), and the Bright Focus Foundation
(Reference No. A2018093S).

References
1. J. F. de Boer et al., “Improved signal-to-noise ratio in spectral-domain

compared with time-domain optical coherence tomography,” Opt. Lett.
28(21), 2067–2069 (2003).

2. J. S. Hardin et al., “Factors affecting cirrus-HD OCT optic disc scan
quality: a review with case examples,” J. Ophthalmol. 2015, 1–16
(2015).

3. J. Chhablani et al., “Artifacts in optical coherence tomography,” Saudi J.
Ophthalmol. 28(2), 81–87 (2014).

4. S. Asrani et al., “Artifacts in spectral-domain optical coherence tomog-
raphy measurements in glaucoma,” JAMA Ophthalmol. 132(4),
396–402 (2014).

5. J. C. Downs and C. A. Girkin, “Lamina cribrosa in glaucoma,” Curr.
Opin. Ophthalmol. 28(2), 113–119 (2017).

6. S. Liu et al., “Quality assessment for spectral domain optical coherence
tomography (OCT) images,” Proc. SPIE 7171, 71710X (2009).

7. R. Lee et al., “Factors affecting signal strength in spectral-domain opti-
cal coherence tomography,” Acta Ophthalmol. 96(1), e54–e58 (2018).

8. C. Y. L. Cheung et al., “Relationship between retinal nerve fiber layer
measurement and signal strength in optical coherence tomography,”
Ophthalmology 115(8), 1347–1351.e2 (2008).

9. C. Y. Cheung, N. Chan, and C. K. Leung, “Retinal nerve fiber layer
imaging with spectral-domain optical coherence tomography: impact
of signal strength on analysis of the RNFL map,” Asia Pac. J.
Ophthalmol. 1(1), 19–23 (2012).

10. H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
Image Process. 15(11), 3440–3451 (2006).

11. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature
521(7553), 436–444 (2015).

12. T. Kustner et al., “Automated reference-free detection of motion artifacts
in magnetic resonance images,” Magn. Reson. Mater. Phys. Biol. Med.
31(2), 243–256 (2018).

13. L. Wu et al., “FUIQA: fetal ultrasound image quality assessment with
deep convolutional networks,” IEEE Trans. Cybern. 47(5), 1336–1349
(2017).

14. F. Yu et al., “Image quality classification for DR screening using deep
learning,” in 39th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Vol. 2017, pp. 664–667 (2017).

15. S. K. Kumaran et al., “Video trajectory classification and anomaly
detection using hybrid CNN-VAE,” arXiv: 1812.07203v1 (2018).

16. D. Li et al., “Anomaly detection with generative adversarial networks
for multivariate time series,” arXiv: 1809.04578v3 (2019).

17. R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using
one-class neural networks,” arXiv: 1802.06360v2 (2019).

18. K. He et al., “Deep residual learning for image recognition,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognit., pp. 770–778 (2016).

19. S. Xie et al., “Aggregated residual transformations for deep neural
networks,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit.
(2017).

20. J. Hu et al., “Squeeze-and-excitation networks,” arXiv:1709.01507
(2018).

21. M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochem.
Med. 22(3), 276–282 (2012).

22. N. Pandey and H. Agrawal, “Hybrid image compression based on fuzzy
logic technology,” Int. J. Sci. Eng. Technol. Res. 3(9), 2438–2441 (2014).

23. Y. Ma et al., “Speckle noise reduction in optical coherence tomography
images based on edge-sensitive cGAN,” Biomed. Opt. Express 9(11),
5129–5146 (2018).

24. A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,”
Image Process. On Line 1, 208–212 (2011).

25. R. R. Selvaraju et al., “Grad-CAM: visual explanations from deep net-
works via gradient-based localization,” in IEEE Int. Conf. Comput.
Vision, pp. 618–626 (2017).

26. T. Kustner et al., “A machine-learning framework for automatic
reference-free quality assessment in MRI,” Magn. Reson. Imaging
53, 134–147 (2018).

27. J. De Fauw et al., “Clinically applicable deep learning for diagnosis and
referral in retinal disease,” Nat. Med. 24(9), 1342–1350 (2018).

28. D. S. Kermany et al., “Identifying medical diagnoses and treatable
diseases by image-based deep learning,” Cell 172(5), 1122–1131.e9
(2018).

29. F. A. Medeiros, A. A. Jammal, and A. C. Thompson, “From machine
to machine: an OCT-trained deep learning algorithm for objective
quantification of glaucomatous damage in fundus photographs,”
Ophthalmology 126, 513–521 (2019).

30. A. C. Thompson, A. A. Jammal, and F. A. Medeiros, “A deep learning
algorithm to quantify neuroretinal rim loss from optic disc photo-
graphs,” Am. J. Ophthalmol. 201, 9–18 (2019).

31. A. R. Ran et al., “Detection of glaucomatous optic neuropathy with
spectral-domain optical coherence tomography: a retrospective training
and validation deep-learning analysis,” Lancet Digital Health 1(4),
e172–e182 (2019).

32. P. Prahs et al., “OCT-based deep learning algorithm for the evaluation of
treatment indication with anti-vascular endothelial growth factor med-
ications,” Graefes Arch. Clin. Exp. Ophthalmol. 256(1), 91–98 (2018).

An Ran Ran is a PhD student in the Department of Ophthalmology
and Visual Science, Chinese University of Hong Kong (CUHK). She
obtained her master’s degree in ophthalmology from the Capital
Medical University and her medical degree from the Shanghai Jiao
Tong University. Her research interests are glaucoma, ocular imag-
ing, and artificial intelligence (AI). She has recently published a paper
titled “Detection of glaucomatous optic neuropathy with spectral-
domain optical coherence tomography—a retrospective training and
validation deep-learning analysis” as a first author and other seven
papers as co-author.

Jian Shi is a research assistant (computer vision) at CUHK. He was
a former GE Power employee and was awarded an Impact Award.
He received his MSc degree in computer science from the University
of Leicester in 2018.

Amanda K. Ngai is a fourth year medical student at CUHK. She spent
8 years studying abroad in the United Kingdom. Her current research
focuses on using AI to aid the processing and grading of optical coher-
ence tomography scans.

Wai-Yin Chan received her BSc degree in biochemistry with first
class honors from CUHK, in 2017. She then continued studying
medicine at CUHK. She has been involved in laboratory and clinical
research in the past years, with projects in apoptosis, cancer drug
toxicology, and epidemiology of gastric cancer.

Poemen P. Chan is a glaucoma specialist and an assistant professor
in the Department of Ophthalmology and Visual Sciences, CUHK,
and honorary associate consultant at Hong Kong Eye Hospital
(HKEH).

Alvin L. Young is the cluster coordinator in the Department of
Ophthalmology and Visual Sciences, Prince of Wales Hospital
(PWH) and Alice HoMiu Ling Nethersole Hospital and deputy hospital
chief executive at PWH. He was the chairman of the Hong Kong
Hospital Authority Coordinating Committee in Ophthalmology (2013 to
2017). He serves as clinical professor (honorary) of DOVS at CUHK
and is a visiting professor at STU-CUHK Joint Shantou International
Eye Center.

Neurophotonics 041110-11 Oct–Dec 2019 • Vol. 6(4)

Ran et al.: Artificial intelligence deep learning algorithm for discriminating. . .

https://doi.org/10.1364/OL.28.002067
https://doi.org/10.1155/2015/746150
https://doi.org/10.1016/j.sjopt.2014.02.010
https://doi.org/10.1016/j.sjopt.2014.02.010
https://doi.org/10.1001/jamaophthalmol.2013.7974
https://doi.org/10.1097/ICU.0000000000000354
https://doi.org/10.1097/ICU.0000000000000354
https://doi.org/10.1117/12.809404
https://doi.org/10.1111/aos.13443
https://doi.org/10.1016/j.ophtha.2007.11.027
https://doi.org/10.1097/APO.0b013e31823e595d
https://doi.org/10.1097/APO.0b013e31823e595d
https://doi.org/10.1109/TIP.2006.881959
https://doi.org/10.1109/TIP.2006.881959
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s10334-017-0650-z
https://doi.org/10.1109/TCYB.2017.2671898
https://doi.org/10.1109/EMBC.2017.8036912
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.11613/issn.1846-7482
https://doi.org/10.11613/issn.1846-7482
https://doi.org/10.1364/BOE.9.005129
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1016/j.mri.2018.07.003
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1016/j.ophtha.2018.12.033
https://doi.org/10.1016/j.ajo.2019.01.011
https://doi.org/10.1016/S2589-7500(19)30085-8
https://doi.org/10.1007/s00417-017-3839-y


Hon-Wah Yung is a consultant at Tuen Mun Eye Center, Hong Kong,
an honorary clinical associate professor in the Department of Ophthal-
mology and Visual Sciences, CUHK, and a council member of the
College of Ophthalmologists of Hong Kong (COHK).

Clement C. Tham is the chairman of the Department of Ophthal-
mology and Visual Sciences, CUHK; S.H. Ho Professor of ophthal-
mology and visual sciences, CUHK; honorary chief-of-service, HKEH;
director, CUHK Eye Center, CUHK; vice president (general affairs),
COHK; secretary general and CEO, Asia-Pacific Academy of Oph-
thalmology; treasurer, International Council of Ophthalmology; vice

president, Asia-Pacific Glaucoma Society; and chair, Academia
Ophthalmologica Internationalis.

Carol Y. Cheung is an assistant professor at Department of Ophthal-
mology and Visual Sciences, CUHK, council board member and treas-
urer of Asia Pacific Tele-Ophthalmology Society, and secretary general
of Asia Pacific Ocular Imaging Society. She has been working in the
field of ocular imaging for more than 10 years, focusing on develop-
ment and application of image analysis techniques and AI for studying
eye diseases, including diabetic retinopathy, glaucoma, and relation-
ship between retinal imaging markers and Alzheimer’s disease.

Neurophotonics 041110-12 Oct–Dec 2019 • Vol. 6(4)

Ran et al.: Artificial intelligence deep learning algorithm for discriminating. . .


