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A special section in the September 1992 issue of Optical
Engineering is devoted to wavelet transforms. Upon studying
several papers, a reader might be lead to believe that digital
computations of the wavelet transform are slow and mac-
curate. For example, in the introduction to the special section,
Szu and Caulfield state that wavelet transforms are ''com-
putationally intense,' ' ' 'even 'fast' wavelet transforms can
be quite slow digitally,' ' and ' 'a slight error in the digital
computing of shift variables can produce a large error in
wavelet coefficients. ' ' In another paper, Caulfield and Szu
provide an example to show that digital computations of the
wavelet transform will tax the power of a supercomputer.2

However, it is well documented that digital computations
of both the continuous and the discrete wavelet transform are
extremely fast for wavelets based on recursive multirate dig-
ital filter bank structures.37 The computational cost of the
transform is O(log2L) multiplications and additions per out-
put point where L is the length of the digital filter.4 Further-
more, for N sample points, only 0(N) points in the wavelet
transform domain are needed to compute perfectly (within
numerical precision) the inverse wavelet transform. Thus, for
1-D signals the computation is O(N log2L), and for N X N
2-D signals it is O(N2 log2L).

In most applications the support of the wavelet, which is
a function of L, is selected to be much smaller than N to
analyze the nonstationary or local properties of a signal.8
Therefore, the computation of the wavelet transform is faster
than the fast Fourier transform (FFT) by a factor of log2N/
log2L. Indeed, it is the extremely fast computation speed that
motivates much of the interest in the wavelet transform and
its applications.

It is well known that the discrete wavelet coefficients are
different for a signal and a shifted version of that signal.9'1°
This property in no way affects the accuracy of the transform.
The transform coefficients of the original signal reconstruct
the original signal, and the transform coefficients of the
shifted signal reconstruct the shifted signal. Of course, the
digital computation is not perfect due to filter coefficient

quantization and roundoffeffects, but in multirate filter banks
these errors are generally very

For comparison, it is useful to estimate the current poten-
tial computation speeds of optical and digital technologies.
Several proposed optical wavelet systems in the September
1992 issue of Optical Engineering are based on optical cor-
relators. Flannery and Homer state that optical correlators
have ' 'the potential to perform correlations of reasonably
high resolution (e.g., 512 X 512 pixels) images at rates ap-
proaching 1000 frames per second 12Wecan, therefore,
assume that wavelet systems based on optical conelators also
have the potential of computing 512 X 5 12 wavelet trans-
forms at a rate of 1000/s using several correlators in parallel.

Now consider the digital VLSI technology required to
compute 512 X 512 FFTs at a rate of 1000/s. Using data from
a FF1' chipset developed by Honeywell, a 16-bit 512-sample
complex FFT can be computed in 10.72 jis with five chipsets
running in parallel (operating at 50 MHz, 2 chips per chipset,
a total of 260K transistors for each chipset).'3 A single
5 12 x 512 complex FFT could then be computed'4 in
2 x512 x 10.72x 10_6 11 ms. And with 55 chipsets, or
more conservatively, 64 chipsets (64 X 0.26M = 17M tran-
sistors), the FFTs could be computed at a rate of 1000/s.

Current integrated circuits15"6 have integration levels of
up to 3.1M transistors and clock rates of up to 200 MHz.
With this technology, considerably fewer chips would be
required to compute the FFTs. By combining four chipsets
(1M transistors) onto a single chip operating at 66 MHz, the
FFTs could conceivably be computed using 12 chips. (The
Intel 486DX2 microprocessor15 has 1 .2M transistors and op-
erates at 66 MHz.) Such a processing system could then be
integrated into a small package by means of silicon multichip
modules. Rockwell, for example, has developed a digital
signalprocessing system capable of400 million floating point
operations per second by combining 12 Texas Instruments
TM5320C30 (33 MHz) digital signal processors, associated
memory, and interface logic into a 75-g 8.3- X 8.3- X 0.95-cm
package. 17

The hardware requirements of the FFT provide a means
of estimating the hardware requirements of the wavelet trans-
form. For example, with the choice L = 8, the wavelet trans-
form requires roughly three times fewer computations than
a 512 x512 FFT. It is reasonable to conclude that high-
accuracy 5 12 X 5 12 wavelet transforms at rates of 1000/s
could be computed with a moderate number of custom in-
tegrated circuits combined into a compact package by means
of current or near-term technology. The only real drawback
of implementing the wavelet transform by means of 50 +
MHz VLSI technology is its higher power consumption.18
Whether such a digital system will ever be developed, of
course, depends on whether there are enough economic in-
centives.

The preceding estimates of digital performance are for
wavelets computed by means of multirate filter banks. It
might be argued that the set of wavelets generated by a mul-
tirate filter bank structure is small and has only limited ap-
plicability, but considerable progress has been made in de-
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signing these wavelets. Wavelets based on filter banks have
been designed to match a signal ofinterest, to be nonseparable
in multiple dimensions, and to have noninteger (rational)
scaling Furthermore, fine-sampled (or oversam-
pled) transforms in both the scale and the shift parameter can
be efficiently computed.4

Considering the speed and accuracy with which wavelet
transforms can be computed by means of digital systems, the
practicality of optical systems that use these wavelets is ques-
tionable. As a case in point, two papers in the September
1992 issue of Optical Engineering discuss extremely low
accuracy (1-bit) optical computations of the wavelet trans-
form using the Haar wavelet.22'23 But the Haar wavelet is the
simplest and the fastest of all filter-bank-based wavelets to
compute. For N X N 2-D signals, it can be computed digitally
in 0(N2) operations without multiplications and without
roundoff error because the digital filter coefficients are integer
powers of 2.

Designing practical optical wavelet transform systems
provides a challenging goal for the optical engineering com-
munity. To achieve this goal, optical designers need to be
aware of the performance of competing technologies.
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1 Introduction
We appreciate Dr. Duell' s constructive comments in ''Com-
ment on 'Special section on wavelet transforms' : Optical
versus digital implementation of the wavelet transform."
These comments are both general and specific. We would
like to offer a reply to both.

We begin with the general ''opticalversus digital' 'debate.
One of us is on record as substantially agreeing.' Just because
something can be done optically does not mean that it should
be done optically. Furthermore, the burden of proof is on
optics. We further agree that the case is hardest to make for
Fourier transformation. In our special section, we included
papers that did not even attempt that burden ofproof, because
it is traditional in our field to do so. Whether that tradition
should change is a topic worthy of serious discussion. We
can defend both sides, so we are inclined not to fix what is
not obviously broken.

Concerning several specific comments, we want to offer
a reply. We made the following statement just for a corn-
parison between shift-invariant optics and shift-sensitive dig-
ital processors: ' 'A slight error in the [discrete] digital corn-
puting of shift variables can produce a large error in wavelet
coefficients." 2

We quote Dr. Duell' s statement: ''It is well known that
the discrete wavelet coefficients are different for a signal and
a shifted version of that signal. . . . This property in no way
affects the accuracy of the transform. The transform coef-
ficients of the original signal reconstruct the original signal,
and the transform coefficients of the shifted signal reconstruct
the shifted signal."

2 Efficiency in Classifications
Versus Representations

We disagree with Dr. Duell's statement in defending the
agreed shift-sensitive discrete wavelet transform (WT) for its
accuracy in reconstruction. It is always the efficiency at ques-
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tion. If one is willing to take as many terms as necessary,
any complete set of basis is exactly equivalent to one another.
The precise reason that WT is more powerful than Fourier
transform (FT) in most applications is that for almost all
interesting cases signals are localized but noise is global. WT
offers a matching local basis that consequently requires a
small number of expansion coefficients, each suffering less
noise contamination. We call attention to the fact that the
majority of applications in optics concern pattern
classification/recognition (e.g. , VanderLugt, inverse filters,
Wiener, synthetic discriminant, scale jnvariant, etc., as op-
posed to data reconstruction or representation) of which in-
variant wavelet feature extraction seems to be one of the
central strategies35 performed by analog methods. Dr. Duell
seems to confuse or ignore the important difference6 between
classification (which optics performs based on analog WT
coefficients) and representation (which digital data compres-
sion often performs). Although the inverse WT can always
reproduce the original result despite the shift-sensitive digital
processing, it is not acceptable for any multiple resolution
(MR) pattern recognition (PR). A signal based on its finite
MR set of coefficients has the potential to be wrongly clas-
sified as a different class from that of the shifted version. In
other words, we maintain that both digital and analog PR
demand shift-invariant features. Our point is that this shift
invariance is done readily by Fourier optics, with a possible
additional bonus that the Fourier deconvolution theorem is
often used to perform the WT inner product operation in the
Fourier domain [for the saving of order (N logN) for the usual
0(N2) linear matrix vector transfer].

3 Mathematics Behind Invariant Analog
Wavelets

The FT is known to be an angle-preserving, or conformal,
mapping. This suggests the design of optical wedge-ring de-
tectors in the Fourier plane. This device works for scale-
rotation invariance based on shift invariance because, despite
the motion of the object, the square-law detectors guarantee
the object centroid alignment at the origin of the Fourier
domain. This shift invariance is mathematically based on the
gauge freedom, namely, the modulus-invariant phase infor-
mation in the following straightforward inner product math-
ematics denoted by brackets:

FTf{g(t)H2 [ef(t),g(t)]2

= G(f) exp( —2irffb)2

= exp( -2jft)g(t-b) dt,
where a special WT basis turns out to be the sinusoidal basis
e1(t) = exp( — 2irjft) known historically as FT.

A continuous version is obviously shift invariant in an
unbounded domain:

WTab{S(t)} = [hab(t),S(t)I = i = :hbS dt= W(a,b). (2)

As in Eq. (1), the inverse of Fourier frequency 1/f is related
to the scale parameter a, and b is the shift parameter in ques-
tion. This unified viewpoint that FT is a special case of WT

was actually exploited to combine the matched filter with the
wavelet feature extraction filter into one filter operation for
light efficiency in optical pattern recognition.5 The additional
mathematics in WT give us the freedom to treat the scale
parameter a, the time t, and the shift parameter b in a self-
consistent affine manner: t' = (t —b)/a. This helps us to gen-
erate basis functions hab(t) h(t') from an admissible mother
function h(t) that satisfies the zero area and finite energy
condition, rather than by means of the Fourier harmonics
n2'rrfthat disregard Gibb's overshooting phenomena and the
locality of a signal in time t.

Recently, Szu et al. have shown35 that the invariant prop-
erty of the analog WT is based on the linear superposition
principle of the intrinsic scaling law of the time-scale joint
representation (TSJR) domain (a,b) (rather than the second-
order Wigner distribution convolution and Woodward cor-
relation time-frequencyjoint representation). The idea is sim-
ple. To investigate the invariant WT is to compute the WT
of various scales of the identical signal. Hopefully, those
scale-related WT coefficients organize themselves in such a
fashion that they can be easily collected to produce scale-
invariant features. This turns out to be a wedge shape, as
follows. Let a generic signal under additive white noise be
given by

s,'(t')=s(at)+n(t) i= 1, 2 (3)

where the unknown scales a's (suppressing class index i) are
equivalent to the unknown frequency compaction or hopping
of similar waveforms s(t)'s. The associated WT coefficient
denoted by the prime is computed as

W'(a,b)
+

dts'(t)h*[(t—b)/a]/a

dt's'(t')h*[(t'_b')/a']/a' (4)

Use is made of the change of variables: t' = at, a' = aa, and
b' = ab, and Eq. (4) becomes exactly equal to the original
W(a,b) located radially by a factor of a in both the a and b
planes [compare Eq. (3 1) in Ref. 4 for the conventional wave-
let normalization of inverse square-root a], plus noise:

W'(a,b) = W(aa,ab) + noise (5)

Consequently, an optical wedge filter in the wavelet (a,b)
domain designed by Szu et al. was used to capture the shift-

(1) scale information to produce an invariant PR through a simple
neural network.

More generally, it is difficult to imagine any digital system
performing a continuous transformation—Shannon, Whit-
taker, and Kotelnikov notwithstanding. We argue that this is
a natural place for analog optics.

4 Conclusion

Finally, a great bulk of the papers in optics perform wavelet
decomposition on 2-D images producing 4-D outputs. The
data throughput is I/O limited in most of these cases. This
puts us right back with the Fourier optics case in which
electronics wins for small input scenes, optics wins for large-
enough scenes, and the dividing line is changeable and dis-
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putable. Our understanding of 2-D ' 'fastwavelet transforms"
is that they are nowhere near commercial availability as chips.
If this is so, optics has a significant advantage for now. How
large or small that advantage is and how the two approaches
will evolve in the future are legitimate subjects of discussion.
Dr. Duell has offered his opinions and backup arguments,
which we appreciate and take seriously. We have offered
ours, which are not entirely in disagreement. This is an im-
portant issue that is worthy of more discussion from all sides.
In the near future, more adaptive iterative schemes that are
implementable in real-time optoelectronic processors are an-
ticipated for choosing data-driven appropriate mother wave-
lets by means of adaptive neural networks or variational su-
perposition techniques to help solve invariant PR problems.
In fact, this adaptivity will be the theme of another special
section on adaptive wavelet transforms in the July 1994 issue
of Optical Engineering.
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