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Abstract. An imprinted polymeric wavelength-independent coupler
(WINC), which is one of the core components used in optical fiber
communications and fiber-to-the-home systems, was designed with a
beam propagation method. Its designed structure has the form of the
Mach–Zehnder interferometer. The polymer core size of the WINC was
optimized at 8 × 8 μm using an imprinting technique, the hot embossing
process. Optical properties of the polymeric WINC were evaluated by
measuring its insertion loss and transmission spectrum. The insertion
loss values for channels 1 and 2 were 3.5 and 4.2 dB, respectively,
and the transmission spectrum was flat over a range of 1260 to
1640 nm. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10
.1117/1.OE.51.8.085003]
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wavelength-independent coupler.
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1 Introduction
Multimedia data, such as that used for voice, text, images,
and video, has become essential in our information-oriented
society. Recently, the increased demand for these data has
called for broadband convergence networks. To construct
a high-speed information network, optical communication
technology advances into the Tbps domain after the
2010s. This increased demand for high-speed information
and communication networks require massive transmission
capabilities and super-high-speed switching technologies
for optical communications. Fiber-to-the-home (FTTH) sys-
tems are gaining strength all over the world and used for an
access network for massive multimedia service.1 To use
FTTH more efficiently, the wavelength division multiplexing
(WDM) method is required, which transmits different wave-
lengths at constant intervals. Therefore, the FTTH system
needs not only optical fibers for data transmission but
also photonic components for data distribution, switching,
and routing between optical network terminals (ONT).

The photonic components can be generally divided into
optical fiber components and planar waveguide components.
The optical fiber components have to fuse optical fibers, so
relatively large ones are too hard to integrate. So it has
limited functions and other demerits. On the contrary, planar
waveguide components not requiring the fusion process can
carry out multiple functions, such as switching, routing,
mux/demux, splitting, and filtering. Moreover, they can
perform more than one function because they are easy to
integrate with each other.2

Currently, planar waveguide devices are mainly fabricated
using semiconductor process technology, i.e., photolithogra-
phy and etching. However, the cost of waveguide compo-
nents produced by these methods is relatively high and
thus not suitable for low-cost application to FTTH systems.3

Therefore imprinting technology has become more popular

and is considered a better patterning technology to fabricate
polymeric waveguide devices because it is much simpler and
easier to replicate than the semiconductor process technol-
ogy. It produces planar components with polymer materials
by duplicating a pattern formed on a mask. Among imprint-
ing technologies, the hot embossing method is a cheap
processing technology available for massive production.4,5

Many researchers have been studying and developing it
to use not only for an optical waveguide devices but also
for biocomponents, micro-electromechanical systems
(MEMS), and so on. Since the polarization characteristics
of polymer such as absorption loss and birefringence have
been improved greatly, it does not show a notable difference
from the silica commonly used for waveguide materials.4,6

In the present study,we designed awavelength-independent
coupler (WINC), one of the planar waveguide components,
with a hot embossing imprint technique and tried to optimize
the size of the polymer core in the WINC. It can be located
at the front end of optical communication multiplexers and
used over the 1310- and 1550-nm range, and it influences
wavelength characteristics of the multiplexer. Even though
WINC can be fabricated using a fusion splicing method with
optical fibers, that method is much more difficult than the hot
embossing method.7,8 The polymeric WINC, which has a flat
transmission 50∶50 branching fraction from 1260 to 1640 nm,
was designed and then fabricated with the hot embossing
method. The optical properties of the polymeric WINC were
measured and compared to values from a simulation.

2 Design of WINC
Two common designing methods are used for the planar
WINC: one uses the Mach–Zehnder interferometer, and
the other is the taper method for the waveguide of the
coupling zone. It has been discovered that when using the
Mach–Zehnder interferometer, the optical characteristics of
the coupler are especially well matched with the designed
values. Thus, we designed the WINC with Mach–Zehnder
interferometer using the beam propagation method for0091-3286/2012/$25.00 © 2012 SPIE
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accurate simulation of a curved structure. The structure of
the WINC, shown in Fig. 1, consists of two directional
couplers and two different optical paths designed in a
Mach–Zehnder type. The operational principle is based on
the suppression of the monotonic increase of the coupling
ratio along the wavelength by creating a phase difference

between the two directional couplers. In addition, we
designed the 3dB coupler by computing the transfer matrix
of a couple of straight waveguides based on the coupled
mode theory. The transfer matrix can be expressed as
Eq. (1), representing the multiplication of the 3dB coupler
and transfer matrix of the optical channel difference:9

TWINC ¼ T3dB1 · TΔL · T3dB2: (1)

TWINC is the total transfer matrix of the WINC, where T3dB1

and T3dB2 are the transfer matrix of the 3dB couplers for the
front and the back ends, respectively, and TΔL is the transfer
matrix of the Mach–Zehnder interference. Equation (1) for
TWINC can be expressed in detail as in Eq. (2), with the trans-
fer matrix of an ideal 3dB coupler and the transmission
constant, where β is the propagation constant and ΔL is
the optical path difference:

TWINC ¼ 1ffiffiffi
2

p
�
1 −j
−j 1

�
·

�
expð−jβ · ΔLÞ 0

0 1

�

·
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2

p
�
1 −j
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�
: (2)

Fig. 1 The wavelength-independent coupler based on the Mach–
Zehnder interferometer.

Fig. 2 Simulation results according to radius of curvature (a), coupling length (b), arm height (c), and gap of two waveguides (d).
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If the optical power is incident to a port, the output intensity
will be calculated with Eq. (3):
�
R
s

�
¼ TWINC ·

�
1

0

�
¼ 1

2

�
−1þ e−jϕ

−j − je−jϕ

�
: (3)

If Eq. (3) is expressed as an optical power equation, it will
be RR� ¼ sin2ð0.5ϕÞ or SS� ¼ cos2ð0.5ϕÞ, where ϕ is the
phase difference caused by the optical path difference.
The optical path difference ΔL can be expressed by Eq. (4):

ΔL ¼ λ2

2neffΔλ
; (4)

where λ is optical wavelength and neff is the effective refrac-
tive index of the polymer waveguide.

The important factors with regard to this structure are the
coupling ratio of the two directional couplers and the phase
difference created by the optical path difference. Thus, the
coupling ratio of the directional coupler was determined
by the coupling length and the distance between two
separated waveguides. The optical path difference was deter-
mined by the height of the Mach–Zehnder interferometer, as
shown in Fig. 1. In addition, the core size of the waveguide
WINC was 8 × 8 μm, because the core of the waveguide
needed to have a mode diameter identical to that of the
optical fiber in the single mode used for the connection.
Polymethyl methacrylate (PMMA) was used as a cladding
material, and the refractive index was 1.4816. The resin
(WIR30-490) of ChemOptics was used as the core material;
its refractive index was 1.4862 (at 1310 nm). A 0.3% differ-
ence existed between the refractive indexes of the two
substances. S-bends were mainly used for the curves.

Figure 2 shows the simulation results with varying the
curvature radius, coupling length (L1, L2), arm height (h),
and waveguide gap (g1, g2) in terms of the coupling losses.
As shown in Fig. 2(a), the power of channels 1 and 2 were
almost the same when the curvature radius was more than
40,000 μm. We set the radius of curvature at 50,000 μm
because we considered the tolerances of curvature manufac-
turing process. We also set 4 μm for the waveguide gap
(g1, g2), 1420 μm for the coupling length L1, 200 μm for
L2, and 36 μm for the arm height (h). The optical powers
of channels 1 and 2 simulated in regard to the wavelengths
from 1260 to 1640 nm are presented in Fig. 3. After normal-
izing, the power in results was suitable for a 3dB broadband
coupler, because the power values for channels 1 and 2 were
almost same at 1260 ∼ 1640 nm wavelength.

When the polymer waveguide is fabricated with the hot
embossing method, the core size is usually changed. Thus,
we performed a power simulation for that changed core size
of the waveguide from 7.9 to 8.1 μm. As shown in Fig. 4, the
allowable structure size tolerance was up to �0.3 μm, which
might be acceptable for insertion losses occurring in
the WINC.

3 Fabrication and Experimental Results
We fabricated a WINC with the hot embossing method
with polymer. For the hot embossing process, which is
one of the most flexible and appropriate methods for fabri-
cation of polymer optical devices,5 a molding master is
necessary. To make a master, generally processes such as the

Fig. 3 Optical power according to wavelength.

Fig. 4 Simulation results according to waveguide size.

Fig. 5 Fabrication process of the polymeric WINC device: silicon
master (a), hot embossing process (b), demolding master (c), core
filling (d), UV curing (e), and final structure (f).
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lithography, electroplating, and molding (lithographie galva-
noformung abformung) process, the Bosch process, and the
deep reactive ion etching (DRIE) method are applied.10–12

In this study, we used the DRIE to make a silicon molding
master. Figure 5 illustrates in detail the hot embossing
process flow for the fabrication of the WINC. The hot
embossing method consisted of several processing steps
of imprinting by pressing a silicon master into the PMMA
sheet. First, a cleaned silicon master was prepared as
shown in Fig. 5(a). Second, the master was impressed onto
the PMMA sheet using a hot embossing method with three
steps as shown in Fig. 5(b). The three steps of the hot
embossing are as follows. The temperature, pressure, and
time were 140°C, 16 bar, and 60 s for the first step;
140°C, 25 bar, and 80 s for the second step; and 140°C,
16 bar, and 60 s for the third step. After these steps, the mas-
ter was removed as shown in Fig. 5(c).

At that time, the temperature was set to 70°C. Figure 5(d)
shows the core resin filled over the formed pattern. Figure 5(e)

describes the solidification process; the core resin was solidi-
fied with 15-bar nitrogen pressure and exposed for 10 min
to UV light after being covered with an upper clad sheet.
Figure 5(f) shows the fabricated WINC device. To evaluate
the size of optical waveguides of the fabricated WINC, we
took a scanning electron microscope (SEM) image of the
surface of the WINC. The size of the optical waveguide of
the WINC was 8 × 8 μm, as shown in Fig. 6.

The optical characteristics of the fabricated WINC, such
as propagation loss, insertion loss, and power uniformity in a
broadband range, were evaluated. Figure 7 illustrates the
schematics of the measurement. A tunable light source
producing 1310- to 1550-nm wavelengths was used; the
single-mode fiber was aligned with the input port of the poly-
meric WINC to evaluate the characteristics of the fabricated
device. A multimode fiber was connected to the output port
of the device; the output power was measured by a power
meter (Newport, 1835-C). The broadband characteristics
of the WINC were observed by an optical spectrum analyzer

Fig. 6 (a), SEM images for several parts of the WINC device. (b), Cross-sectional view of the optical waveguide.

Fig. 7 Schematics of test setup.
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(OSA, ANDO, AQ6417B). The displayed characteristics
of each broadband wavelength ranged from 1260 to
1640 nm. To evaluate the propagation loss of the WINC, we
constructed the straight waveguide with the same polymer
using the hot embossing method. The optical power of
the light source from the input fiber was 6.76 dBm
(at 1310 nm), and the power of the light from the
out fiber was 6.31 dBm after running the 2-cm straight
waveguide and 6.53 dBm after running the 1-cm straight
waveguide. Therefore, the propagation loss of the WINC
was about 0.23 dB∕cm.

The insertion loss can be defined as −10 logðP2∕P1Þ and
−10 logðP3∕P1Þ, where P1 is the optical power of the inci-
dent light of the WINC and P2 and P3 are the optical power
at the output ports after the light passes through the coupler.
The output power at the output ports is presented in Table 1.
To ensure the accuracy of the measurement of the insertion
loss, two kinds of light sources (1310 and 1550 nm) were
used. The results were average values of five measurements.
The evaluated bandwidth of the WINC is shown in Fig. 8.
The result was the 50∶50 split ratio at 1260 ∼ 1640 nm.
Therefore, the basic characteristics of the WINC were con-
firmed. The insertion losses of channel 2 were slightly bigger
than those of channel 1 and also different from the simulation
results. However, such differences could be ignored because
of process tolerance and measurement errors. All optical
characteristics of the fabricated WINC did satisfy the
requirements of Telcoria–GR1209 core. We measured the
devices for 5 h and confirmed the excellent stability of
the device, as shown in Fig. 9. Therefore, we think that it
is suitable for the optical communication system.

4 Conclusions
We designed a WINC, usable for broadband wavelengths
from 1260 to 1640 nm, using a beam propagation method
based on the coupled mode theory. The coupling length,
waveguide gap, and waveguide interval conditions were
optimized through simulations. We fabricated the designed
device using the hot embossing method that employs a
nanoimprint lithography, and we evaluated its optical char-
acteristics through the experiment. The measured propaga-
tion loss of the fabricated device was about 0.2 dB∕cm.
The insertion loss was measured to be 3.6 dB on channel 1
and 4.2 dB on channel 2. The output characteristics of the
fabricated device were almost identical in the range from
1260 to 1640 nm, which proves its usefulness for FTTH.
We expect that the proposed design and fabrication method
will be applied for the development of optical switches, opti-
cal modulators, WDM optical components, and electro-optic
circuit boards and make those better than other methods.
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Table 1 Optical power (dB) at the output ports.

Input wavelength
Optical power
at channel 1

Optical power
at channel 2

1310 nm 3.6 4.2

1550 nm 3.4 4.1

Fig. 9 Insertion loss changes after 5 h at port 1 (a) and port 2 (b).

Fig. 8 Splitting characteristics according to wavelength.
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