
Fast multiple run_before decoding
method for efficient implementation of
an H.264/advanced video coding context-
adaptive variable length coding decoder

Dae Wook Ki
Jae Ho Kim

Fast multiple run_before decoding method for efficient
implementation of an H.264/advanced video coding
context-adaptive variable length coding decoder

Dae Wook Ki
Jae Ho Kim
Pusan National University
Department of Electronics Engineering
San 30, Jangjeon-Dong
Kumjeong-Gu, Pusan, 609-735 Republic of Korea
E-mail: jhkim@pusan.ac.kr

Abstract. We propose a fast new multiple run_before decoding method in
context-adaptive variable length coding (CAVLC). The transform coeffi-
cients are coded using CAVLC, in which the run_before symbols are gen-
erated for a 4 × 4 block input. To speed up the CAVLC decoding, the
run_before symbols need to be decoded in parallel. We implemented a
new CAVLC table for simultaneous decoding of up to three run_befores.
The simulation results show a Total Speed-up Factor of 205% ∼ 144%
over various resolutions and quantization steps. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction
of this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.OE.52.7.071502]

Subject terms: run_before; context-adaptive variable length coding; H.264/
advanced video coding; multiple decoding.

Paper 120601 received Apr. 25, 2012; revised manuscript received Oct. 6, 2012;
accepted for publication Oct. 11, 2012; published online Mar. 4, 2013.

1 Introduction
Efficient decoding of H.264/advanced video coding (AVC) is
quite important in personal computer (PC)-based decoding
as well as for application specific integrated circuit (ASIC)
implementation. Low power implementations are more
important for mobile devices such as smart phones and digi-
tal multimedia broadcasting.

H.264/AVC uses context-adaptive variable length coding
(CAVLC) for encoding the transformed coefficients of 4 × 4
blocks. The method is composed of five syntax elements:
TotalCoef (coeff_token), TrailingOnes (coeff_token) and
trailing_ones_sign_flag, level, total_zeros, and run_before.
For TrailingOnes (or T1s), the trailing_ones_sign_flag is
assigned to 0 or 1 to represent the “þ” or “−” sign of the
trailing ones, respectively. For this syntax element, there
is no need for decoding in the calculation or table access.
There is only one value of TotalCoef(coeff_token), T1
(coeff_token), and total_zeros for one 4 × 4 block. But in
many cases there may be more than one “level” and “run_
before” value for the block.

Moon1 proposed a method to reduce the large number of
memory access operations in the decoding process for
coeff_token. He used new variable-length decoding (VLD)s
for coeff_token and a state machine instead of the run_
before decoding table. This method reduced 95% of the
memory access, which is quite a good improvement for a
low power hardware implementation. Kim et al.2 used con-
ventional digital signal processor (DSP) or general purpose
processor (GPP) instructions for CAVLC decoding. As
shown in Fig. 1, the run_before table is divided into five
groups and their decoding algorithms are proposed sepa-
rately. They removed most of the table accesses. This has
advantages for DSP- or GPP-based systems; however, the
hardware implementation is complex as the equation uses
complicated calculation logic.

For implementing the 1~5 groups of Fig. 1, hardware
blocks such as shifters, adders, and multiplexers are needed.

For the outer “if then else” statements, the condition calcula-
tion logics and multiplexers are needed.

Many researchers have contributed different methods to
the efficient decoding of CAVLC in H.264/AVC.3–10 Key
to these methods is noting the bottleneck that inhibits decod-
ing speed. The authors propose to increase the speed of
run_before decoding since in many cases there are multiple
run_befores for one 4 × 4 block. This is also the case for the
levels in CAVLC; however, as the multiple parallel decoding
of levels is quite complex, this paper only focuses on the
multiple parallel decoding of run_before.

Wen3 earlier proposed parallel multiple run_befores,
using parallel multiple hardware decoders. It is shown in
Fig. 2. A total of six decoding units were used in the actual
design of the hardware. Each decoding unit had a different
starting position for the input bit stream, and they produced
decoding results or failures according to each bit stream
input. Therefore, each decoder needed its own variable-
length coding (VLC) table. The hardware complexity was
quite high, as was the power consumption since the units
ran in parallel. This did not improve the decoding
algorithm and it also increased the degree of hardware com-
plexity.

The method of Nikara5 is an MPEG2 version of Wen3

using multiple decoders. Each decoder has a complete de-
coding logics and a code detector (CD) table. Their starting
bit positions in the input bit stream are different. They are
trying to decode their own bit streams simultaneously. Some
result in success_flags, the decoded bits, and the code
lengths. Others result in failures. This method is used to
speed up the hardware decoding process. Before this is pro-
posed, a simple decoding is iterated many times. Compared
to that, this method reduces the overall hardware decoding
time. But there is no algorithmic improvement in Nikara5 and
the required hardware size is increasing as the multiple
decoding logics are used in parallel.

As an alternative, the authors propose fast multiple run_
befores decoding with reduced memory access. The main

Optical Engineering 071502-1 July 2013/Vol. 52(7)

Optical Engineering 52(7), 071502 (July 2013)

http://dx.doi.org/10.1117/1.OE.52.7.071502
http://dx.doi.org/10.1117/1.OE.52.7.071502
http://dx.doi.org/10.1117/1.OE.52.7.071502
http://dx.doi.org/10.1117/1.OE.52.7.071502
http://dx.doi.org/10.1117/1.OE.52.7.071502
http://dx.doi.org/10.1117/1.OE.52.7.071502

idea is that there is a higher probability of run_befores with
shorter coded bits. During our research, we found many
cases in which three run_before codes can be decoded
using only one 8-bit table access. In those cases, one
table access can produce three decoded values of run_before.
This has the benefit of a low power implementation due to
fewer table accesses. This is a big achievement for imple-
mentation compared to Nikara.5 There is no need for
many decoders running in parallel in the proposed idea.

This paper is organized as follows. Section 2 reviews the
general CAVLC algorithm and briefly describes the contribu-
tions from earlier papers. Section 3 explains the proposed
method, and Sec. 4 analyzes the experimental results. Sec-
tion 5 provides the conclusions regarding proposed algorithm.

2 H.264/AVC CAVLC
CAVLC decoding is the inverse of encoding and operates on
coded information from the compressed bit stream.

In the encoding side, zigzag scanning is applied after
quantization of the transformed coefficients, and then CAVLC
is used to encode the transformed coefficients. The following
syntax elements are used for coding efficiency:

1. The total number of coefficients (TotalCoef or Tc):
Tc for the neighborhood blocks are used in selecting
the current VLC look-up table.

2. TrailingOnes (T1s): After quantization, most of the
nonzero coefficients are þ1 or −1. They are called
T1s. Note that their signs are coded separately as trai-
ling_ones_sign_flag. If there are more than three T1s,
they are regarded as level.

3. level: Coefficient values above 1 are coded as level.
Note that the value “1” after counting three “1”s is
also regarded as level. For coding these levels, the
VLC look-up table is selected adaptively using infor-
mation from the most recently coded level.

4. total_zeros: Encodes the total number of zeros occur-
ring after the first nonzero coefficient.

5. run_before: The quantized block typically has many
zero coefficients. CAVLC uses run_before for the
efficient coding of zeros.

Figure 3 shows the five decoding process for the five
syntaxes of CAVLC.1 The quantized 4 × 4 coefficients are
reordered by zigzag scanning and encoded by the CALVC
encoder. When the encoded bit stream is provided to the

Fig. 1 The single run-before decoding method of Kim.2

1 0 1 0 1 1 1 0 1 0 …

1 0 1 0 1 1 1 0 1 0 …

1 0 1 1 1 0 1 0 …

0 1 1 1 0 1 0 …

1 1 1 0 1 0 …

1 1 0 1 0 …

1 0 1 0 …

Bitstream

decoder00

decoder01

decoder02

decoder03

decoder04

decoder05

out_symbol = C, code_length= 3,
total_length = 3

out_symbol = A, code_length= 2,
total_length = 5

out_symbol = B, code_length = 2,
total_length = 7

C A B

Fig. 2 An example of multiple symbol decoding.3

Optical Engineering 071502-2 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

decoder, coeff_token, signs of T1s, level, total_zero, and
run_before are decoded sequentially.

3 Proposed Multiple run_before Decoding
Algorithm

In the proposed method, up to three run_befores can be
decoded simultaneously. The number “zerosLeft” indicates

how many “0”s are not yet decoded. The code length of
run_before is a maximum 3 bits if zerosLeft is between 1
and 6. In the entropy coding, a shorter code length means
a higher occurrence probability of the code.

Figure 4 shows the run_before decoding table. The codes
in region (1) provide the target where multiple decoding is
possible. The codes in region (2) are decoded by the normal
decoding method because they are less likely. If zerosLeft
is not greater than 6, the proposed multiple decoding is
applied. For various test sequences, we found that the aver-
age probability of regions (1) and (2) are 87.3% and 12.7%,
respectively.

3.1 Proposed Multiple Decoding Table

Region (1) in the run_before table needs to be reorganized
for multiple decoding. The revised table is shown in Fig. 5(a).
The 8-bit buffer holding the input bit stream is used for the
column address of the table, and zerosLeft is used for the row
address. The memory output of the table shows three run_
before values and the corresponding run_before code bits
consumed.

An example illustrates the usage of the new table, shown
in Fig. 5(b). The zigzag scanned coefficients arrive from
right to left. The relationship of zerosLeft and run_before
is depicted in Fig. 5(b), which shows that zerosLeft is
reduced by the value of a decoded run_before. Assume
that an encoded bit stream is “10011.” This means that run_
before and zerosLeft are (1,2,0,1) and (4,3,1,1) in the coding
process, respectively. Of course, this is unknown until they
are subsequently decoded correctly.

Total_zeros is decoded as “4” just before the run_before
decoding starts. The coded bit stream “10011xxx” is stored
in the input bit buffer of the decoder, and zerosLeft is initi-
alized with total_zeros at the start of run_before decoding.
The bit data of the input buffer and zerosLeft are used for the
column and row addresses of the table. Then “001 010 000
101” is the output of the table. The first three 4-bit numbers
represent the run_before value 1, 2, and 0, respectively. The
last 4-bit number shows the consumed number of bits, which
is used to shift the buffer for the next decoding process.
Because three run_befores are decoded, the next starting
zerosLeft becomes 1.

If there are more than three run_befores, then additional
iterations of this process are needed. The run_before decoding
table size in Fig. 5(a) is 6 ðrow sizeÞ × 256 ðcolumn sizeÞ×
12 bits ðoutput bits sizeÞ, i.e., 18,432 bits. Our aim is to

0 3 -1 0

0 -1 1 0

1 0 0 0

0 0 0 0

Reordering
0,3,0,1,-1,-1,0,1,0…

Tc= 5, T1s = 3
Total-zeros = 3

Encoding by CAVLC

0000100 011 10010 111 101101

Coeff-token
(0000100)

Sign of T1s
(011)

011 10010 111 101101

?, ?, |1|, |1|, |1|

Level
(10010)

Total-zeros
(111)

?, ?, -1, -1, 1

10010 111 101101

3, 1, -1, -1, 1

111 101101

Run-before
(101101)

101101
3, 1, -1, -1, 1 / 0, 0, 0

0,3,0,1,-1,-1,0,1Run-before
VLCT

VLCT 2

VLCT 1

VLCT 0

Total-zeros
VLCT

Fig. 3 CAVLC decoding processes1 and syntax examples.

run_before
zerosLeft

1 2 3 4 5 6 >6
0 1 1 11 11 11 11 111
1 0 01 10 10 10 000 110
2 - 00 01 01 011 001 101
3 - - 00 001 010 011 100
4 - - - 000 001 010 011
5 - - - - 000 101 010
6 - - - - - 100 001
7 - - - - - - 0001
8 - - - - - - 00001
9 - - - - - - 000001
10 - - - - - - 0000001
11 - - - - - - 00000001
12 - - - - - - 000000001
13 - - - - - - 0000000001
14 - - - - - - 00000000001

1 1 11 11 11 11
0 01 10 10 10 000
- 00 01 01 011 001
- - 00 001 010 011

- - 000 001 010
- - - 000 101

- - - - - 100

1 2 3 4 5 6

-
-
(1)

111
110
101
100
011
010
001
0001
00001
000001
0000001
00000001
000000001
0000000001
00000000001

(2)

Fig. 4 The run_before decoding table. In region (1), the authors pro-
pose multiple parallel decoding. In region (2), conventional single
decoding is used.

Fig. 5 (a) The proposedmultiple run_before decoding table which provides up to three decoded values of run_before and the consumed number of
bits. “10011xxx” is the input bit stream for multiple decoding, and (1,2,0,5) is the output of the table access. (b) An illustration for the decoding of the
zigzag scanned coefficients.

Optical Engineering 071502-3 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

decode a maximum of three run_befores at once. We need
three tables to support either one, two, or three run_befores
(see the following section). Therefore, the required table size
is 18; 432 bits × 3 ¼ 55; 296 bits. This is too large for a
hardware implementation.

3.2 Reducing the Multiple Decoding Table

Figure 6(a) shows the special case in which the coefficients
before Cn are all “0,” called the leading zero case (LZC).
Note that Cn is a nonzero coefficient. In LZC, after decoding
Cn, the decoder knows that all nonzero coefficients are
decoded and that the remaining coefficients are all zeros.
The encoder does not assign any bits for the run_before
of the leading zeros. In the leading zero case, the multiple
run_befores decoding table needs to be separated; an expla-
nation follows.

Figure 6(b) and 6(c) shows how the decoding is per-
formed regardless of whether there are leading zeros.

In the encoding process, zerosLeft is set to 6 for both
Fig. 7(a) and 7(b). Consider the run_before values for
Fig. 7(a). The first (before C1), second (before C2), and
third (before C3) run_befores are 1, 2, and 3, respectively.
But the third run_before is not coded because it is the lead-
ing zeros. Therefore, the run_before stream for (a) is
“000011.” The next syntax element (xx) will be concate-
nated, so that “000011xx” will be the encoded stream. On
the other hand, in the case of Fig. 7(b), the first, second,
and third run_befores are 1, 2, and 3, respectively, and
the run_before stream is “00001100.” On the decoding
side, when “00001100” arrives we cannot distinguish
between the Fig. 7(b) case “00001100” or the Fig. 7(a)
case “000011xx” with the following syntax element
xx ¼ }00}. The number of consumed bits for Fig. 7(a)
and 7(b) are 6 and 8, respectively.

Fig. 6 (a) Leading zeros before Cn . Note that x means don’t care.
(b) An example of no leading zeros, starting with C4. (c) Another
example of leading zeros. Note the pattern is the same as (b) except
C4.

Fig. 7 The encoding process of Fig. 6(a) and 6(b).

Fig. 8 Reduction table size for decoding multiple run_befores.

Optical Engineering 071502-4 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

In other words, the same bit stream “00001100” should
produce different table outputs according to whether there is
a leading zero case, and we need to separate the table. Con-
sidering how many run_befores are decoded at once, the
above two examples Fig. 7(a) and 7(b) can be decoded
with the tables having two and three run_befores. These
tables are called run_before-table (RBT)3 and RBT2. For
the same reason, it is quite easy to understand that we need
another table having only one run_before, called RBT1.

In the multiple run_before process, loop_count is initia-
lized as Total coefficient − 1. This loop_count indicates how
many coefficients have not yet been decoded. The number of
decoded run_befores (# run_before) is the same as the num-
ber of decoded coefficients. In the next iteration loop_count
is decreased by # run_before. If loop_count is greater than or
equal to 3, equals 2, or equals 1, then RBT3, RBT2, or RBT1
will be selected, respectively.

The maximum coded bit length for various combinations
of multiple run_befores varies, and it is also a function of
zerosLeft. In other words, the maximum coded bit length
determines the table size. Figure 8 shows how the table
size can be reduced.

The following discussion explains how the size of the
tables can be reduced for decoding multiple run_befores
(please refer to Fig. 8).

1. This is an example of decoding the “00001100” run_
before bit stream when zerosLeft is 6. With table
access the 8-bit input can be decoded to have a

Table 1 The required table sizes for zerosLeft equals 1 ∼ 6 and 1 ∼ 3
run_befores.

RBT1 RBT2 RBT3

1 zerosLeft 8 4 8

2 zerosLeft 8 8 16

3 zerosLeft 8 16 64

4 zerosLeft 8 32 128

5 zerosLeft 8 32 128

6 zerosLeft 8 64 256

Total 804

Table 2 Conditions of the simulation.

Version of joint
model

JM11.0

Profile Baseline

Frame rate 30 Hz

Test sequences
(frames)

CIF Foreman(300), Mobile(300),
Paris(300), Tempete(260)

4CIF City(300), Crew(300),
Harbour(300), Soccer(300)

HD Pedest(300), Rushhour(300)

QP (Quantization
parameter)

22, 27, 32, 37

Hadamard
transform

Used

Search range 16

Number of reference
frames 2 frames

2 frames

Sequence type IPPP . . .

Motion vector
resolution

1∕4 pel

RD-optimized
mode decision

Used

Fast motion estimation Used

Fig. 9 Illustration of the number of table accesses for MRB and SRB.
In this example, nTBLðMRBÞ ¼ 2 and nTBLðSRBÞ ¼ 4.

Table 3 The Gain for all cases of one 4 × 4 block.

nTBL(SRB) nTBL(MRB) Gain

1 1 1

2 2

3 3

4 2 2

5 2.5

6 3

7 3 2.33

8 2.67

9 3

10 4 2.5

11 2.75

12 3

13 5 2.6

14 2.8

15 3

Optical Engineering 071502-5 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

sequence of 1, 2, and 3 run_befores. We need to use
RBT3 to simultaneously decode three run_befores.
After analyzing all RBT3 cases, the authors found
that the maximum bit stream is 8, so the table size
can be 256.

2. This is two examples of decoding “000000” and
“001000” when zerosLeft is 6. They are decoded to
have a sequence of (1,5) and (2,4) run_befores,
respectively. In these cases, RBT3 is needed to simul-
taneously decode two run_befores. After analyzing all
RBT2 cases, it is found that the maximum bit stream is
6. This means the table size can be 64.

3. This shows the case of RBT1, for which the maximum
bit stream is 3. This means the table size can be 8.

We further reduced the table for the case of Fig. 8(a). As
in the above example, we only considered zerosLeft equals 6.
If the zerosLefts are 5, 4, 3, 2, and 1, the maximum bit
streams become 8, 7, 7, 6, 4, and 3 bits, respectively.
This tells us the table size can be reduced further.

Similarly, we can summarize the necessary memory table
sizes for various cases as shown in Table 1.

4 Simulation Results
Simulations are used to compare the proposed multiple
run_befores decoding and conventional single decoding.
The gain is calculated for various test sequences and quan-
tization parameter (QP)s. Simulation conditions are shown in
Table 2.

Table 4 The probability of the Gain appearing for various sequences. QP 22 is used.

Gain
Foreman
CIF (%) Mobile CIF (%) Paris CIF (%)

Tempete
CIF (%) City 4CIF (%) Crew 4CIF (%)

Harbour
4CIF (%) Soccer 4CIF (%)

Pedest
HD (%)

Rushhour
HD (%)

3 14.362 23.619 24.103 23.451 17.185 17.471 23.177 18.937 12.636 16.020

2.8 0.000 0.013 0.022 0.006 0.000 0.000 0.000 0.000 0.000 0.000

2.75 0.084 0.807 1.175 0.374 0.010 0.014 0.002 0.031 0.037 0.000

2.67 0.834 4.922 5.625 3.661 0.502 0.392 0.123 0.690 0.353 0.100

2.6 0.007 0.092 0.149 0.037 0.000 0.001 0.000 0.001 0.005 0.000

2.5 5.586 10.820 10.637 9.497 6.232 4.714 4.614 6.180 2.583 2.979

2.33 1.062 5.749 6.618 5.306 0.981 0.808 0.417 1.354 0.657 0.547

2 22.316 22.409 21.109 24.429 25.901 30.650 40.348 28.237 26.540 26.849

1 55.751 31.568 30.562 33.239 49.190 45.949 31.320 44.570 57.190 53.506

Table 5 Total Speed-Up Factor for various sequences and QPs.

Total speed-up factor

QP
Foreman
CIF (%)

Mobile
CIF
(%)

Paris
CIF
(%)

Tempete
CIF (%)

City
4CIF
(%)

Crew
4CIF
(%)

Harbour
4CIF (%)

Soccer
4CIF
(%)

Pedest
HD (%)

Rushhour
HD (%)

22 162.38 203.33 205.80 199.48 171.78 174.42 194.39 178.39 157.22 164.25

27 151.71 183.98 186.72 179.76 156.76 164.32 158.54 173.68 163.92 148.07

32 151.48 176.10 178.90 171.33 152.92 159.13 131.56 163.34 172.76 151.34

37 154.05 175.78 170.19 155.78 144.93 156.01 125.91 152.26 167.86 166.13

140.00%

150.00%

160.00%

170.00%

180.00%

190.00%

200.00%

210.00%

QP 22 QP 27 QP 32 QP 37

Mobile CIF

Crew 4CIF

Fig. 10 The trend of the total speed-up factor (TSF) according to QPs
for two typical video sequences.

Optical Engineering 071502-6 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

4.1 Comparison of the Number of Table Accesses

We define the proposed decoding method as multiple run_-
befores (MRB) and the conventional decoding method as
single run_before (SRB). The number of table accesses
for MRB and SRB is defined as nTBL(MRB) and nTBL
(SRB), as illustrated in Fig. 9. In the case of MRB, two
decoding steps are needed as shown in the bold line boxes.
Here, run_before 1, 2, 0 can be decoded in the first decoding
and run_before 1 can be decoded in the second decoding. In
the case of SRB, run_before 1, 2, 0 and 1 are decoded with
four iterations.

The processing gain of the proposed MRB compared to
SRB can be defined as

Gain ¼ nTBLðSRBÞ
nTBLðMRBÞ . (1)

Table 3 shows the gain for all possible cases of one
4 × 4 block.

4.2 Ideal Speed-Up Gain of the Proposed Method

Simulations using the baseline profile for the common inter-
mediate format (CIF), 4CIF, and high definition (HD)
sequences are performed. In MRB, there are nine distinct
cases of gain in the decoding. Table 4 presents the simulation
results and the probability of the gain.

We applied several QPs, such as 22, 27, 32, and 37. To
simplify the presentation, only one experimental result of QP
22 is summarized in Table 3. In this result, gain 3 appears
more frequent with less moving or in lower resolution (CIF)
video sequences.

This paper is proposing a new novel algorithm of the mul-
tiple run_before decoding for hardware implementation.
Therefore, note that comparing with the software implemen-
tation efficiency is not necessary.

We define the total speed-up factor as the sum of the pro-
duct of the gain and the probability of the case. This reflects
the proposed algorithmic efficiency compared to the single
run_before decoding. Simulation is performed for entire
video frames, and the results are summarized in Table 5.
This table shows the experimental results of QP 22, 27,
32, and 37.

From Table 4 it can be seen that the proposed method
shows higher total speed-up factor (TSF) in lower resolu-
tions or with smaller QP. Figure 10 shows that TSF changes
according to the QP. For the mobile and Paris CIF sequences,
the proposed algorithm produces more than twice the TSF
at QP22.

4.3 Comparison of the Implementation with Wen

For the implementation point of view, it is necessary to com-
pare the hardware size and the operating frequency of the
design. Wen’s3 method is compared because it uses H.264
and proposes efficient decoding of run_before. Both are
coded in Verilog HDL and synthesized for a field programma-
ble gate array (FPGA, Xilinx Virtex II XC2V4000BF957).
The results of synthesis and comparison are shown in Table 6.
The proposed method has achieved 6.9 ns maximum period.
The critical path delay of the proposed design is about 5.8
times smaller thanWen.3 Thenumber of required configurable
logic block (CLB) in Wen3 is 654, but we use only 374. The
total execution time is equal to themaximumperiodmultiplied
by the required decoding cycles. The proposed method’s total
execution time gain is about 3.89 compared to Wen.3

Fewer table accesses means lower power consumption in
implemented digital systems. The proposed method is useful
for mobile devices such as cell phones, personal digital
assistants, and smart phones.

5 Conclusions
CAVLC is used for run_before coding of the quantized resi-
dual coefficients in H.264/AVC. The elements of the CAVLC
stream are TotalCoef (coeff_token), TrailingOnes (coeff_to-
ken), trailing_ones_sign_flag, level, total_zeros, and run_-
before. Efficient implementation of CAVLC is important
for mobile devices.

Prior research has been performed to improve the decod-
ing of CAVLC.1–8 Coeff_token decoding has been improved
by using new coeff_token VLD,1 and total_zeros decoding
has been improved and memory access reduced by
80~90%.4 Trailing_ones_sign_flag is simply assigned as
“0” or “1.” Thus, the remaining targets for improving
CAVLC decoding are level and run_before. As the level
decoding is quite complex, the authors leave this topic for
future research.

Table 6 The FPGA synthesis results and the execution time of the proposed method are compared with Wen.3

Wen3 The proposed method

Design platform (Device) Xilinx Virtex II FPGA (XC2V4000-6BF957)

Maximum frequency/Maximum period 24.993 MHz∕40.012 ns 144.928 MHz∕6.9 ns

CLB count 654 374

Synthesized ROM size 10112 Bits 10248 Bits

Test sequence Foreman CIF

Required decoding cycles 163192 243050

Total decoding time 6529.638 us 1677.045 us

Optical Engineering 071502-7 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

Here, our target of research is to improve the run_before
decoding. Note that Coeff_token and Total _zeros appear
only once for a 4 × 4 block. But run_before usually appears
many times for one 4 × 4 block; therefore, it is quite impor-
tant to improve this run-before decoding for overall effi-
ciency of the CAVLC decoding. Previous research on
run_before decoding used an arithmetic operation to reduce
the table accesses.2 But this is efficient when GPP or DSP is
used. Our aim is to develop a new algorithm for improving
run_before decoding for hardware implementation. In this
paper, we applied simultaneous decoding of up to three run_
befores. In the simulation results, the Total Speed-up Factor
is 144.9% ∼ 205.8% for various sequences and QPs.

For the implementation point of view, Wen3 is selected
because it proposes multiple run_before decoding for
H.264 CAVLC. Verilog HDL is used for hardware coding
and synthesized for an FPGA (Xilinx Virtex II
XC2V4000BF957). The proposed method is using only
about 57% of Wen3 for CLB count, about 5.79 times faster
for the critical delay. Total decoding time gain of the
proposed method is about 3.89 times faster for decoding
the Foreman video sequence. The proposed method has
less memory access and smaller hardware size. It means
less power consumption and is good for mobile device
application.

Acknowledgments
This work was supported by a Korea Research Foundation
Grant funded by the Korean government (MOEHRD, Basic
Research Promotion Fund, KRF-2006-511-D00265).

References

1. Y. H. Moon, “A new coeff-token decoding method with efficient mem-
ory access in H.264/AVC video coding standard,” IEEE Trans. Circuits
Syst. Video Technol. 17(6), 729–736 (2007).

2. Y.-H. Kim et al.,“Memory-efficient H.264/AVC CAVLC for fast decod-
ing,” IEEE Trans. Consum. Electron. 52(3), 943–952 (2006).

3. Y.-N. Wen et al., “Multiple-symbol parallel CAVLC decoder for H.264/
AVC,” in Proc. IEEE Asian Pacific Conf. on Circuits and Systems
(APCCAS2006), Singapore, pp. 1240–1243 (2006).

4. Y. H. Moon, “An advanced total_zeros decoding method based on new
memory architecture in H.264/AVC CAVLC,” IEEE Trans. Circuits
Syst. Video Technol. 18(9), 1312–1317 (2008).

5. J. Nikara et al., “Multiple-symbol parallel decoding for variable length
codes,” IEEE Trans. Very Large Scale Integr. Syst. 12(7), 676–685
(2004).

6. G.-S. Yu and T.-S. Chang, “A zero-skipping multi-symbol CAVLC
decoder for MPEG-4 AVC/H.264,” in Proc. IEEE International Sym-
posium on Circuits and Systems (ISCAS2006), Island of Kos, Greece,
pp. 5583–5586 (2006).

7. H.-Y. Lin et al., “Low power design of 1.264 CAVLC decoder,” in Proc.
IEEE International Symposium on Circuits and Systems (ISCAS2006),
Island of Kos, Greece, pp. 2689–2692 (2006).

8. T.-H. Tsai and D.-L. Fang, “A novel design of CAVLC decoder with low
power consideration,” in Proc. IEEE Asian Solid-State Circuits Conf.
(ASSCC2007), Jeju, Korea, pp. 196–199 (2007).

9. “Advanced Video Coding,” ISO/IEC 14496-10 and ITU-T Rec. H.264
(2003).

10. I. E. G. Richardson, H.264 and MPEG-4 Video Compression—Video
Coding for Next Generation Multimedia, pp. 203–204, John Wiley
and Sons, Chichester, West Sussex (2003).

Dae Wook Ki received his MS degree from
the Department of Electronics Engineering
at Pusan National University in 2005. He is
currently a candidate for a PhD at Pusan
National University. His research interests
include video coding standard, very large
scale integration design and multimedia
systems.

Jae Ho Kim received his MS and PhD
degrees from the Department of Electronics
Engineering at the Korea Advanced Institute
of Science and Technology in 1982 and
1990, respectively. He worked in the Labora-
tory of Visual Communication at Samsung
Electronics from 1988 to 1992. He is currently
a professor in the Department of Electronics
Engineering at Pusan National University.
His research interests include video coding
standard, high-resolution image processing,

and animation automation.

Optical Engineering 071502-8 July 2013/Vol. 52(7)

Ki and Kim: Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding . . .

http://dx.doi.org/10.1109/TCSVT.2007.896657
http://dx.doi.org/10.1109/TCSVT.2007.896657
http://dx.doi.org/10.1109/TCE.2006.1706492
http://dx.doi.org/10.1109/TCSVT.2008.926999
http://dx.doi.org/10.1109/TCSVT.2008.926999
http://dx.doi.org/10.1109/TVLSI.2004.825840

