
Bio-empirical mode decomposition:
visible and infrared fusion using
biologically inspired empirical mode
decomposition

Paterne Sissinto
Jumoke Ladeji-Osias



Bio-empirical mode decomposition: visible and infrared
fusion using biologically inspired empirical mode
decomposition

Paterne Sissinto
Jumoke Ladeji-Osias
Morgan State University
Department of Electrical and Computer

Engineering
1700 E. Cold Spring Lane
Baltimore, Maryland 21251
E-mail: psissinto@gmail.com

Abstract. Bio-EMD, a biologically inspired fusion of visible and infrared
(IR) images based on empirical mode decomposition (EMD) and color
opponent processing, is introduced. First, registered visible and IR cap-
tures of the same scene are decomposed into intrinsic mode functions
(IMFs) through EMD. The fused image is then generated by an intuitive
opponent processing the source IMFs. The resulting image is evaluated
based on the amount of information transferred from the two input images,
the clarity of details, the vividness of depictions, and range of meaningful
differences in lightness and chromaticity. We show that this opponent
processing-based technique outperformed other algorithms based on
pixel intensity and multiscale techniques. Additionally, Bio-EMD trans-
ferred twice the information to the fused image compared to other meth-
ods, providing a higher level of sharpness, more natural-looking colors,
and similar contrast levels. These results were obtained prior to optimi-
zation of color opponent processing filters. The Bio-EMD algorithm has
potential applicability in multisensor fusion covering visible bands, foren-
sics, medical imaging, remote sensing, natural resources management,
etc. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attri-
bution of the original publication, including its DOI. [DOI: 10.1117/1.OE.52.7.073101]
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1 Introduction
Image fusion is the process of combining two or more
registered images of the same scene to get a more infor-
mative image. Visible and infrared (IR) color image fusion
has become a process with multiple applications. From
situational awareness to medical imaging, fusion has pro-
vided users with images that are more meaningful than
source images. Image fusion techniques can be broken down
into two main approaches: multiscale and nonmultiscale.1

Multiscale techniques include wavelet transforms and pyra-
mid transforms.2 Nonmultiscale techniques include linear,
nonlinear, estimation theory, artificial neural networks,
and color composite approaches.2 Despite, the enormous
research done on the subject, obtaining a fused image
with very high information content and an informative depic-
tion of the scene is a domain of active research. Several
image fusion techniques have been developed by researchers
over the last two decades to perform the synergistic combi-
nation of different sensory information at the pixel, feature,
or decision level.3–6 Most of these methods perform the inte-
gration of grayscale images. Since human eyes distinguish
about a hundred grayscale levels and thousands of color var-
iations, color-fused images provide more information con-
tent than grayscale fusion. Color fusion provides a
chromatic representation of the fused image in false or
near-true colors for situational awareness and medical appli-
cations. Some studies were done on fusing a thermal IR
image with electro-optical (EO) or visible images; false

colors were obtained.7–9 These works point out three gaps:
(1) there is a need to develop and implement efficient algo-
rithms performing color fusion of IR and EO images and
generating natural-looking colors; (2) the systems need to
transfer as much information as possible from the input
images to the fused one, and generate a high-quality image,
scalable in terms of number and size of images being inte-
grated; and (3) in information fusion domain, empirical
mode decomposition (EMD) is a fully data-driven technique
that provides a decomposition of images into finite sets of
signals called intrinsic mode functions (IMFs) and the liter-
ature points out that better fusion can be achieved on IMFs.

In this work, we proposed a new technique to fuse
low-light visible and IR images and generate near naturally
looking colors. The method is based on EMD and center-
surround opponent processing.10,11 This paper is organized
as follows. EMD, opponent-processing, and image fusion
quality metrics, which form the theoretic background, are
introduced in Sec. 2. In Sec. 3, we present the structure
and algorithm supporting this work. Section 4 is based on
the result evaluation and comparison to some existing tech-
nique outcome for some sets of images. Finally, conclusions
are drawn in Sec. 5.

2 Background and Concepts
In this section, we present the necessary theoretical back-
ground for the development of an opponent processing infor-
mation fusion technique. This includes the dynamic neural
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network equations and techniques developed to produce
color-fused images.

2.1 Dynamic Neural Network Equations

Visible electromagnetic waves have a wavelength between
400 (violet) and 700 nm (red). Human eyes are more sensi-
tive to colors in the middle of the visible spectrum (green to
yellow) and have dim sensitivity of the spectrum toward the
extremes.7 Like several nature-inspired solutions, the human
vision system has inspired some image processing develop-
ments. Inside the retina, photoreceptors are responsible for
image formation. Rods participate in achromatic image for-
mation which has poor details and no color. Conversely,
cones, horizontal cells, and bipolar cells produce contrast
enhancement of color information which correspond to spa-
tial opponent signal processing. There are three types of
cones containing photo-pigments with distinct spectral sen-
sitivity.2 L cones are sensitive to long-wavelengths around
560 nm, M cones are sensitive to medium-wavelengths
around 530 nm, and S cones are sensitive to short-
wavelengths around 420 nm. These cones share some
sensitivity regions. Emulating retina processing has
resulted in image fusion architectures with center-surround
operations.12,13

Center-surround operations are the result of cones trans-
forming photons into signals through opponent mechanisms.
The relations governing the activities in the retina when the
excitation and the inhibition are performed by filtering
(center-surround operations)2 are summarized in Table 1,
which illustrates the channels within the luminance and
color that are coupled within the retina, resulting in one
being excited and the other being inhibited.

The neuro-dynamic interactions representing the center-
surround model at a pixel (xij) level are summarized in
Table 2.

A ¼ 134, B ¼ 1, C ¼ 7, D ¼ .5, E ¼ 3.333, α ¼ 1.3,
and β ¼ 1.875 such that both Gaussian kernel filters cover
the same area.2,11 Cij is the ON-center interaction and Eij
is the OFF-center interaction; both represent a discrete con-
volution of the input pattern Iij with a Gaussian kernel. At
the equilibrium, xij has a constant value so its derivative is
equal to zero. The coefficient A affects the lightness/darkness
of the filtered image.

2.2 Color Fusion of IR and Visible Images

Unlike grayscale image fusion, color fusion provides a
chromatic representation of the fused image in false or real
color. Figure 1 shows a hierarchical model of some color
composite image fusion procedures, their authors, and insti-
tutions. In many cases, image fusion approaches are applied
in combination with other algorithms.

Toet et al. developed a false color mapping technique
where the “unique” and “common” components of two
images are assigned to the RGB band.7,14 Their results
showed enhancement of features unique to each modality.
However, common features were diminished in the fused
image and resulted in colors that were different from the
original color image. Remapping different gray levels of a
unique region in images produced different colors, a process
that creates unsatisfactory color visual effects.

Waxman et al.15–18 developed a variety of low-light
visible/IR fusion architectures that merge EO images with
thermal IR imagery by emulating some principles of biologi-
cal opponent-color vision. Their approach to frame fusion
relied on biologically motivated neuro-computational mod-
els of visual contrast enhancement. Their architecture fused
EO image and thermal images successfully, but the integrity
of the color information is not preserved, reducing the ability

Table 1 Retina color excitation and inhibition.

Photoreceptors Signals coupled Excited Inhibited

Rods Light–Dark Light Dark

Cones Blue–Yellow Blue Yellow

Red–Green Red Green

Table 2 ON/OFF center-surround filtering.

ON-center OFF-center

Equation d
dt x i j ¼ −Axij þ ðB − xij ÞCij þ ðx ij þ DÞEij

d
dt x̄ i j ¼ −Aðx̄ i j − SÞ þ ðB̄ − x̄ i j ÞC̄ij þ ðx̄ i j þ D̄ÞĒ i j

Filters Cpqij ¼ C expf−α−2 log 2½ðp − iÞ2 þ ðq − jÞ2�g Epqij ¼ E expf−β−2 log 2½ðp − iÞ2 þ ðq − jÞ2�g

Filtered Cij ¼
P

p;q IpqCpqi j E ij ¼
P

p;q IpqEpqi j

Images xij ¼
P

ðpqÞðBCpqij−DEpqij ÞIpq
Aþ

P
ðpqÞðCpqijþEpqij ÞIpq

¼ xþ
i j x̄ i j ¼

ASþ
P

ðpqÞðDEpqij−BCpqij ÞIpq
Aþ

P
ðpqÞðCpqijþEpqij ÞIpq

¼ x−
i j

Note: S ¼ .2, B̄ ¼ D, C̄i j ¼ Eij , D̄ ¼ B, and Ē i j ¼ Cij

Fig. 1 Color composite image fusion techniques.
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to recognize objects. This was the case of the other architec-
tures developed by this team during the same study.

Relying on Land’s experiment on color constancy of
human vision,19 Huang et al proposed a new method to
fuse visual and IR images and generate a false color image.
Their proposed architecture is based on equal energy distri-
bution assumption of colors reflected to eyes. Testing results
showed lower colorfulness compared to Toet et al. methods
but allowed target detection.19,20 These results also con-
firmed that the reddish features in the fused image are pulled
from the IR source while greenish objects are from the vis-
ible source.

Nunez et al.21 developed a new approach to merge
high-resolution panchromatic images with low resolution-
multispectral images. Several techniques offer the conver-
sion of multispectral images into intensity hue saturation
(IHS).22,23 This method has the advantage of adding the spec-
tral quality of the color image to high resolution details
from the panchromatic image. Similar frameworks have been
applied utilizing pyramid-based fusion method.24 An expan-
sion of this work applying the spectral response of sensors
is detailed in Ref. 22.

2.3 Evaluation of Color Fusion

Fusion evaluation metrics have been largely developed for
still images. Fused frames are evaluated on accuracy, robust-
ness, and sensitivity of the generating algorithms. Image
fusion can be done subjectively or objectively. In subjective
image evaluation, an audience of qualified observers grade
the results of integration based on the amount of useful infor-
mation extracted from the original images. Conditions of
observation must be identical for all observers and the screen
must be sufficiently large.25,26 This work utilized concepts
developed to assess results from fusion processes objec-
tively.9,27–31

2.4 Empirical Mode Decomposition

EMD10,32–34 is a nonparametric and self-adaptive method
which makes effective use of an image data to derive its
decomposition into a set of finite IMFs. This is important
when fusing real-world images. The advantages of EMD
are multiple. EMD is self-adaptive, nonparametric, make no
assumption about data being decomposed and corresponds to
the nonstationary and nonlinear behavior of imagery from
different modalities. Also, this approach is computationally
light and intuitive compared to other decomposition tech-
niques.10,35 Figure 2 shows how the IMFs are generated.

The image to be decomposed is first converted from two-
dimensional (2-D) array to one-dimensional (1-D) array and
treated as a signal xðtÞ (function of t where t goes from 1 to
the number of pixels in the image). The colors of the pixels
determine the amplitude of the signal at each index. The
maxima and minima of xðtÞ are identified and generate
the upper and lower splines (envelopes). The mean signal
mðtÞ of these two envelopes is subtracted from the original
signal xðtÞ to obtain a new signal hðtÞ. If hðtÞ is symmetric to
the zero-crossing axis and the difference between the number
of maxima and minima is not greater than 1, hðtÞ is consid-
ered an IMF and xðtÞ is replaced by the residual xðtÞ − hðtÞ;
otherwise xðtÞ is replaced by hðtÞ. The process stops when
rðtÞ becomes monotonic. The EMD provides a decomposi-
tion of the images into IMFs and residual. Each IMF sample

carries pixel color information. For original images of size
M × N, each IMF will be M � N samples long; the infor-
mation is stored as row vectors. Depending on the image
content and the sifting process utilized, the decomposition
generates a certain number T of IMFs in total.

3 Bio-EMD Fusion of IR and Visible Images
Integration of IR and visible images should generate a fused
imagery with a high level of information transferred, present
clarity of details, facilitate detection or identification, and
render near true colors. Our approach is to fuse the spatial
and frequency components of the input images obtained
by EMD through opponent processing. Figure 3 presents
the design model.

The source images (IR and visible) are registered images.
The IR image is grayscale but may also be a dual band or
RGB signal, depending on the sensor output. The visible
image is a color image. Both images are pre-processed for
noise removal, contrast enhancement, and resized to the
same size (numbers of rows and columns), if different. These
source images are decomposed into their IMFs, generated
through EMD33,35,36 according to the architecture presented
in Fig. 4 before the fused-image reconstruction process (sum
of IMFs and conversion from 1-D to 2-D).

Figure 3 presents the developed IMF integration model.
The IMFs are integrated following a biological model that
emulates the human retinal system. The red, green, and blue
signals of the color image are decomposed into their respec-
tive IMFs. The IR image is converted in luminance (Y),

Fig. 2 Empirical mode decomposition flow chart.
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chrominance blue (Cb), and chrominance red (Cr). The chro-
minance is not utilized in the model but may convey temper-
ature information when added to the fused IMFs. EMD
provides a decomposition of the images into IMFs and
residual. Each IMF sample carries pixel color information.
For original images of size M × N, each IMF is M � N sam-
ples long; the information is stored as row vectors. In the
retina, there are three types of cones containing photo-pig-
ments having distinctive spectral sensitivity11 and signals are
treated in pairs black–white, blue–yellow, and red–green to
create all color perceptions. In this model, the yellow signal
is synthesized by combining the red and yellow signals out
of the RGB image. These sensitivities are expressed in
images as excitation and inhibition of representing signals.
The excitation process, called ON-center, enhances/enlight-
ens the image; the inhibition process or OFF-center depletes/
darkens the image. In Fig. 3 the sign “+” represents ON
center-surround process and “−” indicates OFF center-
surround filtering.

For an IMF of rank k (1 ≤ k ≤ T) the ON-center IMF, F
is computed as

FkðiÞ ¼
NumkðiÞ
DenkðiÞ

; where 1 ≤ i ≤ M � N; (1)

where Numk represents the convolution of Fk and the filter
BCDE,

BCDE ¼ B � Cpq −D � Epq; (2)

where Denk represents the convolution of Fk and the filter
CE added to the constant A that is defined in Sec. 2.1.

CE ¼ Cpq − Epq. (3)

The filters Cpq and Epq are 1-D forms of the filters Cij
and Eij as described in Sec. 2.1. The parameters making the
filters have suggested the values by Carpenter and Grossberg
and can be tuned for optimization of the image evalua-
tion results. The OFF-center IMFs are computed similarly.
Double opponent processing fusion is realized by combining
pairs of single opponent IMFs obtained from input images as
summarized in Eq. (4) and detailed in Fig. 4.

" Y
Cb
Cr

#
¼

" IR Yþ; IR Y−

EO Blueþ;EO Yellow−

EO Redþ;EO Green−

#OnIMFs

: (4)

The sign indicates the center-surround filtering; (+) is for ON
and (−) for OFF. Equation (4) summarizes the relationship
governing the activities in the retina where the excitation and
the inhibition are performed by filtering. The IR image in this
work is a white-hot IR image. The design extracts the lumi-
nance (grayscale) from the IR image. Its chrominance signals
(blue and red) may be added to the chrominance obtained
after opponent processing (within and cross modalities) if
the IR color information representing cold/warm objects
are to be shown. The luminance Y of IR is opponent-proc-
essed generating an ON center-surround signal (R Yþ) and
an OFF center-surround signal (IR Y−). These signals carry
information about details in the luminance and are averaged
forming the fused-image luminance. The color image has its
noise removed through a median filter then generates a
fourth channel (yellow) by averaging its red and green
channels. Following neural activities in the retina, the blue
channel IMF is excited (EO Blueþ) whereas the yellow is
inhibited (EO Yellow−) to generate the blue chroma IMF.
The red channel IMF is excited (Rþ

Y ), whereas the green
is depressed (IR Y−) to produce the red chroma IMF. The
achromatic information has a high spectral sensitivity.
IMFs in each channel are summed, generating three 1-D sig-
nals (Y, Cb, and Cr) converted into 2-D arrays, the fused
image. When merging images of different modalities such

Fig. 3 Design model.

Fig. 4 IMFs fusion in Bio-EMD.
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as CCDs and IRs, the approach preserves features and edges
due to its ability to separate spatial frequencies.

4 Experimental Results
The state-of-the-art techniques for color composite image
fusion may be subdivided into opponent processing and im-
proved IHS algorithms. In the field of opponent processing,
major works have been done by the teams of Dr. Toet,

Dr. Waxman, and Dr. Huang.14,18,19 The recent works on
color opponent fusing techniques14 and multispectral image
fusion37 justify the choice of the algorithms we chose for per-
formance comparison. In order to evaluate the Bio-EMD
fusion, testing was conducted on all the pairs of registered
images available in Ref. 38. The performance was consistent
throughout the testing samples and we are presenting three of
the datasets. For each dataset, our result was compared to

Fig. 5 Dataset 1 (a) EO image, (b) IR image, (c) fusion image employing Toet method, (d) fusion image employing Waxmanmethod, (e) fusion image
employing Huang, (f) fusion image employing Nunez method, and (g) fusion image employing Bio-EMD method [(a) and (b) courtesy of Ref. 38].
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results obtained utilizing Toet, Waxman, Huang, and Nunez
techniques.

4.1 Image Fusion

Among the sets of IR and EO images fused, three sets
representing different scenes are presented here.

Figure 5 presents the input images and their fusion results.
The visible image displays a field view partially obstructed
by smoke, the IR image captures thermal differences in areas
that are obstructed. Some reference features are the color of
the roof in the EO image and the people standing in the IR
image. These features are depicted in the fused image. Our
model generated enhancement of the fused image. Color

Fig. 6 Dataset 2 (a) EO image, (b) IR image, (c) fusion image employing Toet method, (d) fusion image employing Waxman method, (e) fusion
image employing Huang, (f) fusion image employing Nunez method, and (g) fusion image employing Bio-EMD method [(a) and (b) cstesy of
Ref. 38].
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regions barely captured in the visible image show details the
other techniques did not bring out. Also the new colors are
close to reality.

Figure 6 presents the input images and their fusion results.
The reference feature is a group of people in the woods under
limited lighting, but depicted in the IR imagery. The fused
image rendered the vegetation and the people. This dataset

confirms the enhancement properties of our method. The all
dark visible image has details bare eyes could not identify
but the Bio-EMD filtered out. The dataset however shows
the limitations on color enhancement. To have a colorful
fused image reflecting reality, the visible image is required
to capture some color difference so that opponent processing
enhances the information carried by the different IMFs.

Fig. 7 Dataset 3 (a) EO image, (b) IR image, (c) fusion image employing Toet method, (d) fusion image employing Waxman method, (e) fusion
image employing Huang, (f) fusion image employing Nunez method, and (g) fusion image employing Bio-EMD method [(a) and (b) courtesy of
Ref. 38].
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Figure 7 presents the input images and their fusion results.
The reference is a crouched down person unseen in Fig. 7(a),
EO image, and difficult to depict in Fig. 7(b), IR image. The
visible depiction provides no information about the scene,
details are not perceptible; the IR image suggests that
there is a crouched person on the scene and little can be
said about the scene background. Figure 7(g) shows the
Bio-EMD fusion result. Figure 7(g) shows the reference fea-
ture and the background can be identified, i.e., vegetation.
Equation (4) presents the synthesis of Cb channels from
blue signal excited and yellow signal inhibited. To get a
Cb channel with significant information, some blue and yel-
low signals need to be present. The same is true with red and
green signals to generate a Cr channel. The visible input
image visibly lacks these two pairs of color, going through
the fusion process. This justifies the low colorfulness of
the fused image compared to the other two dataset results
and presents the limitations of this algorithm. However, our
method delivered a fused image showing sufficient details
to detect and recognize objects on the scene. Objective
evaluation relies only on the analysis of original images
in comparison with fused image results. The evaluation
process focuses on preservation of useful information and
fused image depiction.

4.2 Assessment of Color Fusion Image Quality

The objective evaluation of fused images depends on the
amount of information retained from the input images, the
edge raggedness, the distinction between bright and dark
pixels, and the vividness of the object representation.9,39

4.2.1 Mutual information

The first evaluation criterion is the well-known mutual infor-
mation (MI). In this contest, MI evaluates the quantity of
information transferred from input images to fused image
Z. Piella proposed the MI, I, between two inputs images
X and Y fused to generate a composite image Z as the
sum of the MI between the composite image and each of
the inputs, divided by the sum of the entropies of the
input images40

IðX; Y; ZÞ ¼ IðX; ZÞ þ IðY; ZÞ
HðXÞ þHðYÞ : (5)

IðX; ZÞ is the MI between an image candidate to fusion and
the resulting image; HðXÞ is the entropy of the image X. The

higher the MI between X, Y, and Z, the more the information
is transferred to Z. Thus, MI is a similarity measure. Table 3
contains the MI for the three datasets. The metric is com-
puted for a fused image generated by each of the techniques
tested.

4.2.2 Sharpness

The second metric utilized is the image sharpness metric
(ISM) developed by Yuan and her colleagues10 and defined
as

ISM ¼ 1

jWj
X

ðG2
x þ G2

yÞ12: (6)

jWj is the total number of w (3 × 3 size windows) andGx and
Gy represent the Sobel operator at a pixel (x, y). Color image
quality attribute sharpness is related to the clarity of details
and definition of edges. Sharpness of an image includes
details, line quality, adjacency, effective resolution, edge
sharpness, and edge raggedness.39,41 Sharpness can be mea-
sured by the edge information. With a color image, sharpness
relates to its luminance and therefore the gray intensity of
the image. Table 4 presents sharpness evaluation of our
technique and some others.

4.3 Contrast

Contrast is the perceived magnitude of visually meaningful
differences, global and local, in lightness and chromaticity
within the image.32 Contrast of an image is a perceptual
attribute representing the ratio between the brightest pixel
and the darkest pixel intensities. This is a dynamic range
where higher values indicates better image contrast and
lower values are synonym of lower contrast, lower quality.
Many metrics have been developed for contrast evaluation in
grayscale images.29,41 Yuan and her colleagues proposed to
employ the L� channel from Commission Internationale de
l’Eclairage standard CIE 1976 L�a�b� color space to evalu-
ate the color contrast since human perception is more sensi-
tive to the luminance in contrast evaluation. Equation (7)
defines their proposed image contrast metric (ICM)9

ICM ¼ ðw1 × C2
g þ w2 × C2

cÞ12; (7)

where Cg and Cc represent the gray contrast and color con-
trast metric, w1 and w2, and their corresponding weights;
w1 ¼ w2 ¼ 0.59.

Table 3 Mutual information results.

Dataset 1 Dataset 2 Dataset 3

Toet method 0.0981 0.0714 0.0745

Waxman method 0.2685 0.0634 0.0629

Huang method 0.1164 0.0558 0.0795

Nunez method 0.0958 0.0523 0.0795

Bio-EMD method 0.3738 0.1722 0.2322

Table 4 Sharpness results.

Dataset 1 Dataset 2 Dataset 3

Toet method 12.2139 4.9326 5.9994

Waxman method 6.9070 7.0146 8.4139

Huang method 11.4983 9.5377 8.4139

Nunez method 5.9944 13.5585 14.1227

Bio-EMD method 15.0809 23.99646 20.7252
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Cg ¼ αI
XNI−1

k¼0

Ik
NI

PðIkÞ Cc ¼ αL�
XNL−1

k¼0

L�
k

NI
PðL�

kÞ; (8)

where PðIkÞ and PðL�
kÞ are the probability density functions

of the gray intensity I and the CIELAB L� NI and NL� are
the total number of levels. I ranges from 0 to 255 while L�
ranges from 0 to 100. αI and αL� represent the dynamic
ranges for intensity and color such that

α ¼ N1

N þ N2

; (9)

where N indicates the number of pixel levels, N1 the number
of pixel levels with nonzero count, and N2 ¼ N–N1. Table 5
presents contrast evaluation results in fused images gener-
ated by of our method and some other techniques.

4.4 Colorfulness

Color depiction and rendering is one of the major differences
between current and past imaging systems. Colorfulness,
also referred to as “chromaticness,” is the attribute of a visual
sensation according to which the perceived color of an area
appears to be more or less chromatic.30,31 Yuan and her col-
leagues proposed a different approach based on color chroma
metric CCM1 and color variety metric CCM2 such that the
image colorfulness metric CCM is defined as

CCM ¼ 1

2
× ðCCM1 þ CCM2Þ; (10)

where the chroma metric is defined by Eq. (11) and the vari-
ety metric is computed as presented in Eq. (12).9

CCM1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M × N

XN
i¼0

XM
j¼0

C�
ij

vuut ; (11)

where C� represents the component computed in Eq. (12).27

C� ¼ ða�2 þ b�2Þ12 h� ¼ arctan

�
b�

a�

�
; (12)

CCM2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jwj
X

∇fði; jjwÞ
s

; (13)

where jWj is the total number of all windows (w); the color
difference gradient of pixel fðx; yÞ is defined in Ref. 9.

Colorfulness metric proposed by Hasler and Susstrunk31

generated results similar to the ones in Table 6.
Bio-EMD transferred twice as much information as each

of the others. It also generated twice the sharpness of the
other techniques, and displayed more natural looking colors.
Bio-EMD generated contrast values in the same range as
other approaches. Colorfulness was weak based on the met-
ric although the depiction is meaningful compared to others.

In general, each of these three datasets projected the same
performance with the Bio-EMD method. Bio-EMD tech-
nique transferred the information from input images to out-
put image better than the other techniques which was
compared with MI. Also, Bio-EMD provided a better clarity
of details and definition of edges (ISM). Although Bio-EMD
resulted in more natural looking colors in the output image,
the image vividness metric (ICC) utilized and others tested
during this work did not always convey that strength. The
evaluation of our result perceived magnitude of visually
meaningful differences, global and local, in lightness and
chromaticity, is in close range with the other methods
(ICM). Better quantitative results may be obtained by tuning
the filter parameters.

5 Conclusion
The analysis of existing fusion techniques applied to visible
and IR images showed a need for an approach that performs
color fusion of these two modalities and generates high-qual-
ity images with near true color. This work presents the devel-
opment and testing of a new image fusion method based
on EMD and opponent processing. EMD represents input
images as IMFs carrying their spatial and frequency compo-
nents about each pixel. Following a human retinal model,
IMFs from visible and IR sources are combined utilizing
the proposed network of dynamic equations feeding YCbCr
channels of the output section. Testing was done on all the
registered pairs of images available in Ref. 38 and the per-
formance was consistent throughout all the samples.

Observation of the resulting images shows significant
improvement compared to previously developed procedures.
Quantitative assessment of the fused image attributes con-
sisted of four metrics: MI, sharpness, colorfulness, and con-
trast. These metrics confirmed that the proposed approach
generated twice the information transfer from original
images compared to existing techniques. The clarity of
details was comparable to the major color fusion techniques.
Contrast generated in the fused images was adequate; how-
ever vividness of the images was subpar although the fused

Table 5 Contrast results.

Dataset 1 Dataset 2 Dataset 3

Toet method 73.0746 44.8277 117.2229

Waxman method 126.2539 46.4329 69.7677

Huang method 36.0826 39.431 69.7677

Nunez method 4.2732 3.6351 44.8418

Bio-EMD method 29.4697 18.0539 17.4365

Table 6 Colorfulness results.

Dataset 1 Dataset 2 Dataset 3

Toet method 0.8619 0.7735 0.8333

Waxman method 0.7887 0.7481 0.7355

Huang method 0.8675 0.7481 0.7355

Nunez method 0.9451 0.7006 0.6165

Bio-EMD method 0.7279 0.6963 0.6233
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images obtained had more meaningful colors. This high-
lights the lack of a fused image metric.

The Bio-EMD algorithm produced imagery with higher
information content than either the low-light visible or IR
input image taken separately. Fusion generated a depiction
of objects seen only in one modality or not seen in the origi-
nal images. This breakthrough can be applied in multisensor
fusion involving visible bands and has applications in situa-
tional awareness, forensics, medical imaging, remote sens-
ing, natural resources management, etc. The breaking point
of this method is that it performs well only when there is a
minimum of color information in the visible image; a visible
image with no or very low-color information will produce a
fused image with low quality. This is echoed by dataset 3 in
Fig. 7. To get a Cb channel in fused image with significant
information, some blue and yellow signals need to be
present. The same is true with red and green signals to gen-
erate a Cr channel. The visible input image visibly lacks
these two pairs of color, going through the fusion process.
This justifies the low colorfulness of the fused image com-
pared to the other two dataset results and presents the lim-
itations of this algorithm. In order to obtain the best result,
this fusion algorithm requires some minimum information
from the pair of signals blue–yellow and red–green. How
much information do we need? What is the threshold of
color level in visible input image? The answers to these ques-
tions are the object of on-going research where we also con-
sider the different parameters of the enhancement/inhibition
filters. This will define the conditions of its applications.
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