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Abstract. In some computer vision applications, it is necessary to cali-
brate the geometry relationships of nonoverlapping cameras. However,
due to lacking a common field of view, the calibration of this camera top-
ology is quite difficult. A calibration method for nonoverlapping cameras is
proposed and investigated. The proposed method utilizes several light
planes, which can be generated by a line laser projector or a rotary
laser level, as the calibration objects. The fact that local light planes avail-
able in different cameras are identical in global coordinates is used to re-
cover the geometries. Results on both synthetic and real data show the
validity and performance of the proposed method. The given method is
simple and flexible, which can be used to calibrate geometry relationships
of cameras located in large-scale space without expensive equipment
such as theodolites and laser trackers. © The Authors. Published by SPIE under
a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.OE.52.7.074108]
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1 Introduction
Nowadays, vision-based measurement and control systems
are widely used in many fields such as three-dimensional
(3-D) reconstruction, manufacturing, motion estimation, and
surveillance. These systems always include multiple cameras
working cooperatively. As a basic knowledge in multivision
system, geometrical relationships between cameras have
been described in Refs. 1–4. In order to recover the relation-
ships, traditional solutions5–8 usually place a calibration
object with matching features in the cameras’ overlapped
field of view (FOV). Using these methods, both intrinsic
and extrinsic camera parameters can be well estimated.
Considering full view or large-scale vision measurements,
a common situation is to deal with cameras with nonover-
lapped FOV. Due to lack of FOV, it seems to be impossible
to obtain the feature correspondences when using traditional
calibration methods. Therefore, calibration for nonoverlap-
ping cameras is an important and challenging work.

Recently, several methods have been presented to solve
the problem. A commonly used approach9–11 is based on
large-scale surveying equipment such as theodolites or
laser trackers. With these types of equipment, 3-D points
of multiple calibration objects for nonoverlapping cameras
can be easily obtained. These methods require complex
operation and high precision of equipment, which is ponder-
ous and inconvenient, especially for field calibrations.
Moreover, the cost of these kinds of equipment is prohibitive.
Besides, nonstandard calibration objects which can be “seen”
by multiple nonoverlapping cameras are applied in some
researches. For example, Liu et al. and Zhang et al.12,13 sep-
arately use a long one-dimensional target and two planar tar-
gets fixed together to calibrate cameras with nonoverlapping
configurations. In these methods, the target can be freely
moved and each camera only needs partial views of the
target. The main restriction in practice is the stability and

precision of these large targets. In vision-based robotics,
Lebraly et al.14 use a planar mirror to create an overlap
between views of the different cameras. The impact of the
mirror refraction is also studied in the calibration algorithms.
Their method is effective and easy to carry out. However, in
order to avoid degeneracy, the mirror needs to be placed del-
icately and the calibration object needs to be small which
leads to less precision. In vision-based surveillance, structure
from motion has been studied and applied to calibrate multi-
ple cameras.15–18 In these methods, targets’ trajectories need
to be estimated based on the motion model generated from
the measured positions in the FOV of each sensor. The rel-
ative orientation and location of the cameras are calculated
using the observed and estimated target position. These
methods are suitable for large-scale surveillance networks,
but the calibrations need scene information which is hard to
obtain in industrial measurements, and the precision remains
to be improved.

Dealing with the problem, previous study19 utilizes pairs
of skew laser lines, which achieve calibration of nonoverlap-
ping cameras. However, as the laser lines need to be directed
to the range of the respective cameras, large numbers of line
lasers should be added in the system when the cameras’ num-
ber increases, which is inconvenient in practical application.
In this paper, a novel calibration method using light planes is
proposed. The light planes can be generated by a line laser
projector or a rotary laser level, as the calibration objects.
The coplanarity of light planes provides constraints which
are used to recover the camera geometry. Compared to
laser lines, the image of laser planes contains more informa-
tion, which can increase the accuracy of feature extracting
and laser planes can cover a larger space, which is more flex-
ible and suitable for field calibrations.

The remainer of this paper is organized as follows. A brief
introduction to the camera model and projective transformation
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is presented in Sec. 2. Section 3 details the calibration
method. Main principle and coplanarity constraint are shown
in Sec. 3.1. The method of light plane 3-D reconstruction is
given in Sec. 3.2. Section 3.3 describes the procedure of
camera geometry estimation. Section 4 provides the results
on both synthetic and real data. The conclusions are given
in Sec. 5.

2 Notations
In this paper, a two-dimensional (2-D) image point is
denoted by p ¼ ½u; v�T, a 3-D world coordinates point by
P ¼ ½X; Y; Z�T . The corresponding homogeneous coordi-
nates are indicated by p̃ ¼ ½u; v; 1�T and P̃ ¼ ½X; Y; Z; 1�T .
Based on pinhole camera model, the mapping of 3-D
world coordinates point to 2-D image point is described as

sp̃ ¼ A½Rt�P̃; A ¼
" fu γ u0
0 fv v0
0 0 1

#
; (1)

where s is an arbitrary scale factor that is not equal to 0. A is
called the intrinsic matrix which contain five parameters: fu
and fv are the scale factors in the image axes u and v,
ðu0; v0Þ is the principal point, and γ is the skew of the two
image axes which in practice is almost always set to 0. ½Rt�,
called the extrinsic matrix, is composed of a rotation matrix
and a translation vector from world coordinates to camera
coordinates.

If the world coordinate is established on a plane (z-axis
was perpendicular), then the point on the plane is P̃ ¼
½X; Y; 0; 1�T . Let us redefine P̃ as P̃ ¼ ½X; Y; 1�T and denote
the i’th column of the rotation matrix R by ri. From Eq. (1),
we have

sp̃ ¼ A½ r1 r2 t �P̃: (2)

According to the projective geometry, this plane to plane
mapping can also be expressed by a projective transform

sp̃ ¼ HP̃; (3)

where H is a 3 × 3 homography matrix defined up to a scale
factor. Let us denote the i’th column of H by hi. From
Eqs. (2) and (3), we have

λ½ h1 h2 h3 � ¼ A½ r1 r2 t �: (4)

If A andH are known, then the extrinsic matrix ½Rt� is readily
computed. From Eq. (4), we have

r1 ¼ λA−1h1; r2 ¼ λA−1h2; r3 ¼ r1 × r2; and

t ¼ λA−1h3
(5)

with λ ¼ 1∕kA−1h1k ¼ 1∕kA−1h2k.

3 Method

3.1 Main Principle and Coplanarity Constraint

A fixed light plane in space can be expressed as different
planar equations in respective camera coordinate frames
due to the different orientation and position of each camera.
Inversely, after applying rigid transforms which represent the

geometry between different cameras, the individual planes
should coincide with each other. This is what we called
coplanarity constraint. Based on this fact, camera geometries
can be recovered by placing the line laser projector and
reconstructing the light plane several times.

Without loss of generality, two cameras are taken as an
instance to interpret the principle, for multiple cameras can
be disassembled into several couples. The principle scheme
for the calibration setup is illustrated in Fig. 1. These two
cameras are set up in the measuring field without any over-
lapped FOV according to their orientations and positions.
Let us denote two cameras by Camera 1 and Camera 2, Oc1
and Oc2 are the camera coordinate frames, respectively. The
geometry transform matrix between the cameras is denoted
by ½Rt�. A line laser projector is employed into the field
which projects a large light plane, denoted by π. The projec-
tor is set to a position so that the light plane can intersect with
both cameras’ view. In order to help the light plane to be seen
and reconstructed, a planar pattern board is placed in front of
each camera. Thus a laser line is projected on each planar
board. By taking images of the planar board in different posi-
tions, the equation of plane π in each camera coordinates can
be obtained.

A plane can also be defined by a point and a normal vec-
tor. As shown in Fig. 2, the plane π expressed in frameOc1 is
denoted by πðp1;n1Þ and in frameOc2 by πðp2;n2Þ. After the
rigid transformation under ½Rt�, πðp2;n2Þ in frame Oc2 is
denoted by πðp 0

2; n
0
2Þ in frame Oc1. Since πðp1;n1Þ and

πðp2;n2Þ represent the same plane but in different coordinate
frames, πðp1;n1Þ and πðp 0

2; n
0
2Þ should coincide with each

other. Then, we have

n1 ¼ n 0
2; (6)

n1 ⊥ p1p 0
2

⇀
; (7)

with n 0
2 ¼ Rn2 and p1p 0

2

⇀ ¼ Rp2 þ t − p1, which yields

n1 ¼ Rn2; (8)

nT1 ðRp2 þ t − p1Þ ¼ 0: (9)

Fig. 1 Scheme of calibration setup.

Optical Engineering 074108-2 July 2013/Vol. 52(7)

Liu et al.: Calibration method for geometry relationships of nonoverlapping cameras. . .



Here, we get two constraints on geometry transformation
matrix ½Rt�, given one light plane. For solving rotation matrix
R, at least two constraints like Eq. (8) are needed and for
translation vector t, at least three constraints like Eq. (9) are
needed, which means at least three light planes are needed to
solve ½Rt�. Moreover, the light planes are required not to be
parallel with each other, since the parallels provide duplicate
constraints.

3.2 Light Plane 3-D Reconstruction

Based on the principle mentioned above, the first step of our
method is to reconstruct the light plane in each camera’s
coordinates. It is almost a calibration problem of structured
light vision which can be found in related literatures.20,21

Here is our solution:

Step 1: Get the image of the planar pattern on which the
laser line is projecting and correct the distortion.

Step 2: Extract feature points of the pattern and laser line
points in the image. In our instance, we adopt a
chessboard pattern and used standard corner detec-
tion algorithm to extract the corner points. For the
laser line points, we use the method presented by
Steger.22

Step 3: The correspondence between image and actual pla-
nar pattern points can be used to compute a homog-
raphy matrix H from Eq. (3). Then, the geometry
transform matrix ½Rt�, from planar pattern coordi-
nate frame to camera coordinate frame, can be
computed from Eq. (5). Due to the noisy data in
practice, we use the results as initial parameters
of a nonlinear optimization routine. By minimizing
the reprojective errors of the planar pattern points,
the well estimated ½Rt� can be obtained.

Step 4: Transform laser line points gotten by step 2 from an
image coordinate frame to a planar pattern coordi-
nate frame according to Eq. (3). Expand the points’
coordinates with Z ¼ 0, then transform these points
from a planar pattern coordinate frame to a camera
coordinate frame under rigid transform matrix ½Rt�.

Step 5: Place the planar pattern on a another position or ori-
entation, then repeat procedures from step 1 to step 4
until we get adequate laser line points to fit the light
plane. Analytically, two placements of planar pat-
tern are enough for plane fitting. But, in practice,
more planes are placed to improve accuracy because
of noise in data.

Step 6: The equation of the light plane is described by axþ
byþ czþ d ¼ 0. Using all the laser line points
ðxi; yi; ziÞ gotten after step 5, the light plane can
be fit by minimizing the least-squares quantity

Xn
i¼1

ðxiaþ yibþ zicþ dÞ2: (10)

By conducting the procedures list above, each light
plane can be reconstructed in respective camera
coordinates.

3.3 Camera Geometry Estimation

This section details the camera geometry estimation pro-
cedure. Suppose NðN ≥ 3Þ light planes are reconstructed
using the solution mentioned above. Then, we get N con-
straints on rotation matrix R; thus, R can be estimated by
minimizing the following least-squares quantity derived
from Eq. (8)

XN
i¼1

kn1i − Rn2ik2; subject to RTR ¼ I: (11)

It is a nonlinear minimization problem due to the ortho-
gonality of R. Without employing any nonlinear iterative
algorithms, we linearize the problem by mapping rotation
matrices to unit quaternions.23 Suppose, the quaternion is
defined as four-dimensional vector q ¼ ðq0; qx; qy; qzÞT.
Then, we minimize the following quantity

XN
i¼1

jAiqj2; subject to jqj2 ¼ 1; (12)

where

Ai ¼
�

0 nT2i − nT1i
n1i − n2i ðn1i þ n2iÞ ×

�
: (13)

½•�× is an anti-symmetric matrix with respect to a given vec-
tor. For any vector v ¼ ða; b; cÞT, ½•�× is defined as

½v�× ¼
2
4 0 −c b

c 0 −a
−b a 0

3
5: (14)

The problem can be solved by eigenvalue method. The
solution is the eigenvector of

P
N
i¼1 A

T
i Ai associated with

the smallest eigenvalue. After the best q is estimated, R
can be computed from

Fig. 2 Scheme of coplanarity constraint: (a) plane π in frame Oc1; (b) plane π in frame Oc2; and (c) both plane π and frame Oc2 in frame Oc1.
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R¼

2
64q

2
0þq2x−q2y−q2z 2ðqxqy−q0qzÞ 2ðqxqzþq0qyÞ
2ðqxqyþq0qzÞ q20−q2xþq2y−q2z 2ðqyqz−q0qxÞ
2ðqxqz−q0qyÞ 2ðqyqzþq0qxÞ q20−q2x−q2yþq2z

3
75:

(15)

Similar to the rotation, we also get N constraints on trans-
lation vector t. Once R is solved, t can be estimated by min-
imizing the following least-squares quantity derived from
Eq. (9)

E ¼
XN
i¼1

½nT1iðRp2i þ t − p1iÞ�2: (16)

The one of requirements when minimizing Eq. (16) is

∂E
∂t

¼ 2
XN
i¼1

½nT1in1iðRp2i − p1iÞ þ nT1in1it� ¼ 0; (17)

which can be rewritten as

At ¼ b; where A ¼
XN
i¼1

nT1in1i and

b ¼
XN
i¼1

nT1in1iðp1i − Rp2iÞ:
(18)

Thus, t is estimated by using singular value decomposition or
pseudoinverse.

4 Experiment

4.1 Synthetic Data

The proposed method is carried out with synthetic data to test
the performance in the presence of noise. The synthetic data
are created by use of two simulated cameras which have
the following properties: fu ¼ fv ¼ 2414, u0 ¼ 600, and
v0 ¼ 500. The image resolution is 1280 × 1024. The rotation
(in Euler angles) of the cameras is set as (−4, 65, −5 deg)
and the translation vector is ½850;−22;−590� mm. In this
experiment, five randomly light planes are generated.
Gaussian noise with 0 mean and standard deviation σ is
added to the image points. Then, the estimated geometry is
compared with the ground truth. We vary the noise level from

Fig. 3 The error of results with respect to the noisy data.

Fig. 4 The error of results with respect to the curvature of laser line.

Optical Engineering 074108-4 July 2013/Vol. 52(7)

Liu et al.: Calibration method for geometry relationships of nonoverlapping cameras. . .



0 to 1.5 pixels. For each noise level, we perform 100 inde-
pendent trials and average the results. Figure 3 shows the
errors in the recovery of the camera geometry. All errors
increase linearly with the noise level.

Technically, the light plane is supposed to be absolutely
flat, but it is slightly not in practice, especially when gener-
ated by an off-the-shelf line laser projector. Simply, we use a
sector of quadratic cone x2 þ y2 − tan2az2 ¼ 0 for modeling
the light plane distorted by lens of the projector, where a is
the semiapex angle. According to most specifications of the

laser projectors, the curvature of the laser line is no more than
�1 mm at 5 m, which means a is bigger than 89.912 deg for
modeling a common projector. Based on this curvature
model, our method is applied with distorted data. We vary
laser line curvature from �0.25 to �3 mm. For each given
curvature, Gaussian noise with mean 0 and standard
deviation 0.2 pixels is added to the image points, and 100
independent trials are performed. The averaged results are
shown in Fig. 4. When the curvature is in the range of
�1 mm, the relative errors are around 0.8% which is a little
worse than the results with just random noise. Even with the
curvature in the range of �3 mm, the relative errors are no
more than 3%, which hardly happens in practice.

In order to investigate the performance with respect to the
distance of the cameras, the third experiment is carried out.
Most of the parameters are maintained except translation
vector. The distance is varied from 0.5 to 10 m. For each
distance, Gaussian noise with mean 0 and standard deviation
0.2 pixels is added to the image points, curvature �1 mm at
5 m is also applied to the light plane, and 100 independent
trials are performed. The averaged results are shown in
Fig. 5. The distance almost has no influence on rotation

Fig. 5 The error of results with respect to the distance of cameras.

Fig. 6 The photo of two cameras system with nonoverlapped FOV.

Fig. 7 The estimated geometry of cameras and reconstructed light
planes.

Table 1 Stability of results in all quintuples of light planes.

Quintuple
Rotation

(Euler angles) (deg) Translation vector (mm)

(23456) (−3.473, 64.779, −4.952) [847.591, −22.327, −586.294]

(13456) (−3.472, 64.771, −4.934) [846.935, −22.291, −586.779]

(12456) (−3.466, 64.785, −4.928) [847.581, −22.233, −586.636]

(12356) (−3.468, 64.782, −4.930) [847.370, −22.313, −586.259]

(12346) (−3.456, 64.785, −4.927) [846.911, −22.251, −586.774]

(12345) (−3.477, 64.803, −4.943) [847.375, −22.114, −586.886]

Mean (−3.469, 64.784, −4.936) [847.294, −22.255, −586.605]

SD (0.00737, 0.0106, 0.00968) [0.303, 0.0779, 0.267]
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error but translation error increases. The reason is that when
calibrating widely separated cameras, in order to ensure that
every camera can “see” all the light planes, the orientational
variation of light plane is restricted to a small range. In
another word, the normal vectors of all light planes have
slight differences. This results in degenerate configurations
especially in the computation of translation vector. Actually,
the condition number of matrix A in Eq. (18) becomes poor
gradually with the shrinking range of changes in orientation,
which means the results are more sensitive to the noise.
Despite this degeneracy our method is still usable. Rotation
error is hardly changed and all are below 0.005 deg for all
trials. For distance ¼ 6.5 m, the baseline error is >1 mm.
And for distance ¼ 10 m, the baseline error is around
2 mm. This is adequate for most practical applications.

4.2 Real Data

The method is used to calibrate a nonoverlapped two cam-
eras vision system, which is shown in Fig. 6. The system
consists of two CMOS cameras (Aigo DLC-130) with
12-mm lens. The imager resolution is 1280 × 1024. The
baseline of two cameras is about 1000 mm. The light plane
is generated by an ordinary line laser projector. The chess-
board contains a pattern of 6 × 6 squares and the distance
between the near square corners is 30 mm. The laser projec-
tor is placed under six random positions and orientations to
generate six light planes. For each light plane, the chessboard
is moved three times in front of each camera. Figure 7 shows
the estimated geometry of cameras and reconstructed light
planes. In order to evaluate the calibration stability, we also
applied our method to all quintuple combinations of six light
planes. The results are shown in Table 1. The results are very
consistent with each other and standard deviations of all the
parameters are very small, which indicate that the proposed
method is stable.

In order to evaluate the calibration accuracy, the vision
system is also calibrated by a double theodolites based
method9 which utilizes two Leica T1800 theodolites (angle
measurement accuracy ≤0.5 in.). Both results are listed in
Table 2. The results of the two methods are comparable,
the angle difference is>0.01 deg and the baseline difference
is >0.2 mm.

5 Conclusion
In this paper, a calibration method for nonoverlapping cam-
eras is presented. A large light plane which can be generated
by an ordinary line laser projector or a rotary laser level is
utilized as a calibration object. The method does not require
any overlapping camera configuration. Benefitting from the
“no mass” and “nonsolid” qualities, the light plane can be
freely placed and easily made partly available within all cam-
eras’ views, which makes the method more flexible and

suitable for field calibrations. The experimental results
with synthetic data show that the proposed method is robust
to noise and can be used for a large-scale calibration. Also,
results with real data show the impressing reliability and
accuracy which are comparable to traditional double theod-
olites based method.
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