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Abstract. Soil reflectance signatures were modeled using the digital imaging and remote sensing image gen-
eration model and Blender three-dimensional (3-D) graphic design software. Using these tools, the geometry,
radiometry, and chemistry of quartz and magnetite were exploited to model the presence of particle size and
porosity effects in the visible and the shortwave infrared spectrum. Using the physics engines within the Blender
3-D graphic design software, physical representations of granular soil scenes were created. Each scene char-
acterized a specific particle distribution and density. Chemical and optical properties of pure quartz and mag-
netite were assigned to particles in the scene based on particle size. This work presents a model to describe an
observed phase-angle dependence of beach sand density. Bidirectional reflectance signatures were simulated
for targets of varying size distribution and density. This model provides validation for a phenomenological trade
space between density and particle size distribution in complex, heterogeneous soil mixtures. It also confirms the
suggestion that directional reflectance signatures can be defined by intimate mixtures that depend on pore spac-
ing. The study demonstrated that by combining realistic target geometry and spectral measurements of pure
quartz and magnetite, effects of soil particle size and density could be modeled without functional data fitting
or rigorous analysis of material dynamics. This research does not use traditional function-based models for sim-
ulation. The combination of realistic geometry, physically viable particle structure, and first-principles ray-tracing
enables the ability to represent signature changes that have been observed in experimental observations. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.54.9.094103]
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1 Introduction
In his lecture given to the Physiological Society at Chelsea
College in 1970, Rushton explained the mechanisms behind
human vision using the principle of univariance.1 He stated
that light sensed by rods in the retina is multivariate. Their
response characteristics possess a distinct wavelength
dependency and a distinct power per unit area. Yet, the
output of these photoreceptors is limited to the one-dimen-
sional parameter of brightness. The output is univariant.
Wavelength only determines the proportion of incoming
light that is absorbed by rods. Therefore, different combina-
tions of wavelength and intensity can produce the same
brightness.

The theory behind human vision and the principle of uni-
variance can be applied to the spectral remote sensing of
terrestrial scenes. Targets are described by many variables
that contribute to a univariate measure, such as reflectance
or emissivity. Target geometry is one variable. Subvariables
of shape, texture, porosity, and density contribute to the
geometry of a sample. Radiometry is another parameter that
defines spectral characteristics. This includes features of the
scene-illuminating source and the atmosphere. Chemical and
optical properties should also be considered in the formula of
a reflectance signature. As is the case for rods in the human
eye, varied combinations of parameters could result in sim-
ilar spectral reflectance signatures.

Since unidirectional measurements may not be unique,
there is a chance that potential targets could be missed
when spectral analysis is performed. Multiple bidirectional
measurements can be employed to extract geometric, chemi-
cal, and radiometric details from a surface of interest.
Making supplementary measurements at different sensing
positions provides additional information that may be neces-
sary to definitively characterize a sample. To provide a better
description of the directional distribution of reflected flux,
the metric of bidirectional reflectance distribution function
(BRDF) can be used.2 Defined as

EQ-TARGET;temp:intralink-;e001;326;248ρBRDFðθr;ϕr; θi;ϕi; λÞ ¼
Lðθr;ϕr; λÞ
Eðθi;ϕi; λÞ

½sr−1�. (1)

BRDF is the ratio of radiance (L) reflected from a sample
to the irradiance (E) from an illumination source that
impinges upon that sample.

The modeling process for the BRDF of soils has taken
many forms. It has been described using geometric facets,3,4

coherent backscattering theory,5–8 and radiative transport.9

Differences in models exist because the relationships
between geometric, radiometric, and chemical parameters
are not explicitly known. This lack of knowledge is hidden
through the use of data regression, which provides best-fit
values for multiple undefined variables, and a final univari-
ate solution for directional reflectance. This could mean
that phenomenology has been excluded from simulation.
It might also indicate that the interactions between model*Address all correspondence to: Tyler Carson, E-mail: tdc9005@rit.edu
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parameters are inappropriately related in mathematical
theory. For instance, it may be difficult to determine whether
certain spectral features are the byproducts of optical proper-
ties, soil geometry, or a combination of both parameters.10

Even if optical parameters are well known, failure to inte-
grate appropriate geometry may produce spectral signatures
that do not represent measured observations.

This effort produced a simulation of the spectral reflec-
tance and BRDF of soil. To minimize errors hidden by uni-
variance, data fitting is not used in the simulation process.
Instead, only general variables of geometry, radiometry, and
chemistry are considered. The physics engine within the
Blender three-dimensional (3-D) software is exploited to
model geometry. The digital imaging and remote sensing
image generation (DIRSIG) model is used to simulate radio-
metric effects. The directional hemispherical reflectance
of pure materials is used to represent in-scene chemistry.
Through the consideration of these three parameters,
observed signature features11–17 due to particle size, porosity,
and physical mixing are closely analyzed through simula-
tion. The ability to shed the need for functional data fitting
is an important benefit of this technique.

The technique discussed in this work provides a straight-
forward approach to simulate intimately mixed solid materi-
als that have not been seen in other models. By capitalizing
on recent advancements in computer graphics software, com-
plex target scenes were generated and quickly and easily
manipulated. Beyond the ease of use, the target scenes are
physical and are realistically posed through the use of phys-
ics engines. And because users have complete control of
particle size, shape, and material makeup, this simulation
method offers a convenient test bed for the study of scatter-
ing phenomenology of intimately mixed solids. Particle size
distribution, shape, and density are all independently modi-
fied. It is this apparent flexibility and user control that makes
this simulation scheme unique.

1.1 Phenomenology

Soil particles are composed mostly of rock-forming minerals.
These substances are subjected to weathering and the impact
of human activities. Under different conditions of exposure,
soil-packing density is known to change. Defined by particle
size and shape, the grain spacing, or porosity, will impose
limitations on soil density. Documentation reveals that
changes in geometry and porosity have an impact upon reflec-
tance.5–16 Even so, the exact relationship between porosity
and reflectance is still ambiguous. Laboratory studies have
shown that reflectance does increase with density.12–16 In
other observations, porous soils were more reflective than
those that were more dense.11 The Hapke reflectance
model indicates that there is a direct relationship linking
the increases in density and the increased levels of measured
radiance.9 Others have expressed that porosity may affect
measurements only on a secondary level, and that chemistry
and particle geometry may be more impactful.17

It may be inappropriate to define an independent propor-
tionality relationship between soil density and reflectance
since soils are generally not homogeneous. Hapke has
incorporated mixed materials into BRDF modeling by
treating a surface as a weighted combination of single scat-
tering albedos.18 This model accounts for density and par-
ticle diameter, but assumes isotropic scattering within the

mixture. The uncertainty inherent in the assumption of iso-
tropic scatter may be important. It was shown that the current
form of the Hapke model is not invertible, indicating that the
relationships between some of the geometric and chemical
reflectance parameters may not be well defined.16 The
intimate mixing process that is observed in nature is not
isotropic. Commonly encountered soils often consist of
mixtures of translucent and opaque materials. Layered soils
have varying density, and there regularly exists low-density
particle dusting on many surfaces.17,19 Attempts to decom-
pose univariant reflectance into its subparameters have relied
on the assumption of relatively narrow size distributions.
Uniform material samples can have widely varying size dis-
tribution. Particles with diameters on the order of tens of
microns have been shown to cling to larger particles when in
the presence of electrostatic forces.17,19 Pore spacing is cer-
tainly dependent upon particle size distribution. Decreases in
particle size have been shown to increase the density within a
single material.12,16 However, the trade-space among density,
physical particle mixing, and nonisotropic particle size dis-
tributions has not been thoroughly explored in the model-
ing realm.

Directional reflectance has been used in studies of the
geometric scattering parameters of mixed soil. Bachmann
et al. measured beach sand samples of different densities
to observe reflectance trends related to changing phase
angle.11 Phase angle is the angle subtended by illumination
source, sample, and a sensor. It was observed that lower
density sands had larger reflectance than higher density
sands. The trend became more pronounced as the phase
angle increased. Reflectance contrast was observed at visible
wavelengths, but it was even more pronounced as wave-
length increased. The soil used in this experiment was
composed predominantly of quartz and opaque magnetite.
Quartz grains had diameters on the order of hundreds of
microns, while the magnetite particles were generally smaller
than 75 μm. The conjecture of the work was that the
small, absorbing, magnetite particles more completely filled
the pores of the soil under dense geometric configurations,
reducing multiple scattering contributions to the overall
observed reflectance.

1.2 Modeling Phenomenology

The geometric assumption that was made above to describe
reflectance phenomenology is difficult to prove in the labo-
ratory. To understand it completely, one would need to com-
pare similar size distributions of quartz soil and composite
soil containing quartz and magnetite grains. Ideally, the
density of each sample should be the same. With fixed
parameters of density and size distribution, any change in
reflectance could be attributed to the presence of magnetite.
Then, the impact of changing density could be teased out by
comparing the BRDF of high-density and low-density quartz
and composite soil. If the conjectures of Bachmann et al. are
true, more variance should be present in the high-density
BRDF data than in the low-density data. The high-density
scene of composite soil should have a lower observed reflec-
tance than that of low-density quartz or composite soil.

The function fit models of Refs. 4 and 9 do not contain
the accurate descriptions of intimate mixing or geometric
versatility required to simulate the observations of the
Bachmann et al. experiment. The work of Cierniewski et al.
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employed 3-D graphics models to simulate sample soil
scenes.20,21 However, the surface irregularities used in
these models were based on periodic mathematical functions
and could not be used to explore the geometric specifics of
particle size distribution and porosity. This work describes
a simulation that pairs physically realistic granular targets
(created using Blender 3-D graphic design software) and
the DIRSIG model to create virtual signatures of soils with
changing porosity, size distribution, and material properties.

1.3 Modeling with Digital Imaging Remote Sensing
Image Generation and Blender Three-Dimension

It is important to state what this model is not. The method
used in this work is not an attempt to mathematically inte-
grate all of the variables and processes that result in the uni-
variate measure of reflectance. It does not explicitly calculate
reflectance from optical properties. It is not a parameter-
based model containing arbitrary functions that are fit to
data curves. This model does not define surface geometry
as a probabilistic distribution of facets4 or isotropic bulk den-
sities.9,18 It does not assume that a scene of thousands of
irregular particles will scatter as a linear or weighted combi-
nation of individual phase functions solved independently of
one another.9,18

This is a model, which is focused on scene geometry and
simulates the reflectance of the complex mixtures of solids.
This is an avenue to explore the phenomenology of particle
size distribution, density, and intimate mixing. Most impor-
tantly, the model easily bundles together the chemical, radio-
metric, and geometric components of material signatures.

Chemical parameters to be considered in a complete
soil scattering model would include indices of refraction,
absorption, anomalous dispersion, anisotropy, and lattice
vibrations. Instead of attempting to calculate all of these
parameters in parallel, measured reflectance spectra of
pure materials are used in this simulation procedure. For in-
stance, quartz particles in this model that possess a 500 μm
radius are attributed with the measured spectra of 500 μm
quartz. By using pure spectra, many of the problems asso-
ciated with modeling the integration of chemistry, geometry,
and radiometry are eased.

The radiometric aspects of this simulation are solved
using the DIRSIG model. DIRSIG is a first-principles ray-
tracing model that outputs detected at-sensor radiance.
Light sources, scene geometries, and sensor configurations
are all defined by the user (Fig. 1). This model has been pre-
dominantly used for the analysis and modeling of sensors.
DIRSIG allows for direct system comparisons. A single
scene can be observed under varying atmospheric condi-
tions, with multimodal sensing techniques. Though it is easy
to conceptualize passive remote sensing as light rays travel-
ing from source to target to sensor, DIRSIG models radiation
in inverse fashion. Rays are initially cast from individual pix-
els of a user-defined focal plane array. These rays determine
the area observed at each pixel, and where incident radiation
originates.

The geometry of soil is created using the Blender 3-D
open source graphic design software. This design suite
gives users the ability to etch, bend, and connect different
shapes or planes to create objects with precision. Using
built-in physics engines, one can create a scene of objects
that interact based on the physical properties (mass and

shape) defined by the user. Simulation of rigid body colli-
sions, fluid motion, and force field interactions is possible
using the Blender 3-D tool. Each mesh object is subjected
to friction and damping, and interacts with other objects
through collisions based on mass. Individual mesh facets in-
fluence collisions between in-scene objects. This implies that
a convex hull does not define the physical bounds of a soil
particle created in Blender 3-D. For instance, a multifaceted
particle is bounded by its facets rather than a sphere or a six-
sided cube with similar volume.

2 Methods

2.1 Geometry

This model of beach sand begins with a geometric descrip-
tion at the microscopic level. As alluded to in the introduc-
tion, mesh objects of different geometries are rotated,
translated, and extruded to produce objects that match the
3-D geometry of soil grains. Scanning electron microscope
images provided a visual template for particle design.

In this work, the parameter of particle size distribution is
defined using sand that was collected from the Virginia Coast
Reserve Long-Term Ecological Research project (VCR-
LTER).22,23 The distributions used in this experiment are
shown as histograms in Fig. 2. Each distribution was col-
lected at a different transect of the same site on North
Smith Island, Virginia. Soil samples were sieved to separate
particles and weighed to determine the percentage of each
particle size within the sample. Three different distributions
were used for this model. As seen in Fig. 2, distribution
(a) was nearly uniform. Particles within this distribution
ranged in diameter from 10 to 600 μm. Distribution (b) was
a bimodal distribution. Particles from this sample ranged in
diameter from 100 to 600 μm. Greater than 70% of the par-
ticles in the scene were either 150 μm or 600 μm in diameter.
Samples from the Bachmann et al. measurements most
closely mimicked distribution (b). Distribution (c) was prac-
tically unimodal with greater than 70% or the particles hav-
ing a diameter of approximately 150 μm.

Realistic pose and mixture of scene constituents were cre-
ated with the Blender 3-D physics engine. To model a natural
soil scene, particles were not individually placed by hand.

Fig. 1 The versatility of digital imaging and remote sensing image
generation (DIRSIG) lies in user control. Within a single simulation,
each link of the image chain can be modeled with precision. The
input of the chain is a uniquely defined scene and irradiance level.
The output is a radiance image produced by a virtual sensor. Links
of the chain include the light source, radiation propagation, target
geometry, atmosphere, and the sensor. Parameters of each link
are defined prior to simulation. Since the model is compartmentalized,
scenarios can be changed with precision and with ease.
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User placement of thousands of objects would be incredibly
tedious and would likely produce an unphysical result. Each
particle was treated as a rigid body and was dropped onto a
surface where particle interactions occurred. Grains eventu-
ally settled into a physical 3-D soil scene. This process was
performed for each particle size distribution and is illustrated
in Fig. 3.

Within the Blender 3-D graphic design software, this soil
scene simulation takes the form of a motion picture. At each
frame, particle position was calculated using the mass, shape,
and external forces of gravity and interparticle collisions. A
single frame was used to describe the target, and was pro-
vided as input to the DIRSIG radiometry solver. This geom-
etry included the position in x, y, z coordinates of all object
vertices. It is an actual record of particle shape and position
that forms an accurate account of particle distribution and
spacing.

The density of the scene was altered by the addition of
more particles. The change in density was calculated using
a volumetric bounding box within the Blender 3-D software.
After the rigid body physics engine was applied, the number

of particles within a bounded volume was calculated.
Figure 4 shows the geometric representation of two particle
scenes that have the same size distribution [distribution (b)],
but differ in grain density by 29%.

2.2 Chemistry

Before each geometric scene was inserted into a DIRSIG
radiometric simulation, spectra were assigned to the facets of
each particle. Spectral reflectance and emissivity response
curves represent how each facet will respond to interaction
with a photon. Absolute reflectance of pure quartz was
assigned to each particle in both the high- and low-density
configurations for the distributions shown in Figs. 2(a) to
2(c). A total of six quartz scenes were considered. Both
high- and low-density scenes were developed for each of
the three particle size distributions.

To investigate the impact that soil density has upon the
spectral signature of a mixed soil sample, reflectance proper-
ties of both magnetite and quartz were included in a single
scene. A high-density scene and a low-density scene of mixed
soil were created. The trends observed by Bachmann et al.11

were thought to be a byproduct of smaller magnetite grains
physically mixed with larger quartz grains. Therefore, the dis-
tribution shown in Fig. 2(b) was used for each of the two
mixed scenes. As seen in Fig. 5, the smallest particles (106
and 150 μm) were given the spectral signature of magnetite.
All particles larger than 150 μm were attributed with the abso-
lute reflectance of pure quartz.

Spectral reflectance data were obtained from a spectral
material library hosted by the United States Geological
Survey (USGS). This database contains reflectance informa-
tion for natural minerals and flora, as well as manmade sur-
faces and complex mixtures.24

Fig. 2 Scenes used within the DIRSIG simulations were fashioned using three particle size distributions.
Distribution (a) was more uniform with respect to particle diameter. Distribution (b) was bimodal with
the majority of particles possessing diameters between 150 and 600 μm. More than 70% of particles in
unimodal distribution (c) had a diameter of 150 μm.

Fig. 3 The process of scene building is based upon physics engines
in the Blender 3-D graphic design software. Particles fall onto a sur-
face where they settle naturally in space. A sample motion picture of
particles can be viewed online.29
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2.3 Radiometry

In Eq. (1), L describes the radiance reaching the sensor pro-
duced by a DIRSIG simulation. This radiance comprised
many components that are included within the governing
equation
EQ-TARGET;temp:intralink-;e002;63;556

Lðλ; θv;ϕv; θl;ϕlÞ

¼ ElðλÞ
π

cosðθlÞτ1ðλ; θlÞρðλ; θv;ϕv; θl;ϕlÞτ2ðλ; θvÞ
þ Luðλ; θvÞ; (2)

with the angular orientation of the solar light source repre-
sented by zenith angle θl, and by azimuthal angle ϕl. The
sensor viewing position is described using ðθv;ϕvÞ. El
defines the irradiance that is emitted from a single light
source. The spectral BRDF ρðλ; θv;ϕv; θl;ϕlÞ depends on
the directionality of both the sensor and the light source.
Transmission of radiation is denoted by τ. The radiation
paths to and from the target are considered separately using
two transmission terms. Additional upwelling path radiance
is represented as Lu.

The user control of light sources and sensors allows for
the BRDF, as shown in Eq. (1), to be found painlessly.
Radiance, L, from the governing equation above, is the out-
put of each DIRSIG simulation. Virtual DIRSIG sensors
do not exhibit perfect sensitivity at all wavelengths. Every
simulation photon that hits a detector does not necessarily
result in a signal electron. Therefore, solving for BRDF
requires compensation for device sensitivity. Detectors typ-
ically have spectral response functions that describe how

efficiently photons are converted into signal over a range
of wavelengths. The virtual sensor used in this experiment
was characterized by Gaussian-shaped response functions
centered at 450, 550, 650, 868, 1000, and 1915 nm.
Bachmann et al. 11 also analyzed spectral reflectance at
these wavelengths. Half nanometer spectral resolution was
used. The virtual sensor was positioned 1.78 m from the
virtual soil surface. A reduced instantaneous field of view
(IFOV) of 0.092 m was evaluated in an attempt to maintain
a constant view of the scene as the sensor zenith angle was
increased. This sensor configuration matches that of the
University of Lethbridge goniometer system version 2.5
(ULGS-2.5).25 Prior to simulation, the total scene irradi-
ance, E, is specified by the user. The solar illumination
source was initially positioned with a zenith angle of 30 deg
from nadir. Scenes with a solar zenith angle of 20 deg were
also subjected to simulation. DIRSIG will not allow for
remotely sensed signal to exceed that of the illumination
source.

Using the scenes and modeling techniques described
above, the BRDF of pure quartz and mixed soils can be
modeled. BRDF was calculated for samples of quartz,
having different particle size distributions and density.
Additional BRDF models were simulated for samples of
mixed quartz and magnetite. Within each scene, rays are
traced from the illumination source, to the soil sample, and
then on to the sensor. Light often interacts with multiple
grain boundaries as it travels. At times, these grains are dif-
ferent materials that possess unique chemical and optical
properties. The result is a reflectance signature that repre-
sents the intimate mixing of chemical properties within the
sensor IFOV.

3 Results
BRDF values were simulated for quartz scenes at intervals of
20 deg between zenith angles of −60 deg and 60 deg in the
principal and perpendicular planes. These two measurement
planes are defined by the positions of the illumination source
and the virtual sensor. Measurements are said to be in the
principal plane if the source and sensor share the same azi-
muth angle or if the source and sensor have azimuth angles
that are separated by 180 deg. In the perpendicular plane, the
sensor azimuth is positioned 90 deg from the source azimuth.
Both measurement scenarios are illustrated in Fig. 6.

For soil targets, the backscatter direction of the principal
plane is often defined by a reflectance peak that is maximized
near the solar zenith angle.24–26 This preferential scattering is
due to an absence of particle shadowing and occlusion within
the line of sight between the sensor and the sample. Unique
reflectance features also arise from the intimate mixing of
grains, scattering albedo, grain transmittance, and sample
density. The reflectance signature of the perpendicular plane

Fig. 4 The scene on the right was 29% more dense than the scene on the left. Pores in the high-density
scene are more completely filled than those corresponding to the low-density target.

Fig. 5 Distribution (b) from Fig. 2 was used to describe a mixture of
quartz and magnetite. Particles with 106 and 150 μm were attributed
with the spectral properties of magnetite. Larger particles were rep-
resented as quartz in the DIRSIG simulations.
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has been observed as a bell curve with the maximum occur-
ring where the sample is sensed at nadir.25,27 Signal drops off
fairly uniformly as the sensing zenith angle increases,
because shadowing changes very little when the sensor is
moved along the azimuthal axis perpendicular to the sun.
This can be observed in Fig. 6.

Results of the quartz simulation agree with the expected
scattering characteristics described above. Figure 7 shows
the directional signatures of the quartz scenes in the principal
and the perpendicular planes. For each of the three distribu-
tions, the low-density simulation results are plotted with the
high-density results. BRDF percentage is plotted against sen-
sor zenith angle. The position of the illumination source is
indicated in plots of the principal plane. The data provide
some interesting insights on particle size distribution. As
previously stated, the relationship between soil density and
reflectance has been modeled and observed with some vari-
ance in results. Several observations indicated that a dense
geometry of soil is more reflective than a sample with lower
density.12–16 Models have confirmed this result.9 How-
ever, observations by Bachmann et al. indicate that the
relationship between density and reflectance may be more
complicated.11

The model results displayed in Fig. 7 support both
claims. The signature gathered from the uniform distribution
[Fig. 2(a)] indicates that at backscattering view angles, the
dense sample is more reflective than quartz that is less
dense. As the sensor moves to positions associated with for-
ward scattering, less dense soil is more reflective. It is also
noted that reflectance falloff in the perpendicular plane is not

truly uniform. This indicates that particle geometry and size
distribution have an observable effect on soil signatures. For
a sample that contains particles of many sizes, such as the
uniformly distributed soil, it is likely that much of the avail-
able pore space will be filled as soil settles. At higher den-
sities, pores may fill completely. This results in a varied
distribution of large and small particles at the topsoil layer.
In the backscatter direction, porous light traps become rare
and smaller particles can be sensed. In the forward scattering
direction, shadowing is prevalent. Any light that does bounce
from small grains into the forward scattering direction will
likely be blocked by large particles before it can reach
the sensor. If a sample of the same distribution was less
dense, larger grains would dominate the geometry of the top-
soil and shadowing in the forward direction would be less
severe. These trends are observed in the results correspond-
ing to the uniform distribution of quartz, and they are dis-
played in Fig. 7.

A different trend is evident when the geometry of the soil
surface is represented by the bimodal and unimodal distribu-
tions. Lower density samples of both distributions were mod-
eled to have stronger reflectance signatures than more dense
samples of the same distribution (Fig. 8). This implies that
for the samples in this experiment, pore spacing was meas-
ureable. In the scenes depicting dense soil representations of
these narrow size distributions, grains on the very top surface
of the sample tended to settle relatively far from one another.
This geometric separation of large particles resulted in an
observable variance in surface height. When bimodal and
unimodal distributions were used in less dense Blender 3-D

(a) (b)

Low density

High density

Low density

High density

View zenith angleView zenith angle

Fig. 7 Bidirectional reflectance distribution function (BRDF) of quartz at 650 nm is plotted in the principle
plane (a) and perpendicular plane (b) for a uniform particle size distribution. The effect of density on
BRDF varies based on sensor location.

Fig. 6 Principal plane (a) measurements are made when a light source and a sensor have the same
azimuth angle or when the source and sensor have azimuth angles that are 180 deg apart. In the
perpendicular plane (b), the least amount of shadowing and occlusion is observed when the sensor
is directly above the target. Because the light source is located in a plane that is perpendicular to
the sensor, the reflectance decreases uniformly as the sensor zenith angle is increased from the
nadir position. Darkness dominates the shadowed regions of a target, resulting in fewer reflected
rays traveling between the target and the sensor. Reduced spectral contrast is a byproduct of these
shadows. Unique reflectance features also arise from the intimate mixing of grains, scattering albedo,
grain transmittance, and sample density.

Optical Engineering 094103-6 September 2015 • Vol. 54(9)

Carson, Bachmann, and Salvaggio: Soil signature simulation of complex mixtures. . .



scenes, grains at the top surface were more tightly grouped.
The change of top surface height in these scenes was less
severe. This difference in topsoil surface height has been pre-
viously used in physical optics-based BRDF models and is
referred to as effective surface roughness.28 This implies that
even if the same particle size distribution is manifested in
two separate samples, these samples can have different sur-
face texture. Such a change ultimately alters the level of mea-
sured signal. It explains how a less dense sample, with a very
specific particle size distribution, will be observed to be more
reflective than soil with higher density.

An additional test was performed to explore the reliability
of the aforementioned results. To ensure that the trends
shown in Figs. 7 and 8 were not simply the product of unique
geometry, additional simulations with different geometric
deposition were carried out and the variability of the

produced reflectance was calculated. Three additional scenes
were created using the Blender 3-D physics engines. The
bimodal particle size distribution was used in each scene.
The same number of particles was used in each scene.
The only difference between the simulations was the initial
positioning of the rigid body particles prior to implementa-
tion of the physics engine. Standard deviations were calcu-
lated for each BRDF value. This deviation is plotted with the
original BRDF results in Fig. 9. There was overlap between
the standard deviations of the low- and high-density quartz
signatures. Only three of the 14 low-density data points were
within a standard deviation of the high-density trend line.
The model seems to consistently predict that a low-density
sample of quartz that is defined by the aforementioned
bimodal distribution will reflect more light than a higher den-
sity soil that shares the same distribution.

(a) (b)

(c) (d)

View zenith angle

View zenith angle View zenith angle

View zenith angle

Low density

High density

Low density

High density

Low density

High density

Low density

High density

Fig. 8 BRDF at 650 nm is plotted in the principal plane (a,c) and perpendicular plane (b,d) for a bimodal
particle size distribution (a,b) and a unimodal particle size distribution (c,d). In both scenarios, low-density
soil appears more reflective than high-density soil.

Fig. 9 Mean and standard deviation from three separate scenes of similar particle size distribution and
density were plotted in the (a) principal and (b) perpendicular planes. The lack of overlap in the trend
lines suggests that the model will consistently predict that soil samples with size distribution b will be more
reflective in low-density scenarios.
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The bimodal particle size distribution was used to evalu-
ate the effects of density for soil samples that contained
a mixture of quartz and magnetite particles. Within the
Blender 3-D sample, small particles (106 and 150 μm) were
given the spectral signature of magnetite. All particles larger
than 150 μm were represented as pure quartz. This distribu-
tion was used because it closely resembled the distribution
observed by Bachmann et al.11 In that paper, soil that was
denser was observed to reflect less than sand with higher
levels of porosity. It was assumed that this result was a con-
sequence of small black magnetite particles that more com-
pletely fill pore spaces when soil is dense. To test this,

a DIRSIG simulation was created using the scene described
above. The illumination source was positioned 20 deg from
nadir in the zenith axis. BRDF values were calculated in
the visible and shortwave infrared (SWIR). The reflectance
characteristics of the mixed soil are compared with pure
quartz in Fig. 10.

This DIRSIG-based model shows that the results observed
by Bachmann et al. may have been partially caused by the
particle size distribution of the sample soil. The plots in
Fig. 10 also confirm the notion that the effects of magnetite
are more pronounced in high-density samples. Figures 10(a)
to 10(c) correspond to a high-density soil sample and reveal a

(a) (b)

(c) (d)

(e) (f)

View zenith angle View zenith angle

View zenith angleView zenith angle

View zenith angle View zenith angle

Fig. 10 BRDF results from different mixture and density scenarios were plotted in the principal plane at
1915, 1000, and 450 nm. In the high-density plots (a-c), the impact of intimate mixing between magnetite
and quartz was defined by a noticeable drop in reflectance at all viewing angles. There was very little
variance between the BRDF of mixed soil and pure quartz in the low-density scenario (d-f).
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noticeable decrease in the reflectance of soil containing small
magnetite grains. A much smaller reflectance gradient exists
in Figs. 10(d) to 10(f), which describe a low-density sample.
Bachmann et al. also observed there to be greater variance in
measurements collected in the SWIR. The spectral reflectance
of quartz contrasts more with the reflectance of magnetite in
this regime.11 This trend is observed in the simulation results
displayed in Fig. 10. All plots in this figure include standard
deviation error bars, which were calculated using the reflec-
tance simulation of five separate geometric representations
of the respective high- and low-density scenes. Standard
deviation is larger in the low-density scene. Not only is the
reflectance gradient in the 450, 1000, and 1915 nm bands
less distinct for the less-dense scene, there is less certainty in
the results. This is a product of transient porosity features in
the five different simulations of the low-density scene. There
was less change in porosity between each representation of the
high-density scene. BRDF change with respect to wavelength
can be seen in Fig. 11, where the 450, 868, 1000, and 1915nm
bands are plotted together for low-density [Fig. 11(a)] andhigh-
density [Fig. 11(b)] scenarios.

For a bimodal distribution, spectral contrast due to density
has been observed to increase as phase angle increases.11 The
DIRSIG model presented in this work also predicts this ten-
dency. Figure 12 shows that the increase in contrast of a
quartz and magnetite mixture occurs at visible and SWIR
wavelengths. As expected, contrast is greater in the SWIR
and increases with larger phase angles. This simulation did
not consider coherent scatter beyond that which was cap-
tured in the reflectance measurements of the USGS. There-
fore, the trend of increasing contrast that was observed in
Ref. 11 can be at least partially attributed to the intricacies
of soil geometry that are associated with pore spacing, par-
ticle size, and surface texture.

4 Conclusion
Using Blender 3-D and DIRSIG, geometric aspects of soil
samples were studied with precision. The physical relation-
ships between density, particle size, and intimate material
mixing were shown to validate notions of increased soil
reflectance with decreased density (increased porosity) as
previously observed in laboratory studies.11 It was shown
that the presence of small magnetite grains will have a larger
impact upon reflectance if a sample is more dense, further
decreasing reflectance as conjectured in the earlier study.11

Additionally, the degree of contrast in reflectance signature
that increases with phase angle was linked to sample geom-
etry. Models affirmed that the univariant signature of reflec-
tance is built upon an interdependent trade space of several
geometric variables. The influence of realistic particle geom-
etry needs to be explored in greater depth if functional mod-
els are to be accurately developed for soils and mixed solids.
It is the ability to focus on geometric modeling that separates
this technique from other models. Because the use of Blender
3-D and DIRSIG provides complete user control of sample
geometry and the assignment of spectral properties, it serves
as a convenient test-bed for target construction and target
signature sensing. This technique can be easily modified
for implementation with other material mixtures provided
that pure spectral reflectance or emissivity data is available.
Ultimately, this study demonstrated that by combining

Fig. 11 Principal plane BRDF of bimodal quartz and a bimodal quartz/magnetite mixture is plotted at
450, 868, 1000, and 1915 nm for low-density (a) and higher density (b) scenarios. As observed by
Ref. 11, the difference in BRDF between the pure and mixed targets increases when density is high.

Phase angle

Fig. 12 Variance between the reflectance of high-density soil and
low-density soil for a bimodal distribution of magnetite and quartz
was shown to increase as phase angle increased. The effect was
more dramatic in the shortwave infrared (SWIR). These effects
have been observed in previous lab analysis.11
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realistic target geometry and spectral measurements of pure
quartz and magnetite, effects of soil particle size, density, and
texture could be modeled without functional data fitting or
rigorous analysis of material dynamics.
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