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Abstract. Telescope mirrors determine the imaging quality and the observation ability of the telescopes.
Unfortunately, manufacturing highly accurate mirrors remains a bottleneck problem in space optics. One primary
cause is the lack of a technique to robustly measure the three-dimensional (3-D) shapes of mirrors for inverse
engineering. After centuries of study, researchers developed different techniques for testing the quality of
telescope mirrors and proposed different methods for measuring the 3-D shapes of mirrors. Among them, inter-
ferometers become popular in evaluating the surface errors of the manufactured mirrors. However, interferom-
eters could not measure some important mirror parameters, e.g., paraxial radius, geometry dimension, and
eccentric errors, directly and accurately although these parameters are essential for mirror manufacturing.
For those methods that could measure these parameters, their measurement accuracies are far beyond
satisfactory. We present a technique for robust measurement of the 3-D shapes of mirrors with single-shot
projection. Experimental results show that this technique is significantly more robust than state-of-the-art
techniques, which makes it feasible for commercial devices to measure the shapes of mirrors quantitatively
and robustly. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.55.9.094108]
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1 Introduction
In the 16th century, the first astronomical telescope that used
a refractive lens was invented by the great scientist Galileo.
In 1789, Frederick William Herschel established the 1.22 m
reflective telescope that uses specular mirrors. In 1948, the
famous Hale telescope was established in San Diego and
it used a reflective mirror with a size of 200 in. In 1976,
a larger telescope with a 6-m in diameter and 25 m in length
was made in Russia. Later on, more powerful telescopes
with larger sizes were established, e.g., the Giant Magellan
Telescope (GMT), Thirty Meter Telescope, Hubble Space
Telescope, James Webb Space Telescope (JWST), and
European Extremely Large Telescope (EELT), that join
many small mirrors. Among them, the JWST and EELT
are three-mirror anastigmatics and were built with three
curved mirrors for minimum optical aberrations to achieve
a wide field of view. The advantages of the three-mirror anas-
tigmatic technique make its usage popular for military and
civilian space observations. For example, the three-mirror
anastigmatic Korsch telescope was used in both the
Deimos-2 and DubaiSat-2 Earth observation satellites. From
the above brief overview of the development history of astro-
nomical telescopes, it can be seen that most of the designed
telescopes used mirrors.

It is known that the mirrors used by the telescopes
determine their imaging quality and observing ability.
However, it remains a bottleneck problem to manufacture
accurate enough telescope mirrors in applications where
high-resolution and high-imaging quality are required for
the manufactured telescopes. For instance, the accuracy of

state-of-the-art optics manufacturing technology could not
meet the technical requirements of the astronomical tele-
scopes used in the projects from NASA, e.g., Astronomical
Search for Origins, Structure and Evolution of the Universe,
and Sun–Earth Connection). Research on new manufactur-
ing techniques and technology in space optics is urgent
and important for the development of the next generation
telescopes. One important factor that reduces the imaging
accuracy of the telescope is the mirror’s manufacturing errors
that are defined as the differences between the practical
parameters of the mirrors and their theoretical values. These
parameters include the paraxial radius, geometry dimension,
eccentric errors, and surface errors. To improve the manufac-
turing accuracy, techniques of measuring the three-dimen-
sional (3-D) shapes of mirrors become important because
the manufacturing errors of mirrors could be computed
directly after their shapes are known. Although many non-
contact techniques1–10 have been developed to measure the
mirrors in the past decades, none of them are capable of
measuring the shapes of mirrors with adequate accuracy.

The efforts for measuring the mirror’s 3-D shape and
calculating the mirror’s manufacturing errors could be traced
back to the time when the telescope was invented. In 1858,
Jean Foucault invented a method to measure the telescope
mirrors with the knife-edge test. Unfortunately, it could
only measure spherical mirrors while most telescope mirrors
are aspheric instead of spherical. In addition, the Foucault
method could only provide qualitative results instead of
quantitative results. To yield quantitative results, it must
be combined with other methods and requires great effort
and considerable skills to make accurate judgments. In
1922, Vasco Ronchi invented a different technique to mea-
sure telescope mirrors and it could not provide quantitative
results either. Based on the previous methods, several new
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methods were proposed later, e.g., the star test, the Ross null
test, and the autocollimation test. However, none of them are
satisfactory. In the late 1960s, the laser unequal path inter-
ferometer was invented to test spherical concave surfaces.11

In the early 1970s, Karl Bath invented an interferometer to
test telescope mirrors with quantitative results and it was
recognized as the most informative method of that time.
The Ceravolo interferometer is an alternative method with
similar performances. Unfortunately, these three interferom-
eters are only suited for testing spherical surfaces. Later on,
an interferometer made by ZYGO used the peak-to-valley
(PV) and root mean squares (RMS) to evaluate the quality
of the mirror. However, the complexity of the optics makes
PV/RMS incapable of adequately describing the mirror
quality. Hence, power spectral density, slope RMS, inverse
Hartmann test, and structure function (SF) are adopted
widely in mirror quality evaluations.12–18 In Ref. 16, an
inverse Hartmann test was proposed for surface form meas-
urement in the spherical coordinates with increased dynamic
range and resolution. However, its accuracy was decreased
compared to that in the rectangular coordinates. In Ref. 17, a
tutorial about the SF analysis is presented and its advantages
over Fourier-based methods were proved. In Refs. 19 and 20,
researchers at the University of Arizona used the laser tracker
to obtain the direct shape measurement for the GMT mirror
and they achieved a measurement accuracy of 1∕4 μm. In
Ref. 21, a large deformable aspherical mirror is measured
with sub-μm accuracy by the software configurable optical
test system. Its measurement principle is the same as that of
deflectometry and it is based on the integration of the surface
slope. In Ref. 22, ray tracing was used to measure the optical
aberrations of aspherical lenses. All the above methods
except for Ref. 22 could only indirectly give quantitative
results of the surface errors for the mirror. The paraxial
radius, geometry dimensions, and eccentric errors of the
mirror, are outside of their capabilities.

Although Ceyhan et al.,22 claimed that their method could
measure the profile of the surface, only a one-dimensional
profile was given in their experiments. In Ref. 23, a method
was proposed to measure the 3-D profiles of the mirrors with
analytic solutions, which has the potential to achieve the zero
error accuracy provided that no noise and lens distortion
exist. Unfortunately, the system noise is great and the radial
lens distortion of the used pico laser projector is also severe.
Consequently, the measurement accuracy of Ref. 23 is limited.
To improve the measurement accuracy, the pico laser projector
was replaced with an silicon nitride film (SNF) laser, which is
free from lens distortion and achieves better measurement
accuracy.24 However, the measurement accuracy is still not
good enough because the noise significantly reduces the
measurement accuracy. The used SNF laser does not strictly
obey central projection from which some fundamental
equations of the system are derived. Consequently, the
reconstruction result of the system would be greatly distorted
and the least deformation principle24 is required to recalibrate
the system, which is very time-consuming.

In this paper, a pattern modeling method is proposed to
remove the noise and radial lens distortion as a whole by
decreasing the degrees of freedom of the multiple laser
rays to one. The proposed method registers the captured
pattern with a theoretical pattern that replaces the captured
pattern during the reconstruction. Since the pattern modeling

method requires the projected rays to obey the principle of
central projection, it could not be adopted by the system in
Ref. 23 unless the SNF laser is made to be a strictly central
projection. Hence, we choose the pico laser projection to
generate the required laser rays in this research work. The
mirror measurement system is designed according to the
requirement of measuring the telescope mirrors. Due to the
larger sizes of the mirrors, larger diffusive planes and a beam
splitter are used with carefully selected distances. With the
proposed pattern modeling method incorporated into the
design system, this technique could achieve femtometer
measurement accuracy (10−13 mm) for telescope mirrors,
which is superior to most state-of-the-art methods.

This paper is organized as follows: Sec. 2 describes the
working principle of the mirror measurement system and the
method by which to calculate the projection center. In Sec. 3,
noise analysis is given and the fundamental pattern modeling
method is proposed. Experimental results are given in Sec. 4.
Section 5 concludes the paper.

2 System and Projection Center
The working principle of the designed system is shown in
Fig. 1. Three cameras c1, c2, and c3 are aimed at three
planes p1, p2, and p3, respectively. The projection center
of the projector is denoted as c and its symmetry point rel-
ative to the horizontal plane is c 0 which could be treated as
the projection center of a virtual pin-hole camera. The central
projection from c 0 intercepts the mirror plane and the diffu-
sive plane in the same way as light goes through a pin-hole
and images on the image plane. Hence, the mirror plane can
be treated as the image plane of this virtual pin-hole camera.
The horizontal plane p1 is the imaging plane of this virtual
camera, it is defined as the reference plane, z ¼ 0 and its
origin is at o. The laser ray is projected onto the horizontal
plane p1 and reflected by it onto a beam splitter. The beam
splitter transmits half of the ray to intercept the plane p2 and
reflects half of the ray to intercept the plane p3, respectively.
During the system calibration, the poses of the three cameras
are estimated. The equation of the diffusive plane p2 or p3 is
computed by the calibrated camera c2 or c3 and the virtual
pin-hole camera. With the equation of the diffusive plane
known, the homography between the camera and the diffu-
sive plane known, and the camera coordinates of the inter-
ception points known, the 3-D world coordinate of the

Fig. 1 Working principle of the system.
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interception point can be computed. After the points on p3
are computed, they are mapped to p4. Thus, two points
intercepting the reflected ray are obtained and this ray can
be uniquely determined with a closed form solution. With
the incident rays determined by the calibrated camera c1,
the interception points of the projected pattern on the mirror
surface are obtained with closed form solutions as the inter-
sections between the incident rays and their correponding
reflected rays.

A set of laser rays are projected from point c. The center c
is computed as the inception point of all the projected laser
rays and it is stated as

EQ-TARGET;temp:intralink-;e001;63;398

xi − xi0
ai

¼ yi − yi0
bi

¼ zi − zi0
ci

¼ ti; (1)

where ½ai; bi; ci�T are the coefficients of the i’th incident ray.
To determine the coefficients of the incident rays, we

intercept the laser rays with seven horizontal reference planes
by elevating a metric lab jacks 1 mm each time. The 3-D
coordinates of these intercepted points are computed by
the calibrated camera c1with the controlled reference planes,
z ¼ −2, −1, 0, 1, 2, 3, 4. Figure 2 shows the calculated
interception points on different reference planes. With seven
points known for the i 0th incident ray, its coefficients
½ai; bi; ci�T are computed by singular value decomposition.

With all the incident rays determined, we use the least
square method to find the projection center c whose distan-
ces to all the incident rays are the smallest. The distance of
the projection center c to each laser ray is calculated as

EQ-TARGET;temp:intralink-;e002;63;202d2 ¼ jð ~P1 − ~P0Þ × ð ~P0 − ~PÞj2
j ~P1 − ~P0j2

; (2)

where the coordinate of the projection center is denoted
as ~Pðx; y; zÞ. ~P0ðxi0; yi0; zi0Þ and ~P1ðxi1; yi1; zi1Þ are the two
known points on the i’th incident ray. Differentiating d2

over x, y, and z, respectively, and then setting the derivations
to zero, we get the projection center Cðxc; yc; zcÞ as shown
by the red square in Fig. 3. The intrinsic matrix of the virtual
camera is then obtained. Its principle point ðCx; CyÞ equals
ðxc; ycÞ and its focal length f equals zc.

3 Noise Analysis and Pattern Modeling
We choose the interception points on the reference plane z ¼
0 and show their zoomed-in views in Fig. 4. It is seen that
these five groups of points are not on straight lines as
designed, which is caused by the random noise. The noise
in this imaging system is mainly caused by the following
two factors: (1) the captured image is affected by different
influencing light sources and (2) the automatic image
processing algorithms are affected by the unevenly distrib-
uted grayscales of the laser points. In addition to the
noise, there are radial lens distortions that are inherent in
the projectors and cameras. Both the noise and radial lens
distortion greatly decrease the calibration accuracy and sys-
tem measurement accuracy. Hence, they must be removed
for better accuracy. For the central projection, the angle
between any two projected rays does not change and all
the projected rays intersect at the projection center. This is
the fundamental property of the projector and camera. The
proposed method is based on this property.

Fig. 2 Interception points of the incident rays with different horizontal
reference planes. Fig. 3 Projection center denoted by the red square and its relative

position to the interception points on different horizontal reference
planes.

Fig. 4 The zoomed-in view of the interception points of the incident
rays with the horizontal reference plane z ¼ 0.
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For two practically projected rays, the angle between
them is computed by the following equation:

EQ-TARGET;temp:intralink-;e003;63;730θij ¼ cos−1
ðxi−xc;yi−yc;zi− zcÞ · ðxj−xc;yj−yc;zj− zcÞ
jxi−xc;yi−yc;zi− zcjjxj−xc;yj−yc;zj− zcj

;

(3)

where ðxi; yi; ziÞ and ðxj; yj; zjÞ are the i’th interception
point and the j’th interception point on the horizontal refer-
ence plane z ¼ 0 as shown in Fig. 4.

In the ideal pattern design coordinate system, each bright
point represents one projected ray. The bright point at the
center of the designed pattern corresponds to the center pro-
jected ray by the projector. The distance between two adjacent
bright points is equal in both the row and column directions,
which is another property that the proposed pattern modeling
method relies on. We could determine the relative positions of
the projected rays based on this property though their equa-
tions in the virtual coordinate system are not known. From
the fundamental central projection property of the projector,
we know that the angle between the center ray and any other
ray is always fixed. In the ideal pattern design coordinate
system, the angle between the i’th ray and the center ray
can be computed using the following equation:

EQ-TARGET;temp:intralink-;e004;63;484θi ¼ tan−1
di
D
; (4)

where di denotes the distance between the center point and
the i’th point. D denotes the distance between the projection
center of the projector and the orthogonal interception plane.

From Eq. (4), it is seen that the angle is determined by the
ratio of di and D, thus they are not affected by their scales.
Hence, we could assume that the distance di equals the pixel
distance in the original pattern. Since the distance D is
unknown, we need to compute it and the following algorithm
is proposed accordingly.

Step 1: We select a set of points (45 points in this research
work) around the center of the projected rays and
compute the practical angles between the selected
rays and the center ray with Eq. (3).

Step 2: We select the correponding set of points from the
ideally designed pattern and compute the ideal
angles between the selected points and the center
ray based on Eq. (4) with an initial estimate of D
as 1000 pixels.

Step 3: We then compute the total difference between the
practical angles and the corresponding ideal angles
by the following equation:

EQ-TARGET;temp:intralink-;e005;63;206Δθ ¼
X44
i¼1

jθi0 − θij; (5)

where θi0 denotes the angle between the i’th ray and
the center ray.

Step 4: We compute D by making Δθ minimum

EQ-TARGET;temp:intralink-;e006;63;125D̄ ¼ arg min
D

Δθ: (6)

After distance D is computed, the practical angle and
the ideal angle between the center ray and any other ray

are computed by Eqs. (3) and (4), respectively. The results
are shown in Fig. 5. The practical angle computed by Eq. (3)
is denoted as “original” and the ideal angle computed by
Eq. (4) is denoted as “modeled.” It is seen that the angles
obtained from these two different equations [Eqs. (3) and (4)]
match well, but there are also obvious differences caused by
the noise.

After θi is computed by Eq. (4) for each ray, the projected
rays have been modeled and they are denoted as modeled
rays Rm

i , i ¼ 1; 2; : : : :45. To determine the interception
pattern, we need to compute the plane that intercepts the pro-
jected rays. To compute the interception plane, we propose
the following pattern modeling method:

Step 1: We intercept the modeled rays Rm
i , i ¼ 1; 2; : : : :45

using the plane axþ byþ cz ¼ 1 and compute the
modeled distances between the center point and the
selected set of points around it, which is calculated
as

EQ-TARGET;temp:intralink-;e007;326;327dmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxmi − xm0 Þ2 þ ðymi − ym0 Þ2 þ ðzmi − zm0 Þ2

q
:

(7)

Step 2: We then compute the original distances between
the center point and the same set of points around
it in the practically captured pattern, which is
determined as

EQ-TARGET;temp:intralink-;e008;326;233dpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxpi − xp0 Þ2 þ ðypi − yp0 Þ2 þ ðzpi − zp0 Þ2

q
:

(8)

Step 3: We compute the total difference between the
modeled distances and the original distances by the
following equation:

EQ-TARGET;temp:intralink-;e009;326;149Δd ¼
X

Δdi ¼
X

jdmi − dpi j: (9)

Step 4: We compute the optimal interception plane Pða; b; cÞ
by making Δd minimum, which is formulated as

EQ-TARGET;temp:intralink-;e010;326;92P̄ ¼ arg min
P

Δd: (10)

Fig. 5 Modeled angles versus original angles.
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Because the intercepted points are computed in a virtual
coordinate system instead of the world coordinate system,
we need to convert the coordinates of the original points
and the the coordinates of the modeled points by affine regis-
tration. We register the two sets of points based on the least
square errors by finding the transformation matrix A that
makes the sum of square errors, dr minimum
EQ-TARGET;temp:intralink-;e011;63;4652
66664

x̄pi
ȳpi
z̄pi
1

3
77775
¼ ω

2
66664

a11 a13 a13 a14
a21 a22 a23 a24

a31 a32 a33 a34
a41 a42 a43 a44

3
77775

2
66664

xmi
ymi
zmi
1

3
77775
; (11)

EQ-TARGET;temp:intralink-;e012;63;385dr ¼
X44
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̄pi − xpi Þ2 þ ðȳpi − ypi Þ2 þ ðz̄pi − zpi Þ2

q
; (12)

EQ-TARGET;temp:intralink-;e013;63;341Ā ¼ arg min
A

dr; (13)

where ω is a constant and the transformation matrix A is
defined as
EQ-TARGET;temp:intralink-;e014;63;287

A ¼

2
66664

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3
77775
: (14)

Figure 6 shows the modeled points after registration
(in the blue circle) versus the original points (in the red dot).
It is seen that the proposed registration method performs
very well. The points in each group of the modeled points
are on the same straight line, which verifies that the noise
and radial lens distortions were successfully removed. To
see the removal effect more clearly, the differences of the
x and y coordinates for these 45 points before pattern mod-
eling are plotted in Figs. 7(a) and 7(b), respectively. The
differences of the x and y coordinates for these 45 points
after pattern modeling are plotted in Figs. 8(a) and 8(b),
respectively. It is seen that the variation of the differences
after pattern modeling becomes regular and the noise

(random variation) is successfully removed. After pattern
modeling, the practically captured patterns are replaced with
the modeled patterns. The measurement system is calibrated
with the modeled patterns as described in Ref. 20. After
calibration, the mirror could be measured robustly in real
time by single projection.

4 Experimental Results
Figure 9 shows the practically established system. The hori-
zontal screen, p1, is placed on the top of the Metric Lab Jack
whose height can be adjusted. The rays are produced by
a pico laser projector and they are reflected by the mirror
surface onto the beam splitter that splits the rays into two
parts. Half of the rays pass through and image on the diffu-
sive plane, p2. The other half of the rays are reflected
and image on the diffusive plane, p3. The dragonfly camera
c1 is aimed at the horizontal screen to compute the equa-
tions of the incident rays after calibration. The dragonfly
cameras, c2 and c3, are aimed at the two diffusive planes,
p2 and p3, respectively, and synchronically record images
at 60 frames∕s.

Fig. 6 Modeled points after registration versus original points.

Fig. 7 Differences of adjacent points before pattern modeling:
(a) differences in the x coordinates and (b) differences in the y
coordinates.
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Figure 10(a) shows the designed pattern which is pro-
jected by the pico laser projector onto a horizontal diffusive
plane. The brightest point in the center is the center point.
The projected pattern on the horizontal screen is captured
by camera c1 and Fig. 10(b) shows one captured example.
Figures 11(a) and 11(b) show the modeled coordinates
(in red) versus the original original coordinates (in blue).
It is seen that the modeled coordinates and the original coor-
dinates match well, which meets the requirement that the
random variations (noise) are removed while the pattern is
kept undistorted.

For quantitative evaluation, we compute the RMS errors
between the reconstructed points and the modeled points
with the following equation:

EQ-TARGET;temp:intralink-;e015;63;145

2
64
Ex

Ey

Ez

3
75 ¼

2
666664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i¼1 ðXi

r − Xi
mÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i¼1 ðYi

r − Yi
mÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
N
i¼1 ðZi

r − Zi
mÞ2

q

3
777775
; (15)

where Ex denotes the error in the x coordinate, Ey denotes
the error in the y coordinate, and Ez denotes the error in the z
coordinate. ðXi

r; Yi
r; Zi

rÞ denotes the i’th reconstructed point
and ðXi

m; Yi
m; Zi

mÞ denotes the i’th modeled point. Suppose
the flat mirror is ideal, then Zi

o is constant for each point. Xi
o

and Yi
o are computed by camera c1 as follows.

We determine the homography between camera c1 and
the horizontal reference plane z ¼ 0 using the MATLAB
calibration toolbox. The determined homography could be
formulated as

EQ-TARGET;temp:intralink-;e016;326;343

H ¼ 1

Zc

2
64
fx 0 Cx

0 fy Cy

0 0 1

3
75

2
64
r0 r1 Tx

r3 r4 Ty

r6 r7 Tz

3
75; (16)

where Zc is a scalar. fx and fy are the focal lengths in the
x- and y-directions, respectively. ðCx; CyÞ is the principal
point of camera c1. ½r0; r1; Tx; r3; r4; Ty; r6; r7; Tz� are the
extrinsic parameters between the horizontal reference plane
z ¼ 0 and the imaging plane of camera c1. ðXi

o; Yi
oÞ could be

computed by the following equation:

EQ-TARGET;temp:intralink-;e017;326;2102
64
Xi
o

Yi
o

1

3
75 ¼ H−1

2
64
ui

vi

1

3
75; (17)

where ðui; viÞ is the camera coordinate of the i’th point. After
ðXi

o; Yi
o; Zi

oÞ is determined, ðXi
m; Yi

m; Zi
mÞ is determined by

Eqs. (3)–(15) as described in Secs. 3 and 4, which could
be summarized as

Fig. 8 Differences of adjacent points after pattern modeling:
(a) differences in the x coordinates and (b) differences in the y
coordinates.

Fig. 9 The developed system.
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EQ-TARGET;temp:intralink-;e018;63;2412
66664

Xi
m

Yi
m

Zi
m

1

3
77775
¼ M

2
66664

Xi
o

Yi
o

Zi
o

1

3
77775
; (18)

where M is the affine pattern modeling matrix.
To quantitatively compare the measurement accuracy, we

compute the RMS errors of reconstructing the flat mirror
without pattern modeling first. The computed RMS error
is 0.2254 mm in the x coordinate, 0.1977 mm in the y coor-
dinate, and 0.0825 mm in the z coordinate. The reconstructed
points versus the original points are shown in Fig. 12(a),
where the blue circles denote the original points and the red
crosses denote the reconstructed points. We then compute

the errors of reconstructing the flat mirror with pattern mod-
eling of world coordinates in p1, p2, and p3. The computed
RMS error is 0.0332 mm in the x coordinate, 0.0278 mm in
the y coordinate, and 0.0113 mm in the z coordinate. The
reconstructed points versus the original points are shown in
Fig. 12(b), where the blue circles denote the original points
and the red crosses denote the reconstructed points.

To see the pattern modeling effect further, we compute the
RMS errors of reconstructing the flat mirror with pattern
modeling of the camera coordinates in c2 and c3 and the
world coordinates in p1, p2, and p3. The reconstructed
points versus the original points are shown in Fig. 12(c),
where the blue circles denote the original points and the
red crosses denote the reconstructed points. The computed
RMS error becomes 3.4681 × 10−14 mm in the x coordinate,
6.6771 × 10−14 mm in the y coordinate, and 2.4653 ×
10−14 mm in the z coordinate, respectively. At first glance,
such a small RMS error seems extremely unlikely. A further
thought confirms that it is reasonable. When all the involved
patterns are modeled, both the calibration stage and the
reconstruction stage could be assumed to be free of noise.

Fig. 10 Designed pattern and captured pattern: (a) designed pattern
in the computer and (b) captured pattern by the camera.

Fig. 11 Modeled coordinates versus the original coordinates: (a) x
coordinate and (b) y coordinate.
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In addition, the reconstruction error is computed between the
reconstructed points and the modeled points instead of the
original points. Thus, no random noise could be introduced
in the evaluation stage. The reconstruction error is close to

zero, but is not exactly equal zero as in our simulation
with MATLAB,23 which is caused by the use of nonideal
hardware. Another adverse factor caused by the nonideal
hardware is the shape distortion. Hence, the used hardware
should be as precise as possible to achieve the highest

Fig. 12 Illustration of the reconstruction error (a) result without mod-
eling; (b) result with the world coordinates on the three diffusive
planes modeled; and (c) result with two camera coordinates and
the world coordinates on the three diffusive planes modeled.

Fig. 13 Reconstruction of the convex mirror (a) result without model-
ing; (b) result with the world coordinates on the three diffusive planes
modeled; and (c) result with two camera coordinates and the world
coordinates on the three diffusive planes modeled.
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measurement accuracy. Since the telescope mirrors have
known forms, e.g., spherical form, plannar form, and para-
bolic form, we could always model the camera coordinates in
c2 and c3 while measuring their shapes. Hence, the meas-
urement accuracy of this technique for telescope mirrors
is femtometers (10−13 mm). Based on theoretical analysis,
this technique could achieve zero error plateau measurement
accuracy when all the used devices are nearly perfect and all
the involved patterns are modeled.

At last, we reconstruct a spherical convex mirror to
show the strength of the proposed pattern modeling method
visually. Figure 13(a) shows the reconstructed spherical
convex mirror without pattern modeling. The noise severely
ruined the reconstruction. Figure 13(b) shows the recon-
structed spherical convex mirror with three patterns modeled.
Figures 13(c) shows the reconstructed spherical convex mir-
ror with three patterns of world coordinates and two patterns
of camera coordinates modeled. It is seen that there is a noise
threshold that determines if the proposed structured light
technique could work effectively. Only when all the noises
in the five patterns involved are eliminated will the proposed
structured light technique yield satisfactory accuracy. From
all these experimental results, both the strength of the pro-
posed pattern modeling method and the proposed structured
light technique were verified.

To show the superiority of this technique in measurement
accuracy over state-of-the-art methods, we compared it with
those state–of-the-art methods with available quantitative
results and show the comparisons in Table 1. It is seen that
the proposed technique is significantly more robust than
state-of–the-art methods. Furthermore, some state-of-the-art
methods, e.g., Ref. 21, could not measure the 3-D profiles of
the mirror while this technique can. The advantage of this
technique over state-of-the-art methods is further verified.

5 Conclusion
It is important and challenging to measure the 3-D shapes of
the mirrors accurately for telescope manufacturing. This
paper presents a technique that is capable of robustly meas-
uring the profiles of mirrors, which is essential for the
direct measurement of manufacturing errors for the mirror.
A pattern of laser rays is projected onto the mirror surface,
reflected, and intercepted by two diffusive planes. With two
points of the reflected ray obtained, it is uniquely determined
in the world coordinate system. Further, the interception
points of the projected pattern on the mirror surface are
obtained by computing the intersections between the inci-
dent rays and the reflected rays. The proposed pattern mod-
eling method is capable of removing the noise and radial lens
distortion by replacing the captured pattern with a theoretical
pattern that was computed by registering the captured pattern
with the designed pattern. Experimental results showed
that the proposed pattern modeling method could increase
the measurement accuracy of this technique from 0.1 to
10−13 mm. Above all, this technique is significantly more
accurate than most state-of-the-art techniques in measure-
ment accuracy. Compared to the evaluation methods adopted
by popular interferometers in mirror manufacturing, this
technique is capable of measuring more mirror parameters
such as the paraxial radius, geometry dimension, eccentric
errors, and surface errors after the 3-D shape of the mirror
is reconstructed. On the contrary, an interferometer could
only evaluate the surface errors of the mirrors. Hence, this
technique is promising for commercial products and devices
in mirror manufacturing.
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