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Abstract. We show that design optimizations, an integral but time-consuming component of optical engineer-
ing, can be significantly sped-up when paired with deep neural networks (DNNs). By using the DNN indirectly for
choosing initializations and candidate preselection, our approach obviates the need for large networks, big data-
sets, long training epochs, and excessive hyperparameter optimization. For a 16-layered thin-film design prob-
lem, our surrogate-assisted differential evolution (DE) algorithm is able to achieve similar optimal solutions as
that of an unassisted DE using only 10% of the function evaluation budget. Our approach is a promising option
for the optimal design of optical devices and systems. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.OE.58.6.065103]
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1 Introduction
The search for optimal design parameters is a class of inverse
problems that is assuming an increasing importance in optics
and photonics as advancements in fabrication techniques
and materials research allow us to explore complex structure
and material combinations. While advances in computational
power have made forward simulations faster, inverse prob-
lems, especially those involving large degrees of freedom,
remain challenging due to the so-called “curse of dimension-
ality,”1 a term that refers to the exponential explosion of the
search space volume with a linear increase in dimensionality.
Optimal photonics design is thus either restricted to limited
searches in global space or to gradient-based searches that
tend to get stuck at local optima.2 The current resurgence
of neural computing in the form of deep learning (DL)3 has
raised the intriguing possibility of artificial intelligence-
based methods that could potentially overcome the “curse
of dimensionality.” The application of DL has shown early
promise in the design of optical thin-films,4 nanostructures,5–8

metasurfaces,9–11 and integrated photonics.12,13

Optics design differs from pattern recognition problems (a
space where DL has achieved remarkable success) in many
ways: (1) performance is often very sensitive to variations
in design parameters; (2) large datasets are difficult to gen-
erate although labeling of data is automatic; (3) performance
requirements are often stringent and, hence, uncertainties in
the model are not acceptable; and (4) a given response can be
realized through multiple designs, while a single design has
a unique response (nonuniqueness).

The first challenge in applying DL to optics design is that
deep neural networks (DNNs) can be easily trained to predict
a response given a design (forward DNN) but not vice-versa
due to the nonuniqueness problem. Peurifoy et al.14 achieve
this inversion by freezing the weights of the trained forward
DNN and performing a gradient descent search over the
input parameters. Subsequent workers have resorted to using
two DNNs7,9,12 to overcome the speed limitation of this

approach. The tandem network concept (Liu et al.4) and the
generative networks with critic moderation approach (Cai
et al.5) provide speed improvements but require the training
of two separate networks, inadvertently constrict the design
space and are require careful hyperparameter tuning.

A second challenge in applying DL to optics design con-
cerns the model uncertainties involved in DNNs and its
implication on the correctness and optimality of designs
obtained; however, this issue has remained unaddressed. It
is well known that DNNs tend to perform well on problems,
where most of the input information can be discarded as
“noise” and perform somewhat poorly on problems, which
are sensitive to input parameter values.15 Furthermore, DNNs
do not adequately model their own prediction uncertainty.16

The implication is that a trained DNN may perform quite
well on the training data as well as on test data but may
model some regions of the design space poorly. Additionally,
the bounds on design parameters imposed when generating
training data may cause the DNN to miss the optima entirely.
Larger datasets and bigger models may alleviate these con-
cerns to some extent, but larger datasets are costly to generate
and larger DNN models require extensive hyperparameter
optimization.

The specific contributions of this paper are as follows:
(1) An evolutionary search technique in model space as a
solution to the inversion problem that obviates the need for
a second network and avoids unnecessary constriction of
the design space and (2) a hybrid approach using DNN as
a surrogate model17,18 as a solution to the optimality prob-
lem. We consider the problem of multilayered thin-film
design by DNN surrogate model-assisted differential evolu-
tion (DE).19 The problem of broadband antireflection coat-
ing (ARC) design has received extensive attention from
researchers20–24 and a broad range of theoretical and compu-
tational techniques (including DE)24–28 have been reported.
For our purpose, we note that this is a challenging multimo-
dal optimization problems with regions of flat fitness20,24,29

with strong mathematical and computational evidence
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regarding the existence of global optima.21–23 After this intro-
duction, a detailed description of assisted DE and a brief
description of the development of DNN appear in Sec. 2;
the training and testing performance of the DNN models and
performance of assisted DE algorithm is described in Sec. 3
before concluding the paper.

2 Assisted Differential Evolution
Figure 1 shows a detailed pictorial comparison of a regular/
plain DE optimization process (a) with a DNN-assisted DE
(b). A DE revolves a set of designs (individuals) that form a
population. A 16-element vector of layer thicknesses denotes
an individual in this paper and a collection of such designs
would be the population. An iteration essentially generates a
newer population by stochastically mixing the current pop-
ulation. This translates to getting newer designs by mixing
the existing designs stochastically. The fitness of a design is
a number that measures how closely its spectrum matches
the targeted spectrum. At any iteration, we need to evaluate
the fitness values of all individual designs in our population
to designs to rank them. The fitness value of a design deter-
mines how much its characteristics are passed on to sub-
sequent designs. Mutation and crossover are operations
performed on the existing designs to obtain newer designs.
Mutation involves changing the thickness of layers while
crossover involves interchanging layers between two
designs.

If we denote the j’th individual at the beginning of the i’th
iteration as pi

j, then the set of designs p0
j , 0 ≤ j ≤ P − 1 is

the initial population. Before beginning the optimizations,
a set F0

j , 0 ≤ j ≤ P − 1 of real numbers called the fitness

vector is generated by calling the merit function on this initial
population. The fitness vector is updated at the end of every
iteration and at the end of the i’th iteration denoted as Fi

j.
Each iteration begins with the mutation (M) phase fol-

lowed by a crossover (C) phase, which results in another set
of P individuals called mutants (j’th mutant during the i’th
iteration is denoted by mi

j). Another set of real numbers
called the mutant fitness vector is calculated at every iteration
by calling the merit function on the set of mutants, which is
denoted as fij, 0 ≤ j ≤ P − 1. The process of generating the
j’th mutant involves an intermediate individual generated
by the mutation phase, as described by oij ¼ aj þ rmut �
ðbj − cjÞ and aj; bj; cj ∈ fpi−1

0 ; pi−1
1 ; · · · ; pi−1

P−1g − fpi−1
j g,

where the a, b, c individuals are randomly drawn for each
individual and rmut is a hyperparameter of the optimization
called the mutation radius. Finally, the j’th mutant is
obtained using pi−1

j and oij in the crossover phase as follows:

EQ-TARGET;temp:intralink-;e001;326;555mi
j½d� ¼

�
oij½d�; if p >¼ pcross

pi−1
j ½d� otherwise

; 0 ≤ d ≤ 15: (1)

Crossover is an element-wise operation on the individual
(which is a 16-dimensional vector) and involves drawing a
random number p for each of the elements. This randomly
drawn number is compared with pcross (another hyperpara-
meter of the optimization called the crossover probability)
to generate the mutant. The iteration ends with a repopula-
tion (R) phase that results in the next generation of individ-
uals and can be summarized as follows:

(a)

(b)

Fig. 1 Comparative overview of the DNN-assisted DE optimization (a) unassisted and (b) assisted. The
individual, a multilayered thin-film design, is denoted by filled circles. In each generation, a population of
individuals is created by mutation (M) and crossover (C) and repopulation (R) phases. The merit eval-
uations can be performed exactly (black arrows) or approximately via the DNN surrogate (red arrows).
Red circles denote the best individual of the population at the start of the iteration. Blue and purple [and
shades of these colors in (b)] represent mutated and crossover variants. In panel (b), the multiple rounds
of mutation and crossover result in an intermediate population Rpred. Some exact function calls are used
to verify and replace the population intoR which could be different from the correct caseR true. Numbers 1
to 5 show the various possibilities resulting from approximating the repopulation phase.
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EQ-TARGET;temp:intralink-;e003;63;748

�
pi
j ¼mi

j;F
i
j ¼ fij if fij > Fi−1

j

pi
j ¼ pi−1

j ;Fi
j ¼ Fi−1

j otherwise
; 0≤ j≤P− 1; (2)

where the updating of the fitness vector is also shown. Note
that it is not necessary to store the fitness vectors at each
iteration. For N iterations, this results in ðN þ 1Þ � P func-
tion calls.

Next, consider the assisted version shown in Fig. 1(b).
The first difference between assisted and unassisted ver-
sions is that the initial population is generated randomly for
the unassisted version. The DNN surrogate is used to gen-
erate the initial population in the assisted version. using the
graphical processing unit (GPU) version of the DE algo-
rithm. DE is run simultaneously on multiple islands of

randomly initialized populations, and the best individuals
in all the islands are pooled and sent to the CPU, where the
exact fitness of these individuals is calculated. If their fit-
ness is below a certain threshold, they are kept aside or else
they are discarded. The entire procedure is repeated until a
predetermined number have been found.

The second major difference is in the repopulation phase,
where the exact computation of the mutant fitness vector fij
for all the P members is replaced by exact computation only
on a subset of the mutants. To determine the subset for which
exact computation is necessary, two auxiliary fitness vectors
g (analogous to f) and G (analogous to F) are calculated
using the surrogate. The modified repopulation phase that
results in the next generation of individuals can be summa-
rized as follows:

EQ-TARGET;temp:intralink-;e003;63;572

8>><
>>:

�
pi
j ¼ mi

j; F
i
j ¼ fij if fij > Fi−1

j

pi
j ¼ pi−1

j ; Fi
j ¼ Fi−1

j otherwise
if gij > Gi−1

j

pi
j ¼ pi−1

j ; Fi
j ¼ Fi−1

j otherwise

; 0 ≤ j ≤ P − 1; (3)

where the updating of the fitness vector is also shown. The last
difference is that several mutations and crossover phases can
occur in parallel in the same iteration. The final mutant popu-
lation in a particular iteration can then be selected by comparing
the various intermediate fitness vectors.

There are several potential consequences of this approxi-
mation phase and all five of these possibilities are noted in
Fig. 1(b). The first four can be summarized as: (1) gij < Gi−1

j ,
fij < Fi−1

j : one function call is correctly saved; (2) gij > Gi−1
j ,

fij > Fi−1
j : optimization has advanced correctly; (3) gij <

Gi−1
j , fij > Fi−1

j : optimization has been impeded, no unnec-
essary function calls; and (4) gij > Gi−1

j , fij < Fi−1
j : optimi-

zation not impeded, but unnecessary function call made.
The final possibility when one mutant is wrongly picked
to be better than the one that is truly better only occurs
when multiple rounds of mutation and crossover happen
in a single iteration. A good surrogate can be identified as
the one, where cases 1 and 2 occur more frequently than
cases 3 and 4.

2.1 Development of the DNN

We have extensively experimented with the number of
neurons in each layer, different activation functions, batch
normalization and dropout layers, replacement of fully con-
nected layers with convolutional layers, and various training
methodologies [stochastic gradient descent (SGD), ADAM,
ADAM method with Nesterov momentum (N-ADAM),
etc].30 Surprisingly, the number of trainable parameters was
found to correlate most strongly with accuracy. and most
other factors had only a minor influence. Rectified linear unit
and Swish31 activations performed nearly equally well and
were substantially better than other activations. Batch nor-
malization and dropout were not found to be beneficial.
ADAM and N-ADAM training procedures were found to
significantly outperform SGD. Preliminary experiments with
convolutional layers showed some promise. We could reduce
the number of trainable parameters with minor degradation

in accuracy; however, convolutional layers took more time
to train.

The final choice of the model was a feedforward neural
network with fully connected layers, as shown in Fig. 2(a).
All the hidden layers had the same number of neurons. Swish
activation31 was used on all but the last layer where sigmoid
activation was used to bound the output between 0 and 1 [see
Fig. 2(b)]. The structure is an air-clad 16-layered thin-film
made of alternating layers of silica32 and titania33 on a
semi-infinite substrate of refractive index 1.52. The maxi-
mum and minimum thickness of each layer are dmin and
dmax, respectively, and dmin ¼ 0.1dmax. Any possible geom-
etry can then be denoted by the array of thickness values
X ¼ ½x1; x2; x3; · · · ; x16�, which is the input layer. The reflec-
tance spectrum at normal incidence of any design X at 64
points equally spaced in frequency between frequencies cor-
responding to a minimum and maximum wavelengths of
400 and 800 nm, respectively, is denoted by an array
Y ¼ ½y1; y2; y3 · · · y64�, which is the output. Figure 2(c)
shows two possible ways we have used to generate datasets:
(1) Latin hypercube (LH) sampling (this ensures maximum
separation between the training data points) and (2) LH sam-
pling on a larger hypercube followed by clipping.

3 Results and Discussion
The open-source python program transfer matrix method
(TMM) provided by Byrnes34 (with some modifications that
allow it to calculate the spectrum in parallel) is used to cal-
culate the exact spectrum. DNNs are implemented with the
Keras library30 running on MXnet backend.35 The DE com-
ponent was written by us from scratch with separate CPU
and GPU versions and we ensured that unnecessary data
transfers between the CPU and the GPU are avoided ena-
bling very rapid evaluations of a large number of designs
using the surrogate for any conceivable target spectrum.
The source code for the implementation, datasets and saved
models have been made available.36 The following results
are obtained by running our implementation on a workstation
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with an Intel™ i9–7920X CPU with 3 NVIDIA™ GeForce
GTX 1080 GPU cards with 12-GB memory.

3.1 DNN Training and Testing

This subsection examines the influence of system, model,
and data on the accuracy of the trained DNN. and the
main findings are summarized in Figs. 2(d)–2(f) and 3.
Traditionally, the mean squared error (MSE)4 and the mean
relative error14 have been used to quantify accuracy. We
found that MSE is a good loss function to train the network
but peak absolute error is a better indicator of the generali-
zation ability of the trained DNN. Two observations are
noted in Figs. 2(d)–2(f). First, reducing the MSE also

reduced the peak error. Second, we notice two regimes in
the error progression: a steep drop in error is followed by
a gradual error loss. This is a universal feature that has been
reported in several of the earlier papers.

For the experiment in Figs. 2(d) and 2(e), a network
characterized by three hidden layers with 128 neurons
(represented as 128 × 3) is trained on datasets with fixed
minimum and maximum layer dimensions of 10 and 100 nm.
Only the number of size of the dataset is varied (note 50k
stands for 50,000 samples). It can be seen that 100k is about
the optimal size and that further increase in size is only giv-
ing diminishing returns. For the experiment in Figs. 2(f) and
2(g), the dataset size is fixed at 200k, dimension range is
fixed at (10, 100) and the number of hidden layers is varied

(a)

(c)

(f) (g) (h) (i)

(d) (e)

(b)

Fig. 2 DNN surrogate. (a) Overview of the DNN architecture. The neuron color is chosen to denote the
activation function (black for linear, green for G “Swish” and blue for Sigmoid). (b) Various possible neu-
ron activation functions. (c) Training data sampling technique illustrated on a 2-D hypercube. (d–i) denote
the training error progression over 200 epochs [(d), (f), (h) show MSE while, e.g., (i) show the peak error]
for various combinations of network architecture, training dataset size and layer size range. (d,e) Identical
network (128 neurons in three hidden layers) and size range (10 nm, 100 nm), varying training dataset
size 50k, 100k and 200k. (f, g) Varying network (128 neurons in one, two, and three hidden layers),
identical size range (10 nm, 100 nm) and training dataset size of 200k. (h, i) Identical network (128 neu-
rons in three hidden layers) and training dataset size of 200k, but varying size ranges (5 nm, 50 nm),
(10 nm, 100 nm), and (20 nm, 200 nm).
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in the DNN. Once again, it is seen that for a fixed dataset
size, simply increasing the model complexity leads to dimin-
ishing returns. Finally, the experiment in Figs. 2(h) and 2(i)
shows that expanding the constraints imposed on design
parameters increases the Vapnik–Chervonenkis dimension
of the problem and it becomes increasingly difficult to train

a DNN. The summary observation is that extensive experi-
mentation is needed to identify the correct model size and
training dataset sizes.

For the remaining set of experiments, we consider six pos-
sible models listed in Table 1. Modern DL platforms can han-
dle very large networks but larger dataset sizes continue to be

Table 1 Model summary. Train size large corresponds to 400k and small to 40k. Model size large corresponds to 128 × 3 and small to 128 × 1.
LH + BW stands for Latin hypercube sampling with clipping [see Fig. 2(c)]. The training phased used three GPUs in parallel.

Name Train size Model size Dataset bias Train MSE Peak error Train time (s)

M1 Large Large Uniform 0.0012 0.23 28

M2 Small Large Uniform 0.0099 0.46 19

M3 Small Small Uniform 0.0183 0.63 15

M4 Large Large LH + BW 0.0013 0.25 28

M5 Small Large LH + BW 0.0131 0.50 19

M6 Small Small LH + BW 0.0240 0.66 15

(a)

(f) (g)

(b) (c)

(d) (e)

Fig. 3 DNN performance on the same unseen test data (size 100,000) for the six models shown in
Table 1. (a) The progression with training epochs of the training and the test error for M4, M5, and
M6. The curves for M1 were nearly identical to that of M4, M2 to that of M5, and M3 to that of M6.
(b–e) Histograms of the mean and peak absolute errors for models M1, M1, M3, and M4, respectively.
(c–e) The percentage probability on a logarithmic scale. (f) and (g) compare the spectrum predictions of
all the models on the same geometry against the exact spectrum. (f) A longpass filter design and (g) an
ARC design. The insets in (f, g) denote the refractive index profile of the designs.
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harder to obtain for many problems. Thus, we do not con-
sider the combinations with small models and large datasets.
These possibilities coarsely represent the cost/benefit trade-
off involved in DNN development. Note that the generation
of 400k sized dataset takes nearly 2 h on our system in com-
parison to about 12 min for the 40k sized dataset. The models
were all trained on datasets sampled in the (10 nm, 100 nm)
range for each layer thickness.

The six models were tested on a separately generated
dataset of size 100k and Fig. 3 summarizes their testing per-
formance. The test and the train errors (MSE) are seen to
track well in all cases, as shown in Fig. 3(a), with a hint
of divergence seen for M5 and M6. This shows that a small
amount of overfitting is expected when dataset sizes are
smaller than ideal. With L2 regularization of about 1 × 10−5

added, we observed that this overfitting could be reduced
slightly without unduly affecting convergence or training
time. Figures 3(b)–3(e) are histogram plots showing the dis-
tribution of the mean and the peak absolute errors for each of
the 100k test data points. It is seen that MSE is a more opti-
mistic picture than the peak error; MSE is narrowly distrib-
uted while the peak error shows a flatter distribution with
very large values possible. A surprising result is seen when
we compare Figs. 3(c) and 3(d). Although the MSE for
model M1 is far better than that of M3, both are seen to have
nearly the same number of data points, where their prediction
leads to a large peak error. Figure 3(e) shows that model M4
shows a much reduced rate of high peak errors in comparison
to M1 which occurs because the training dataset and testing
dataset were sampled on the same distribution unlike that of
M1. Figure 3(f) shows the predicted spectrum of all six mod-
els on the same design for a longpass filter. This design is
located in the interior and hence M1 is favored over M4.
Figure 3(g) shows the predicted spectrum of all six models
on the same design for a reflection cancellation filter. This
design is located on the boundary and, hence, M4 is favored
over M1.

3.2 Performance of Assisted DE

In this section, we compare the performance of assisted DE
using the six different models described above with the plain
DE version. The results are judged on three metrics: (1) how
many exact function calls are used; (2) the best fitness
achieved; and (3) the variance in the best fitness. DE is a
stochastic algorithm and, hence, 10 runs are considered to
show the range of possibilities. Figures 4(a)—4(c) and 4(f)
show the general progression of the fitness with iteration
number for DE (plain and assisted versions) and Figs. 4(d),
4(e), 4(h), and 4(i) use boxplots to show the best fitness value
achieved at the end of 256 iterations.

We considered two different objectives: (1) an ARC with
minimal mean reflectance over the entire band from 400 to
800 nm [see Fig. 3(g)] and (2) a longpass filter with the edge
at 532 nm [see Fig. 3(f)]. Only Fig. 4(d) concerns the long-
pass design and the rest of the figures deal with the ARC
design. The mean reflectance (in %) is the fitness measure
for ARC design; for the longpass design, the mean of the
absolute difference in the target and the actual spectrum
(expressed in %) is the fitness. In comparing the achieved
reflectances, we note that reports in the literature have
established that for normal incidence, two material systems
provide the best designs for ARC. The optimal reflectance

achievable is known to depend on the highest and the lowest
refractive indices available, the optical thickness as well as
the number of layers.20–23 For the silica/titania system, it
has been reported that the best achievable mean reflectance
may be expressed as Rm ¼ 0.1029 × d−0.9758opt , where Rm is
expressed in percentage and dopt is the optical thickness
expressed in microns. In our case, we consider designs,
where the layer dimension is in the range (10 nm, 100 nm)
and, thus, we can conclude that the exact optima must lie in
the 0.1% to 0.2% range.

We note that for the evaluation of the spectrum of 100,000
geometries, the DNN (M1) took 479 ms. The exact calcula-
tion using the TMM python package with python-based
multiprocessing library parallelism using 16 cores for
100,000 geometries took 6 min and 19 s and about 1 h 5 min
for a single-threaded version. For generating the initializa-
tions, the GPU version of the DE algorithm employed 300
islands each with a population P of 40 and ran for 256 iter-
ations with a mutation radius rmut of 0.8 and crossover prob-
ability pcro of 0.7. We have used only a single GPU for doing
this procedure as it was found to be extremely fast to execute
finishing in nearly a minute including the CPU verification
phase. Red over text in Figs. 3(d) and 3(e) shows the fitness
of the initial populations. It is seen that models M1 and M4
generate the best starting populations but still not close
enough to the global optims. From previously published
reports,20–23 it is apparent that optimal ARC designs are lying
at the boundary of the design space. As M4 is trained on a
boundary weighted dataset, it performs best in initializations
in comparison to M1. This trend is reversed in the case of
a longpass design, where M1 performs better. This shows
that DNNs are vulnerable to the dataset construction even
for large-sized datasets and are not guaranteed to provide
optimal designs.

Figures 4(a)–4(c) show that the assisted DE performs well
in comparison to the plain DE. At first glance, this appears to
be due to the initializations, as shown in Fig. 4(b), which uses
the M4 model. But, even an inferior model, the M6, seems to
do nearly as well as (a) with a larger variance. Figures 4(a)–
4(e) also highlight the important observation that the assisted
DE performs better than plain DE as well as DNN acting
alone. This observation is true even for inferior models
although they tend to have larger variance. The assisted DE
is seen to result in a drastic reduction in the number of exact
function calls, as shown in Figs. 4(d)–4(e), where the number
of function calls is noted in blue over text. Nearly, all the
versions resulted in only 10% exact function calls and
ran five to six times faster. On our computer, the assisted
versions ran in about 10 min.

In Figs. 4(f) and 4(g), we show a technique to deal with the
large variance seen in assisted DE with coarser models. Unlike
the previous runs, where the population count was 160, we
reduced the population count to 80 and ran DE on four islands
simultaneously. At the 128th and 192nd iteration mark, the
best individuals in the islands were transmigrated in a
round-robin fashion among these four islands. This procedure
was repeated eight different times and the best fitness achieved
each time and the number of exact function calls are noted in
Fig. 4(g). Although using only 20% of the function calls of the
plain version and an inferior DNN model, we see that we
achieve comparable performance to it. Mutation radius and
crossover probability are the hyperparameters of the assisted
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DE. In Figs. 4(h) and 4(i), we studied how the choice of these
parameters influences the performance. It is seen that a muta-
tion radius of 0.4 and a crossover probability of 0.4 work best
for both models.

We finally evaluate the performance of our proposed
method against the needle-point synthesis method provided
by the freely available software OpenFilters.37 The needle
method implementation provided by the OpenFilters

(a) (b) (c)

(e)(d)

(f)

(h) (i)

(g)

Fig. 4 DNN-assisted DE performance. (a)–(c) The evolution of the best fitness as a function of DE iter-
ation number for 10 separate runs. (a) The plain DE while (b) and (c) DE assisted by DNNmodels M3 and
M6, respectively (see Table 1). (d) and (e) Boxplots of final best fitness values for 10 separate runs of DE
(plain and assisted versions) after 256 iterations. In panels (d) and (e), blue text over boxes represent the
number of function calls made and red text represents the best fitness of the initializing population.
(f) Fitness evolution of a four population of 80 individuals with two instances of best individual round-
robin migration using assisted DE with M6 (inset is a schematic representation of this operation).
(g) Summary of 8 runs of the DE, as shown in (f). (h) and (i) A study using the M6 model with 80 members
and with variation in the hyperparameters of the DE algorithm.
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program does not provide an option to limit the range of
thickness values each layer can take but permits to eliminate
layers below a specified thickness and research for optima.
However, we could not find designs when the minimum
thickness was restricted to 10 nm. Our method, however,
had no problems in finding solutions, where the range of
the thickness is from 10 to 100 nm. The best reflectance
achieved by the methods along with the index profile of the
designs is shown in Fig. 5. Our method was able to achieve
Ravg ≈ 0.0025 and Rmax ¼ 0.0045, which is comparable to
that achievable by the needle method. The thickness of our
design is 557 nm, which is slightly thicker than that obtained
by the needle method. However, we note that the allowed
thickness range is broader for the needle method and the
obtained design has two very thin layers (≤2 nm thickness).
We note that Yang and Kao26 have previously reported the
comparison between evolutionary algorithms and the needle
method and found that although evolutionary approaches
provide similar solutions like that of the needle method but
were noticeably slower than these. Our algorithm is coded
using the scripting language and, thus, it is unfair to compare
its speed with that of a highly optimized code. Nonetheless, it
took 6 min for our method as opposed nearly 2 min for the
needle method (note that the needle method requires us to try
out different initial conditions to succeed). It is not surprising
that a hand-tuned method outperforms a generic black-box
optimization method, but it is remarkable that a black-box
method very closely approaches the performance of a
hand-tuned method.

4 Conclusion
In this contribution, we explored the role of DL in acceler-
ating photonics design optimizations. In our approach, train-
ing is done on one forward network (design → spectrum)
and a fast global search of the DNN using a DE approach
suffices to arrive at a working design given a target spectrum.
It highlights the pitfalls in relying entirely on DNNs to arrive
at designs as the optimality of these solutions is not certain
even after meticulous trial and error to arrive at a good
model. It proposes an alternate technique, where DNNs are
only used for preselection to speed up conventional evolu-
tionary optimization techniques. This alternate technique
was found to result in significant reductions in computational
burden even with inferior DNN models. We have explored
low to medium dimensionality here and future work needs
to consider whether an extension to 2-D and 3-D problems

will be just as successful. Preliminary work has shown that
further performance improvements are possible using surro-
gate-based mutation and crossover phases and by dynami-
cally tuning the hyperparameters of the DE algorithm.
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