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Quantification of ischemic muscle deoxygenation
by near infrared time-resolved spectroscopy
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1 Introduction

Abstract. The purpose of this study was to quantify muscle deoxygen-
ation in human skeletal muscles using near infrared time-resolved
spectroscopy (NIRgs) and compare NIRgs indicators and blood satu-
ration. The forearm muscles of five healthy males (aged 27-32 yrs.)
were monitored for changes in hemoglobin saturation (SO,) during
12 min of arterial occlusion and recovery. SO, was determined by
measuring the temporal profile of photon diffusion at 780 and 830 nm
using NIRrs, and was defined as SO, 1gs. Venous blood samples
were also obtained for measurements of S,0,, and P,O,. Interstitial
PO,(P;,;O,) was monitored by placing an O, electrode directly into
the muscle tissue. Upon the initiation of occlusion, all parameters fell
progressively until reaching a plateau in the latter half of occlusion. It
was observed at the end of occlusion that SO, 1rs (24.1+5.6%)
agreed with S,0, (26.2%£6.4) and that P;,O, (14.7+1.0Torr)
agreed with P,O, (17.3%2.2 Torr). The resting O, store (oxygenated
hemo&lobin) and O, consumption rate were 290 uM and 0.82
uM s, respectively, values which reasonably agree with the reported
results. These results indicate that there was no O, gradient between

vessels and interstisium at the end of occlusion. © 2000 Society of Photo-
Optical Instrumentation Engineers. [S1083-3668(00)01301-0]
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2 Methods

Until now, muscle oxygenation has been evaluated by near 2.1 NIRgs

infrared continuous wave spectroscofIRcws)."~" How- Optical propagation in a highly scattering medium can be de-
ever, since photons travel randomly in biological tissue, opti- scribed by the optical diffusion approximatidiJsing semi-

cal pathlength cannot be determined NyRcys measure- infinite geometry as a realistic measurement of tissue, the so-
ments. ThereforeNIR.s measurements give only relative lution of the optical diffusion equation is expressed as

values of tissue oxygenation according to the Beer—Lambert follows:®

law—an equation which includes optical pathlength.

Near infrared time-resolved spectroscoiiyiRtrs) using
picosecond light pulses determines the optical pathlength by
measuring the time of photon flightNIRtrs has been applied
to the study of bottin vitro®>®!%andin vivo>'!2 quantifica-
tion of hemoglohinO, saturation(SGO,). In vitro experiments
have confirmed that medium optical properties &@, can (t) and separatiotip) between source and detectar; and
be determined precisely BYIRgs.>*°Although several in-  u. are the absorption coefficient and reduced scattering coef-
vestigators have reported oxygenation changes in ischemicficient, respectivelyD is the diffusion coefficient and is de-
and/or contracting muscl@412 none of the studies have fined asl/3(u,+ ud); cis the speed of light20 cmns?) in
compared the values obtained BIR;gs to intravascular ~ the medium andy is the mean scattering length defined by
SO,. Thus, the purpose of this study was to determine the 1/#s- Mean optical pathlengtilL) is defined asf[R(p,t)t
quantitative correlation between microvascu®, measured - Adt]-¢/JTR(p,t)dt]. Whenp is much greater thaii/u , the
by NIRtgrs, blood SO, and interstitial oxygen tension logarithm of Eq.(1) gives
(PntO,) determined using a®, electrode in human subjects.

R(p,t)=(4mDc) 3?24t 52 exp(— p,ct)
xexp[ —(p®*z5)/4Dct], (1)

whereR(p,t) is the light intensity on a tissue surface at time

logR(p,t)=—5/2logt— u,ct—(p>/4Dct). (2)
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Therefore, the absolute concentrations of deoxyhemoglo- cm. ThePO, electrodgUnique Medical Inc., Japanvas used
bin ([HbR]), oxyhemoglobin([HbO;]), total hemoglobin  for simultaneous measurements of interstiRD, (P,O,).
([T—Hb]), and SOSO,.1rg can be determined using two The catheters for the blood sampling were placed in the bra-
wavelength¥’ as follows: chial vein, and filled with 2% heparin solution to prevent

intravascular coagulation.

AL N2 A2 N1

[HOR]= (e}’ — i)/ (e et~ e%et), (3)
[HbO,]= (&) my*~ &’ i) / (')’ — yel!), (4)  2.3.3  Protocol
Arterial occlusion of the forearm was conducted by inflating
[T-Hb]=[HbR]+[HbO,], (5) the cuff tourniquet to a pressure of 280 mm Hg. The forearm
muscle was rhythmically compresséahilking) on the skin
SO,.1rs(%) =[ HbO,]x 100/ T-Hb], (6) surface in an attempt to drain the blood near the microvascu-

lature into the catheter in order to obtain data from regions
near the ischemic muscle. The size of the catheter used for
blood sampling was 22 gage, inner diameter was 0.6 mm, and
the volume of the inner space was 0.03 ml. Blood sampling
during arterial occlusion was conducted once between 2 and 4
min, once between 5 and 7 min, three times between 7 and 10
wm diameter optical fiber by 780 and 830 nm laser diodes min and once between 11 and 13 min. The blood volume
(Hamamatsu, PLPwith 50 ps half width, 5 MHz repetition  sampled was 1 ml each time with a total of 6 ml during
rate, and 100 mW peak power. The emitted photons penetrateyyterial occlusion. The duration of cuff ischemia was 12 min.
the tissue and are reflectemla 5 mmdiameter optical bundle g, averageNIRgs and P,,,O, measurements were continued
fiber where they are sent to a time correlated single photon for 10 min after liberation of cuff ischemia. Blood sampling

counting(TCPQ system. The digitized temporal profile data a5 also continued every 2 min. following the release of cuff
from anin vitro sample or tissue is deconvoluted with the jschemia.

instrumental response function so that the time response of

wheree)!(e)?) and ey’ (€h?) are the extinction coefficient of
HbO, at wavelength\1 (A\2) and the extinction coefficient of
HbR at wavelengti\1 (A2), respectively. Values for, and
e are expressed in units of common logarithm.

An in vitro sample or tissue is illuminated through a 200

the instrument itself is compensated. Following deconvolu-
tion, the temporal profile data is fitted with E@) and the
values foru, and u, at 780 and 830 nm are obtained. HbR,
HbO,, T-Hb, andSGO,.1rs are calculated by Eq93)—(6),
respectively. TheNIRtrs system provides data on HbR,
HbO,, T-Hb, andSO,tgsevery 30 s.

2.2 In vitro Validation of the NIRzs System

We examined oxygenation changes in a purified-hemoglobin
solution (200 M) using a phantom consisting of 2500 ml
water and a 1% intralipid suspensi@kabi Pharmacipas a
photon scatterer in order to simulate tevivo . of 4.0

2.3.4 Blood gas analysis

Blood samples were analyzed using a blood gas analyzer
(Ciba Corning 148 The venous blood sample was analyzed
for venous PO,(PvO,) and venous hemoglobin saturation

(Sv0O,).

2.3.5  Statistics

All data were expressed aseantSE. Statistical differences
were analyzed betwee®0, 1rsandSvO, and betweer®,,,0,
andPvGO; using paired Studenttest. Significance was defined

cm L. The separation between input and output fibers was setas p<0.05.

at 3 cm. Yeast was added to the solution in order to lower
oxygenation levels as a result of yeast respiration. We com-
pared the changes in soluti®0, by NIRtrs and by blood
gas analyze(B. G. A. Inc) as a reference. A significant cor-
relation(r2=0.98,p<0.001) was found between changes in
SO, measured b\NIRtrs and those determined by blood gas
analysis. These results indicate thdR g5 can quantitatively
determineSG, in vitro.

2.3 In vivo Experiments

2.3.1  Subjects

Five healthy male volunteer®7-32 years old were re-
cruited for the experiment. Informed consent was obtained
from all the subjects prior to the experiment.

2.3.2  Experimental setup

The optodes of theNIRtgs (Hamamatsu Photonics K. K.
were securely placed on the skin surface over the radial digi-

3 Results

Figure 1 shows the average changeuip, ©s, HbO,, HDR,
T—Hb, andSO,.trs during rest, arterial occlusion, and after
release of occlusiodbO, decreased and HbR concomitantly
increased in a linear fashion following the onset of occlusion.
Thereafter, the rate oHbO, decline was attenuated and
reached a plateau after approximately 360 s of occlusion, at
which point, the stable minimum value wa$.030
+0.005 mMfor HbO, and24.1+5.6% for SO,tgs ON aver-
age. T—Hb showed little change throughout arterial occlusion.
The initial rates ofHbO, and SO, trs decline calculated by
linear regression in the five subjects wer@.82
+0.09u MO, s 1 and0.13+0.015 % S, respectively.

Figure 2 shows the average changeSi®,.trs and SvO,
during arterial occlusion and recovery. Figure 3 shows the
average change iRPvO, and P,,,O,. No significant differ-
ences were found betweer8O,1g5(24.1+-5.6%) and

torum extensor muscle. The optode separation was set at 3 cnBv0, (26.2+6.4) or between P,,;O, (14.7+-1.0 Torp and

to monitor changes in muscle oxygenation at a depth b5

PvO, (17.3=2.2 Tor) at the end of arterial occlusion.
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Fig. 1 Changes of NIRgs parameters in human muscles under arrested arterial circulation. ua, absorption coefficient; us’, reduced scattering
coefficient; HbR, deoxygenated hemoglobin; HbO,, oxygenated hemoglobin; T-Hb, total hemoglobin. The wa and us’ are plotted in units of
common logarithm.

4 Discussion SvO,. In the study reported on by Boushel et&lthey used

Although recent studies have investigated the optical proper- continuous wave spectroscopy which provides only a relative
ties of highly scattering medium or tissue oxygenation using value ofO, saturation. So it is not possible to make an accu-
NIR7rs >*>** none have compared thie vivo SO, 1rs indi- rate comparison of the NIRS values obtained by Boushel
cators and blood saturation. This study is original in two €t al. and those which we obtained witHRzs that provides
ways. First, it compares microvasculat86, determined by ~ the absolute value. Th&vO, values they obtainéd are
NIRTgs With that of blood samples obtained during arrested around 60% from 6 to 9 min., which is similar to our values
arterial blood flow in the human forearm, and second, it dem- (50%—-60% at that time. TheSvO; further declined during

onstrates an agreement between valuesS@h.trs and the last minute of arterial occlusion and reached 26.2% in this
SaQ (Sv0,) at the end of occlusion. study. _ _ _ _

During arterial occlusionSO,.trs and SvO, declined pro- Durlng the first half of arterial occlusioR,,,O, dgcreased
gressively andS0,.1rs Was finally reaching a plateaGvO, progressively and reached a plateRBwO, also declined and

from the first half of occlusion represents te saturation of ~ the values at the end of occlusion agreed with thoségD,,

the conducting vessels which gradually becomes equilibratedindicating that there was n@, gradient between muscle tis-
with lower O,-saturated blood derived from the exchange ves- Sue and the vessels, and there was actually a decreased avail-
sels near the muscle tissue in the latter half of occlusion. ability of mitochondrialO,. In this case, mitochondrial respi-

Therefore SO, trsat the end of arterial occlusion agreed with ~ ration might have been attenuated resulting in anaerobic, as
opposed to aerobic, ATP production. In fact, we have previ-
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Fig. 2 Changes in hemoglobin saturation (SO,) in venous blood and

muscle tissue measured by near infrared time-resolved spectroscopy Time (min)

(NIRtgs) during resting arterial occlusion. SO, s, hemoglobin satu-

ration in muscle tissue measured by NIRgs; SVO,, venous hemoglo- Fig. 3 Changes in muscle interstitial PO,(P;,O,) and venous
bin saturation. PO,(P,O,) during resting arterial occlusion.
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ously reported that phosphocreatiffCr breakdown occurs

during the latter half of arterial occlusicrThis evidence con-
firms that stabilizedP,,;O, value is no different fromPGO,

values in blood samples at the end of occlusion in this study.
This testifies that blood samples obtained at the end of occlu-

sion can provide information 0@, saturation of the exchange
vessels.
The minimumSO,_1rs value at the end of resting occlu-
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