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Abstract. The pseudo-magnetic field, an artificial synthetic gauge field, has attracted intense research interest
in the classical wave system. The strong pseudo-magnetic field is realized in a two-dimensional photonic
crystal (PhC) by introducing the uniaxial linear gradient deformation. The emergence of the pseudo-
magnetic field leads to the quantization of Landau levels. The quantum-Hall-like edge states between
adjacent Landau levels are observed in our designed experimental implementation. The combination of
two reversed gradient PhCs gives rise to the spatially nonuniform pseudo-magnetic field. The propagation of
the large-area edge state and the interesting phenomenon of the snake state induced by the nonuniform
pseudo-magnetic field is experimentally demonstrated in a PhC heterostructure. This provides a good
platform to manipulate the transport of electromagnetic waves and to design useful devices for information
processing.
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1 Introduction
Many interesting phenomena emerge under the strong magnetic
field, for example, the Landau level (LL) and quantum Hall
effect.1,2 By artificially introducing the deformation of the
graphene lattice by the strain, the Dirac points of the graphene
generate a shift in the momentum space, resulting in an effective
gauge field of vector potential.3–8 The behavior of electrons in
this system is similar to that in a genuine magnetic field; there-
fore, the synthetic gauge field is called a pseudo-magnetic field
(PMF). The PMF leads to quantization of LLs and quantum-
Hall-like effects and possesses opposite signs at two inequiva-
lent valleys, so that the time-reversal symmetry is not broken in
a system, which provides a new method to control the motion of
electrons.

Unlike electronic systems, photons in a photonic crystal
(PhC) are uncharged and do not directly couple to an external

magnetic field; therefore, various exotic phenomena related to
magnetic fields are not accessible in a PhC system (for example,
the Aharonov–Bohm effect and Landau quantization). Many
works have been studied on how to construct PMFs by using
artificial metamaterial in various classical wave systems.9–23

Similar to the strained graphene, for example, the PMF can
be generated by the uniaxial or triaxial deformation in sonic
crystals10–13 and PhCs.14–21 Different from the perpendicular
PMF generated by the shift of Dirac points, many works have
been discovered that show the various in-plane PMFs can be
obtained by spatially varying mass terms. This synthetic gauge
field has been utilized to trap the photonic modes in the photonic
Dirac cavity guide,24,25 guide the topological modes in the Dirac
waveguide,26,27 and particularly realize the chiral LLs.28

Graphene applied a nonuniform perpendicular magnetic or
PMF possesses peculiar properties, such as snake state29–35 and
quantum confinement.36 The snake state describes the motion of
the trajectory of electrons at the boundary where the magnetic
field changes its direction. By analogy to this phenomenon,*Address all correspondence to Yuting Yang, yangyt@cumt.edu.cn
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the snake state has been studied in an elastic wave system.37

However, the nonuniform PMF perpendicular PMF generated
by the shift of degenerated Dirac points in the momentum space
has not been experimentally demonstrated in a PhC system.

In our work, we theoretically and experimentally realize the
uniform and nonuniform PMFs in PhC heterostructures when
the uniaxial linear gradient deformation is applied and the lattice
symmetry is decreased. The edge state and the snake state in the
gap between adjacent LLs are directly observed in the measured
distributions of electric fields.

2 Photonic LLs and Edge States
We construct a two-dimensional PhC heterostructure in a
spatially nonuniform PMF. The PMFs applied perpendicular to
the PhC are constant within each of the three regions,

BzðyÞ ¼

8><
>:

B0; y > d
0; jyj < d
σB0; y < d

;

where B0 along theþz direction is positive, and σ gives the ratio
of two PMFs on the upper and lower regions of a PhC hetero-
structure. We define the synthetic PMF as B0 when a PhC has 21
layers in the y direction. As shown in Fig. 1(a), the upper and
lower experimental samples both have 11 layers corresponding
to the PMF strength 2B0 and the parameter σ ¼ 1. The upper
and lower regions of the PhC sample satisfy the mirror sym-
metry [see the red and blue boxes in Fig. 1(a)]. The uniform

PMF in our designed structure is realized in a gradient PhC with
a linearly uniaxial deformation along the y direction, which uses
the same method as Ref. 12. As shown in Fig. 1(b), we first
consider a triangular lattice PhC composed of metallic cylinders
embedded in the air, in which the lattice constant is a ¼ 22 mm
and the radius of the cylinder is 4 mm. In the calculated TM (Ez
along the z axis) band, degenerated Dirac cones appear at K and
K0 points [see Fig. 1(c)]. When the filling ratio of the unit cell
maintains unchanged and the metallic cylinders are deformed
into an elliptical shape, which means the symmetry of the
PhC is reduced from C3v to C2v, the Dirac cones shift along
the K-K0 direction in the Brillouin zone, but do not open the
bandgap. The two axes of the metallic ellipse are represented
by p and q. The shift of the Dirac cones denoted by δkx has
a linear relation with ðp − qÞ∕p [see Fig. 1(d)] and gives rise
to the vector potential ~A ¼ ðδkx; 0Þ.12 As we apply a linear gra-
dient deformation in the y direction and translational invariance
along the x direction, the p of mth row of the PhC structure is
modulated linearly as

pm ¼ p1 þ ðpM − p1Þðm − 1Þ∕ðM − 1Þ;

where p1 and pM are the length of elliptical pillars at the first
and last layers of a gradient PhC, p1 and pM are fixed as 3.3 and
5.3 mm, respectively, and the number of layers is modulated.
Based on the relation between ~A and PMF ~B ¼ ∇ × ~A, the linear
variation of AxðyÞ causes the PMF Bz ¼ AxðyÞ∕y along þz and
−z axes for K and K0 valleys in PhCs. Without breaking
the time-inversion symmetry, this method can produce similar
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Fig. 1 (a) Experimental sample of a heterostructure with nonuniform PMFs, consisting of two re-
versed gradient PhCs and a transition region. The PMF applied perpendicular to the PhCs is zero
in the central yellow region, while has the opposite direction with the same magnitude in the upper
and lower half parts. The sign of the PMF is referred to the K valley. (b) Left panel: Schematic of
the unit cell of the PhC and the Brillouin zone with high symmetry points Γ, K , and K 0. Right panel:
shift of Dirac cones at K and K 0 valleys when metallic cylinders are deformed into elliptical shapes.
(c) Band structure of the PhC with different sizes of metallic pillars. (d) Linear relation between
ðp − qÞ∕p and the shift of Dirac points represented by δkx . (e) LLs of a gradient PhC under a strong
PMF. (f) Distribution of eigen-electric fields of n ¼ 0 LL and the edge states as a function of wave
vector kx .
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phenomena caused by external real-magnetic fields. As shown
in Fig. 1(e), the Dirac cones at the K and K0 valleys become
discrete energy level plateaus,

En ¼ E0 þ signðnÞ
ffiffiffiffiffiffiffiffiffiffiffi
jnjωc

p
; ωc ¼ v

ffiffiffiffiffiffiffiffi
2Bz

p
;

where n is the LL index, ωc is the photonic analog of the cyclo-
tron frequency, and E0 is the energy level of the Dirac point.
The gradient PhC has M ¼ 61 layers of metallic pillars in the
y direction and obtains a uniform PMFB ¼ 0.016a−2 in Fig. 1(e).
The LLs are dispersive in this designed PhC structure, and
flatter energy levels can be obtained by tuning the shift of
Dirac cones. Therefore, the strong PMF in the gradient PhC
leads to the quantization of photonic LLs.

We then study the nonuniform PMF in a PhC heterostructure.
As displayed in the schematic of Fig. 2(a), the upper and lower
parts of the heterostructure have the same 21 layers but the re-
versed gradient; hence the PMFs of the two parts are antiparallel
and the defined ratio σ ¼ −1 at K valley. The LLs are dispersive
in this structure. Away from the K and K0 points, the LLs split
into two bands along one direction in the momentum space due
to the nonuniform PMF. The bands between adjacent LLs cor-
respond to propagating edge states located at the middle region
of the PhC heterostructure. Since the time-reversal symmetry is

preserved, the edge states at distinct valleys propagate in oppo-
site directions. The distributions of Ez eigen-electric field at
selected k points for n ¼ 0 LL and edge states are shown in the
right panels of Fig. 2(a). For the parallel and asymmetric case of
σ ¼ 0.5 corresponding to the combined 21- and 41-layer PhCs,
LLs split into two bands along two directions, which become
more complicated, and additional bands emerge between adja-
cent LLs, as shown in Fig. 2(b). We add three layers of metallic
cylinders in the middle region as transition layers (PMF is zero)
displayed in Fig. 2(c). Here, the number of layers is M ¼ 11.
The various LLs are deformed, and additional bands indicated
by yellow regions correspond to the interesting electromagnetic
transport, the so-called “snake state.” The parallel PMFs in the
two PhCs cannot cause the snake states as displayed in Fig. 2(d).

The PMF in the PhC leads to the transport phenomenon of
edge states, which is similar to the quantum Hall edge state. The
energy bands between the different LLs represent the dispersion
of the edge states, as shown in Figs. 1(e) and 1(f). The localized
edge state at the upper boundary gradually evolves into bulk
states distributed in the middle of the structure (n ¼ 0 LL)
and finally becomes the edge state at the lower boundary near
the K valley. Here, we experimentally observe the propagation
of the edge state. As shown in Fig. 3(a), we place an excited
source marked by a red star in the left upper corner of a gradient
PhC indicated by the red region. The experimental sample

Fig. 2 (a) Quantization of LLs of two reversed gradient PhCs with M ¼ 21 layers possessing
antiparallel PMFs for σ ¼ −1. Right panel: distributions of eigen-electric fields. I: n ¼ 0 LL at
k ¼ 0.75ðπ∕aÞ and normalized frequency f ¼ 0.791c∕a. II and III: edge states at k ¼ 0.6ðπ∕aÞ and
f ¼ 0.783, 0.796c∕a. (b) LLs in a heterostructure with the same sign but unequal PMFs. The upper
and lower regions have 21 and 41 layers, respectively, for σ ¼ 0.5. (c) Snake state in a nonuniform
PMFs with M ¼ 11 layers at each gradient PhC. Right panel: electric field distribution of snake
state at k ¼ 0.6ðπ∕aÞ and f ¼ 0.766c∕a. (d) Dispersive LLs in a heterostructure with parallel PMFs
at two PhCs without the snake state dispersion for σ ¼ 1. Right panel: electric field distribution at
k ¼ 0.6ðπ∕aÞ and f ¼ 0.780c∕a.
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consists of 11 layers of aluminum pillars, and other parameters
are the same with the simulations in Fig. 1. The right- (left-)
propagating edge state are selectively excited on the top boun-
dary with a positive (negative) group velocity in the simulations
and experiments, as shown in Figs. 3(b) and 3(d), corresponding
to 10.72 and 10.7 GHz, respectively, between n ¼ 0 and
n ¼ −1 LLs. The chiral edge state between n ¼ 0 and n ¼ 1
LLs spatially distributes at the bottom boundary, shown in
Fig. 3(c), which has a large-area distribution of the electric field,
in contrast to the localization of edge state on the top side.
Owing to the limitation of the scanning field in experiments,
the measured area of the electric field is a part of the PhC sam-
ple, indicated by a white rectangle in the simulated distribution.
An aluminum strip regarded as a perfect electric conductor at the
microwave region is placed at the top boundary to prevent the
edge state from scattering outside, and other boundaries are clad
with absorbing materials. To describe the confinement of the
edge state on the top boundary, the parameter Cs is defined as38

Cs ¼
Z
Πs

jEzj2dx dy∕
Z
Π
jEzj2dx dy;

where Π is the whole area of the PhCs, Πs denoted by the green
dotted box is the edge region as shown in Fig. 3(b), and jEzj2 is
the electric field intensity. As shown in Fig. 3(e), the large Cs
imply well-localized microwave on the top boundary. The simu-
lated and measured transmission spectra between input and out-
put ports are displayed in Figs. 3(f) and 3(g). The frequency
region with high transmission marked by yellow is consistent
with the edge state dispersion between n ¼ 0 and n ¼ −1
LLs in Fig. 1(e). At n ¼ 0 LL with 10.78 GHz, the bulk modes
are excited, in which electromagnetic waves spread into the
central part.

3 Transport of Interface States and Snake
States

In the nonuniform PMFs constructed by two reversed gradient
PhCs, the interface state distributes in the middle domain with a
large area displayed in Fig. 2(a), in contrast to the edge states,
which are spatially tightly confined on the top boundary of
a gradient PhC with the uniform PMF in Fig. 3(b). Hence,
it can carry a large amount of energy to design devices, for
example, the photonic and acoustic large-area waveguides.39–42
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Fig. 3 (a) Experimental sample of two reversed gradient PhCs. Red and blue stars indicate the
positions of the excited source. (b) and (c) Simulated distributions of electric fields of edge states at
the top and bottom boundaries of a gradient PhC, corresponding to 10.72 and 11.0 GHz, respec-
tively. (d) Experimental measurement of the edge state at the top boundary at 10.7 GHz.
(e) Defined parameter Cs denotes the confinement of the edge state. (f) and (g) Transmission
spectra in the simulation and experiment.
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To demonstrate the transport of the large-area interface state,
we implement the experiments. The experimental sample is
displayed in Fig. 3(a). The excited source is placed at the left
of the PhCs marked by a blue star. The four boundaries of the
experimental sample are all wrapped with absorbing material.
The simulated and experimentally measured electric fields are
shown in Figs. 4(a) and 4(b), which indicate that the interface
state distributes in the middle domain corresponding to the
dispersion between n ¼ 0 and n ¼ 1 LLs. The normalized elec-
tric field intensity at x ¼ 490 (560) mm along the y direction is
shown in Figs. 4(c) and 4(d). The electric field concentrates and
distributes uniformly in the middle domain.

At the interface of two domains with opposite magnetic
fields, the cyclotron motions of electrons are driven by Lorenz
force and present snake-like orbits. By analogy to this interest-
ing transport, the snake state can be achieved in a PhC system.
We design a structure composed of two reversed gradient PhCs.
The experimental sample is shown in Fig. 1(a), in which the
upper and lower parts have 11 layers. Fewer layers lead to a
large PMF when the variation of the vector potential is fixed,
which means the elliptical pillars at the top and bottom remain
unchanged. The PMFs of two gradient PhCs have equal mag-
nitudes but opposite directions. There are three transition layers
of the circle pillars placed in the middle of the sample (yellow
region), which have zero PMF. The larger transition layers lead
to the wider frequency range of the snake state. The excited
source is placed at the left of the PhC, as indicated by a red star
in Fig. 1(a). The simulated and experimental distributions of the
snake states are shown in Figs. 5(a) and 5(b). A disorder is in-
troduced by randomly moving the position of three PhC pillars
located at the bend of the wavy trajectory of the electromagnetic
waves. The measured electric field demonstrates the propaga-
tion of the snake state is unaffected, as shown in Fig. 5(c).
However, the transport of the snake state in PMF is fragile when
the disorder or defect is introduced on the propagating path,
which distinguishes it from the edge state in the quantum spin
Hall effect.43,44 The intensity of electric fields at three positions
along the y direction, as shown in Fig. 5(e), experimentally dem-
onstrates the bending property of the snake state, which agrees
with the simulation in Fig. 5(d).

4 Conclusion
The PMF is achieved in a two-dimensional PhC when the lattice
remains unchanged and metallic pillars are uniaxially deformed
along the y direction. A linear gradient PhC has a spatially
uniform and strong PMF, which leads to the quantization of LLs
and quantum Hall-like edge state confined on a boundary. The
nonuniform PMF in a heterostructure composed of two reversed
gradient PhCs has a large-area interface state in the middle
domain. By adding a transition region with a zero PMF, the
snake state arises from the deformed LLs. We implement the
experiments to demonstrate the transport of the edge state and
snake state. Our proposed structures have unique advantages
in obtaining nonuniform PMFs, such as easy implementation,
which provides a good platform to observe the manipulation
of electromagnetic waves caused by the PMFs.
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