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Abstract. The Square Kilometre Array Observatory (SKAQO) will build the most sensitive radio
telescopes on Earth. To address fundamental questions in astrophysics, fundamental physics, and
astrobiology, it will require processing and handling complex and extremely massive data close
to the exascale, hence constituting a technological challenge for the next decade. Approximately
600 Peta-bytes (PB) of calibrated data will be delivered to the network of SKA Regional Centers
(SRCs) worldwide. As a world-leading scientific instrument, SKAO aims to pursue the best
practices in scientific methodology. Remarkably, it includes the reproducibility of its data as
a metric of success. We present the Spanish prototype of an SRC (SPSRC), which supports
preparatory scientific activities for the future SKA projects. These include science with SKA
precursors and pathfinders while promoting Open Science practices as a way to enable scientific
reproducibility. We describe the key developments and components of the SPSRC that align
with these objectives. In particular, we describe the performed work on hardware and cloud
computing infrastructure, science archive, software and services, user support and training, and
collaboration with other SRCs. The resulting SPSRC platform is flexible enough to host hetero-
geneous projects while being scalable toward the demanding SKA requirements. © The Authors.
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1 Introduction

The Square Kilometre Array Observatory (SKAO) is an international effort to build the largest
and most sensitive radio telescopes. It is designed as a “physics machine” for the 21st century
that will address fundamental scientific questions in astrophysics, fundamental physics, and
astrobiology (see further details in the SKA science book'). The SKAO will be a single observa-
tory organized at three different sites, with the headquarters being located in the United Kingdom
and two telescope sites, in Africa and Australia. SKA will be composed of thousands of antennas
distributed over distances of up to 3000 km and thus constitute the largest radio telescope on
Earth. Australia will host 131,000 low-frequency dipoles (SKA-low), operating between 50 and
350 MHz and reaching maximum baselines of up to 65 km; South Africa will host 197 dishes
(SKA-mid), covering the frequency range from 350 MHz to 15.4 GHz (with the goal of reaching
24 GHz), with baselines up to 150 km.?

The construction phase will take place from 2021 to 2029, with science commissioning
starting around 2023. SKA is recognized as one of the “big data” challenges for the next decade.
By the time the SKA is in steady-state operations, SKA-low and SKA-mid will produce, respec-
tively, a raw data rate of ~2 Pb/s (reduced to ~7 Tb/s before arrival to the central signal
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processor) and 20 Tb/s. The SKA science data processor (SDP) will deliver up to 300 PB of
calibrated data (called observatory data products, ODPs) from each telescope to a network of
SKA regional centers (SRCs).? This model—a network of distributed facilities—has been used
in the past by astronomy and particle physics communities to facilitate scientific analysis for
state-of-the-art scientific instruments and infrastructures. The Large Hadron Collider (LHC)
relies on a distributed computing infrastructure since its early days. Similarly, the Atacama
Large Millimeter Array (ALMA) created a network of ALMA Regional Centers (ARCs) as
an interface between the user community and the observatory. These centers are a key instrument
to support scientific communities that carry out a variety of tasks, including preparation of obser-
vations, quality assurance of the data, archive operations, data reduction support, science oper-
ations, helpdesk, and commissioning.4

In the case of the SKAO, a combination of three main factors led to the decision of a
distributed model: (1) the high data rates of the SKA telescopes, which impose extremely
demanding computational requirements; (2) the data volumes, which are so large that direct
delivery to users is not feasible; and (3) a globally distributed community that needs to work
collaboratively.’ The SRC network will provide direct access to ODPs for an international com-
munity of collaborating teams and organizations, as well as to the tools and processing power for
their transformation into science-ready data (i.e., advanced data products, ADPs) and subsequent
scientific exploitation. Preliminary studies analyzed different computing infrastructure to opti-
mize their use,’ and how they fulfill data processing requirements for the Low Frequency Array
(LOFAR), one of the SKA-low pathfinders.6

The SRC network was conceived in September 2016, when the SKA organization estab-
lished the SRC Coordination Group, with the mandate to define the requirements of the
SRC network. This group (which includes LVM) identified an initial set of requirements
associated with the six following areas: governance, science archive, accessibility and software
tools, storage capacity, data processing capacity, and network connectivity.” Furthermore,
international projects and initiatives started contributing to the design of the SRCs, analyzing
the requirements from a regional point of view. The European project “Advanced European
Network of E-infrastructures for Astronomy with the SKA” (AENEAS),® in which several
of these authors participated, carried out, among other things, an estimation of the storage,
computing, and data ingest capabilities required by a European SKA Data Centre. As well,
they issued different reports with recommendations on the design of user interfaces for data
discovery,’ data processing,'’ and data transport.'!

Other examples of SRC initiatives are the “Exascale Research Infrastructure for Data in
Asia-Pacific astroNomy using the SKA” project (ERIDANUS),'? and the Canadian Initiative
for Radio Astronomy Data Analysis (CIRADA)."> ERIDANUS is a design study focused on
the prototyping of a data-intensive research infrastructure between China and Australia, and
CIRADA is aimed at building the computing capacity required to scientifically exploit three
radio telescopes [Very Large Array (VLA), Australian Square Kilometre Array Pathfinder
(ASKAP), and Canadian Hydrogen Intensity mapping Experiment (CHIME)] and paving the
way to a future Canadian SRC.

At the end of 2018, the SRC Steering Committee (SRCSC) took over from the SRC
Coordination Group to take the SRC network from design to implementation on a global basis.
This committee consists of one representative from each SKA member country that is carrying
out activities to develop an SRC, as well as several representatives from the SKAO. At the time
of writing, the countries participating in the steering committee are: Australia, Canada, China,
France, Germany, India, Italy, Portugal, South Africa, Spain (represented by LVM), Sweden,
Switzerland, The Netherlands, and United Kingdom. In addition, Japan and South Korea are
observer countries in the committee. It is noteworthy that while the pace and the phase of the
individual SRC developments in each country are different, in 2019, the Chinese SRC prototype
was the first one to deploy dedicated infrastructure that was used to simulate SKA data transfer
and processing.'* The steering committee is coordinating these national initiatives to develop the
first global network of SRC prototypes. To this end, seven working groups were established,
focused on the following areas: SRC network architecture, data logistics, operations, federated
computing and data software services, SKA science archive, compute, and science user
engagement.
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Currently, some SKA precursor and pathfinder telescopes are already producing such large
data volumes that distributing them to individual users is unfeasible. Instead, users are required
to access a common service that provides the necessary framework. The archives and science
platforms of these pathfinders are thus valuable testbeds for the SRCs. The scientific exploitation
of the data generated by these telescopes requires developing computing centers where data
processing can be centralized, minimizing the transfer of large volumes of data around the world,
and with sufficient capacities to store them and to provide archive services. Examples include
Ilifu in South Africa,'® which centralizes the processing of MeerKAT data in a cloud platform,
and the Pawsey Supercomputing Centre in Australia,'® which provides specialized services for
the ASKAP. The Canadian Advanced Network for Astronomy Research has built a science
platform!” for data intensive astronomy that brings software to the data and provides user stor-
age, user group management, or interactive and persistent virtual machines (VM), among other
services. In Australia, the Commonwealth Scientific and Industrial Research Organization has
built the ASKAP science data archive that provides access to data (i.e., images, image cubes, and
catalogues) using both a virtual observatory and web services.'®

The next few years are crucial to building expertise on processing and analyzing large and
complex radio data to benefit scientifically from the SKAO telescopes. The community is work-
ing on it in different ways, e.g., via exploring synergies or participating in SKA science working
groups. It is worth highlighting that the use of SKA precursors and pathfinder telescopes' is key
for the community to get prepared for exploiting SKA and to optimize the scientific analysis of
the SKAO data. In addition, a series of science data challenges are being released to the com-
munity by the SKAO'" since November 2018, and this is planned to continue until the end of
2024. The challenges entail analysis of simulated SKA data products that resemble the type of
data that the SKAO will produce, with each separate challenge exploring a particular aspect of
the SKA data products. The second data challenge receives support from international process-
ing facilities where each participant team needs to use one computational facility to access and
process the data mimicking how the future SRCs will work with the SKA data.’*?! The second
data challenge also includes a reproducibility award for those who demonstrate reusable methods
and reproducible results.

SKA will be a world-leading facility and as such it aims to follow and lead best practices in
scientific integrity as those promoted by the open science movement. The concept of open
science facilitates the reproducibility of scientific studies by enhancing the accessibility, under-
standability, and reusability of their data and methods. Furthermore, open science has impacts on
areas related to some of the United Nations Sustainable Development Goals. In particular, the
UNESCO recommendation on open science acknowledges how this initiative contributes to
democratize information, by fostering enhanced sharing of scientific knowledge among scien-
tific communities while promoting inclusion of underrepresented or excluded groups. Also,
it contributes to reducing inequalities in the access to infrastructures.?

The adoption of open science values is rooted in SKA’s foundational principles,” with the aim
to promote collaborative, transparent, and accessible scientific research. SKA is the first facility
including reproducibility as a scientific metric of success, and the SRC network will preserve
ODPs, ADPs, and the workflows and tools used to generate them. We have contributed to the
inclusion of open science in key documents for the SKAO (e.g., SKAO prospectus or the SKA
construction proposal®) and to including reproducibility as a metric that will be monitored during
SKAO operations.”> The SKAO and the SRC network are working to enable best practices
that make data and other digital research objects (e.g., algorithms, tools, workflows, protocols,
or services) “findable, accessible, interoperable, and reusable” (FAIR). In particular, the SRC
Coordination Group defined different requirements related to open science,’* highlighting the
requirement of “open access,” which relates to the need for public links to SKA science data
products, and the “reproducibility: provenance and workflow preservation” requirement, mean-
ing that the SRCs must be capable of saving the provenance and the workflow associated with
the data products generated at each SRC (see Sec. 5). Accordingly, open science introduces
requirements into several SRCSC elements, and in particular to the SKA science archive. For
example, the SKA Science Archive Working Group of the SRCSC is defining how SRCs will
implement the FAIR principles and interoperate with the International Virtual Observatory
Alliance (IVOA) ecosystem. The SKA-link project was led by the Instituto de Astrofisica de
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Andalucia (IAA-CSIC) and gathered key members of the SKA SDP consortium and SRC ini-
tiatives, together with experts on cutting-edge e-Science. The goal of the SKA-link was to iden-
tify best practices and technologies to successfully exploit SKA data in SRCs, with an emphasis
on tools that facilitate the reproducibility. Furthermore, the “European Science Cluster of
Astronomy and Particle physics ESFRI research infrastructures” H2020 project (ESCAPE)>
brings together the SKA community with others in the astronomy and particle physics fields,
aiming to build a multidisciplinary open environment in which they can share data, tools, and
methods according to the FAIR principles. We participate in providing different use cases for
the development of the ESCAPE Science Analysis Platform”® and prototyping the integration of
its resources into the European Open Science Cloud.

In this paper, we present the development of the Spanish Prototype of an SRC (SPSRC). The
TAA-CSIC is the Spanish institution that coordinates the scientific and technological activities
related to SKA in Spain since 2011. It is in close contact with the science community, e.g., by
supporting and facilitating the participation in the SKA science working groups or organizing
SKA-related. The SPSRC initiative came as a natural consequence of these coordination activ-
ities, combined with several decades of experience in radio interferometry, e-Science, and open
science applied to radio astronomy. The research areas of the IAA-CSIC astronomers overlap
with many of the areas in which the SKA will be fundamental,”” making the TAA-CSIC an ideal
environment for building the SPSRC. The research topics range from star and planet formation,
trans-neptunian objects and centaurs, galaxy evolution (including star formation or radio-jets),
the Milky Way center, transient phenomena to cosmic explosions. The application of Very Long
Baseline Interferometric (VLBI) techniques (which provide the high angular resolution SKA will
achieve) is transversal to all these fields.

The IAA-CSIC participated in the design of the SDP until it passed the critical design review,
contributing to the SKA preservation and delivery subsystems. Since then, IAA-CSIC has con-
tributed to defining, designing, and implementing the SRC network and took part in several of
the initiatives mentioned above (SRC Coordination Group, SRCSC, AENEAS and ESCAPE
projects, etc.). Currently, the collaboration with other SRCs through the SRCSC and its working
groups is key to ensuring interoperability and the success of the SRC network. Furthermore,
the IAA-CSIC carries out research and development activities in other areas of relevance for
the SKAO and SRC network, i.e., e-Science and open science. For example, we have actively
participated in the IVOA, developing software for data analysis and contributing to standards for
astronomy; we contributed to developing the Astronomy Edition of the Taverna workflow man-
agement system,”®?° and we participated in building the research object concept,” a powerful
tool for achieving open science.

The SPSRC aims to support preparatory scientific activities for SKA key science projects and
SKA precursors/pathfinder science while promoting synergies and best practices on open sci-
ence and FAIR principles. Open science at the SPSRC not only aims to enable scientific repro-
ducibility but also to open up the facility to the whole astronomical community beyond that of
radio astronomy alone, contributing to build a transversal facility that facilitates wavelength-
agnostic analysis. In the next sections, we explain the deployment of the hardware (Sec. 2) and
the cloud infrastructure providing computing and storage resources (Sec. 3). Sections 4 and 5
describe the SPSRC cloud services and the tools enabling collaborative analysis as well as open
science practices, including the prototyping activities to develop the science archive. The user
support services and training activities are presented in Sec. 6, and the operational and man-
agement aspects of the SPSRC are described in Sec. 7. Finally, in Sec. 8, we discuss the results
achieved so far and describe the developments to be accomplished in the near future.

2 Hardware Platform

The technical specifications required for the SRCs have been estimated by the SRC Coordination
Group as well as by the AENEAS project.’**! These specifications include aspects related to
processing and storage capacity or network connectivity. They are further detailed in the SRC
global size estimations document® for computing and storage. The AENEAS project conducted
an analysis of computing load, data transfer, data storage, and network requirements for the
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European SKA Science Data Centre,*~°

and technologies.

The hardware characteristics of the SPSRC are based on the previously mentioned reports.
In addition, we surveyed 19 researchers representing seven IAA-CSIC research groups as a
representative sample of the use cases of the IAA-CSIC (see Sec. 1). They represent potential
future SPSRC users, and we gathered their current and future hardware and software require-
ments for data processing and analysis and were informed on their computational methodolo-
gies. In the second stage, we plan to investigate what requirements are needed for a wider
community at a national level. We also conducted face-to-face meetings with the seven research
groups to discuss the details of their particular science cases and data processing needs. In par-
ticular, data from the following topics were collected during these meetings:

including comparisons between different scenarios

o Data processing and software: Most relevant software tools used by the groups, as well
as the degree of automatization of their workflows. This helped us to understand
how the users manage their workflows and software. As well, the information was used
to detect potential incompatibilities between software versions required by different
groups.

o Data properties: Type and volume of data required to complete a project. We considered
raw data, data generated during data processing, and final data products that will poten-
tially need long-term storage.

o Computing infrastructures: Preferred and most common computing environments (e.g.,
desktop, clusters managed by the groups, supercomputers, or cloud platforms), including
their general specifications and how they are accessed and used.

During the interviews, the degree of radio astronomy expertise was assessed to identify areas
that would require science support from the SPSRC team. In addition, we identified which radio
telescopes are commonly used by the groups to know the type of data analysis that these groups
would conduct at the SPSRC.

Once we had gathered and analyzed the information from the survey and the interviews, we
discussed potential implementations that would satisfy the hardware and software requirements
of most of the groups. The emphasis was on those working with radio data and in particular with
data from SKA pathfinders and precursors. We considered what options would be the least dis-
ruptive for their current methodologies to ensure a smooth transition. We also took long-term
feasibility to expand and maintain the infrastructure into consideration. Our conclusions for
the technical requirements are:

o Computing environment. The most requested software could be divided into two catego-
ries: radio astronomy software (CASA, AIPS, Miriad, Gildas, Difmap, among others) and
visualization and analysis software (ds9, TOPCAT, Aladin, casaviewer, CARTA, VizieR,
among others). In terms of workflow and software management, the responses included
manual processing, execution of observatory pipelines, and development of own scripts
and own pipelines. Finally, personal computers or dedicated single-node servers with a
minority of high-performance computing or Cloud services were the preferences among
the researchers. In summary, most of the groups needed to use specific software with
specific versions, and they would feel more comfortable working with a self-managed
resource. This could be achieved with a cloud infrastructure, such as OpenStack, Open
Nebula, or VMware, where ad-hoc VM can be prepared with custom environments and
operating systems for each project.

e Memory and CPU. A significant number of projects could be conducted in a reasonable
amount of time with 16 core processors and 4 to 8 GB of memory per core. Some specific
projects would benefit from up to 40 CPU cores. Specific memory-intensive tasks could
be fulfilled in a fat node with 1 to 1.5 TB of RAM.

o Disk storage. Typical data sets range between 100 GB and 1 TB per project. We estimate
that 500 TB would cover the data storage needs of the interviewed groups. Most of this
disk space is used only temporarily for data processing for the duration of each project and
only 10% to 30% of the total space requested is needed for long-term storage of final data
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Fig. 1 Rack distribution (upright for space reasons).

products. Therefore, we estimate that the capacity suggested above would comfortably
accommodate all the research done by all these groups during at least 3 to 5 years.

o Interface and interaction. A significant fraction of the projects needs continuous real-time
interaction to tweak parameters and make decisions in the exploratory phase. Large un-
attended executions ranging from hours to weeks are not common but are expected in
the near future due to new automatic pipelines becoming available. The most commonly
desired options include a complete graphical desktop that can be remotely accessed with
graphical interfaces such as x2go, Apache Guacamole, RDP, or VNC/vncserver and access
through ssh, with X11 forwarding to open interactive windows.

This analysis of the technical requirements helped us make an informed decision on how
to distribute the resources between CPU, memory, storage, and networking within the available
budget. It was also considered the preliminary requirements in the SRC White Paper,’” which
was in preparation then. In particular, we decided to prioritize a large, high-performance storage
capacity and to set up an infrastructure with high horizontal scalability (scale-out) that will allow
to easily increase its computing capacity in future expansions.

From the survey, none of the ongoing or imminent projects explicitly required GPUs, so we did
not prioritize including GPUs in the infrastructure in this first stage. However, given the relevance
of the new data processing techniques that require GPUs (e.g., machine learning and deep learning
techniques) and how they can be used to address the big data challenge in areas such as object
detection and classification, we plan to include GPU nodes in the next hardware expansion.

After the requirements analysis and design phase in late 2019, we completed the procurement
and deployment of the hardware in 2020. This was placed in a rack as shown in Fig. 1. The figure
shows the distribution of the equipment and the organization of the deployment of cloud com-
puting components, which will be detailed in Sec. 3.

2.1 Storage

The SPSRC hardware storage platform consists of eight dedicated nodes for storage and three
nodes for monitoring. Each of the storage nodes has 32 solid state drive (SSD) disks, where one
disk is set apart for the operating system and the rest (31) for storage. The overall storage is
distributed as follows:

o Four storage nodes with 31 disks in each node. Each disk has a capacity of 7.6 TB,
providing a total of 942.2 TB.

o Four storage nodes with 31 disks each, with 3.8 TB per disk, providing a total of 471.2 TB.
o Three monitoring nodes with two disks each of 7.6 TB per disk, configured with RAID1.

Altogether this provides a total raw storage of ~1.4 PB. The hardware specifications for the
storage nodes are listed in Table 1. To manage all storage in an efficient way, Ceph was deployed
as the storage solution as described in detail in Sec. 3.3.

2.2 Computing
To deal with the demand for computing power, we deployed five compute nodes (to be managed

and virtualized with OpenStack, see Sec. 3.1) at the SPSRC infrastructure, providing a total of
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Table 1 Technical details describing the characteristics of the nodes used for mass storage.

Storage nodes for Ceph distributed storage

4 Dell PowerEdge R740xd CPU: 2 Intel Xeon 6230 (20C/40T)

RAM: 16 x 16 GB RAM DDR4 2933 MT/s
modules with a total of 256GB

Disks: 32 x 7.68 TB SAS 12 Gbps SSDs

Network: Broadcom 5720 with 4 1 GbE ports and
Mellanox ConnectX-5 EX with 2 100 GbE QSFP28

4 Dell PowerEdge R740xd CPU: 2x Intel Xeon 6230 (20C/40T)

RAM: 16 x 16 GB RAM DDR4 2933 MT/s
modules with a total of 256 GB RAM

Disks: 32 x 3.84 TB SAS 12 Gbps SSDs

Network: Broadcom 5720 with 4 x 1 GbE ports and
Mellanox ConnectX-5 EX with 2 x 100 GbE QSFP28

200 CPUs, with 40 cores per node. Four of the nodes are identical and provide 384 GB of RAM
memory, and the additional node has 1 TB of RAM memory. As a result, the most memory-
intensive computations can be transferred to the 1 TB node and the rest can be distributed over
the other nodes. The hardware specifications are listed in Table 2. All five nodes host two
7.68 TB SAS SSDs. As shown in the table, the two disks on each node are managed in RAID1
so that if one disk fails, there is another active disk ready for use at all times.

2.3 Networking

The demand for fast computational analyses on large amounts of data requires fast interconnec-
tion between computing and storage. The SPSRC hardware infrastructure combines 1 and
100 GbE ports for the internal network, storage, and computational nodes. The hardware spec-
ifications of the network switches are listed in Table 3. As shown in the table, we deployed a low-
speed 1 GbE network switch to manage traffic (deployment and monitoring) and a high-speed
100 GbE network switch to communicate computing and storage internally as well as enable fast

Table 2 Features of the nodes for computing.

OpenStack hypervisors

4 Dell PowerEdge R640 CPU: 2 Intel Xeon 6230 (20C/40T)

RAM: 24x 16 GB RAM DDR4 2933MT/s
moduleswith a total of 384 GB

Disks: 2 x 7.68 TB SAS 12 Gbps SSDs

Network: Broadcom 5720 with 4 1 GbE ports and
Mellanox ConnectX-5 EX with 2 100 GbE QSFP28

1 Dell PowerEdge R640 CPU: 2 Intel Xeon 6230 (20C/40T)

RAM: 16 x 64 GB RAM DDR4 2933MT/s
modules with a total of 1024 GB

Disks: 2 x 7.68 TB SAS 12 Gbps SSDs

Network: Broadcom 5720 with 4 1 GbE ports and
Mellanox ConnectX-5 EX with 2 100 GbE QSFP28
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Table 3 Network configuration for management, data transfers, and storage.

Networking

1 GbE networking for management Dell S3048-ON with 48 1 GbE ports

100 GbE for OpenStack and Ceph networking 2 Dell Z9100-ON with 32 100 GbE QSFP28 ports each

data processing. To provide network redundancy, we duplicated 100 GbE switches with
Multichassis Link Aggregation Group®® technology to avoid single points of failure. Computing
and storage nodes are redundantly connected by virtual link trunking as is the 1 Gbps manage-
ment network.

In addition to the internal connection between nodes, it is essential to provide a high-capacity
connection to and from the outside of the cluster, for example, to transfer large volumes of data
or to interconnect the cluster with external data centers. Communication with the exterior cur-
rently goes through the RedIRIS Spanish national research and education network, with 10 Gbps
fiber optics shared bandwidth. The IAA-CSIC network is planned to be upgraded to 100 Gbps
proximately, which will allow us to have a 10 Gbps dedicated channel for the SPSRC.

We studied the performance of different network links, in particular between the SPSRC and
the Chinese SRC prototype at the Shanghai Astronomical Observatory and the Italian National
Institute for Astrophysics. We used iperf*® to analyze and monitor the network quality and
performance.*’

3 Cloud Computing Infrastructure

In previous works, we have tested different cloud infrastructures, concluding that they are able to
fulfil the requirements for processing data from the SKA pathfinder LOFAR. As well, they are
offering interesting functionalities such as a straightforward and simple installation and main-
tenance of the software and the flexibility to adapt the infrastructure to the needs of the problem,
among others.® These functionalities cover the needs of the potential SPSRC users as explained
in Sec. 2. Thus, to govern all the SPSRC hardware, we deployed the most widely used enterprise/
science platform for cloud computing, i.e., OpenStack.*! The following sections detail how
OpenStack has been deployed and configured in the SPSRC.

3.1 OpenStack Deployment

OpenStack is one of the most active open-source projects in the world, being one of the essential
components for the creation of private and public Cloud infrastructure.*> OpenStack has become
the de facto standard for implementing cloud computing platforms through which to deliver
infrastructure as a service (IaaS) that will, in its turn, finally deliver the entire stack of services
related to platform as a service and software as a service in an extremely flexible and reliable
way. With OpenStack, pools of computing, storage, and network resources are governed, with
virtually infinite scaling capabilities. This is done via a command interface, API, and a control
panel, which facilitate all its management.

We deployed the OpenStack version Train** within the computing, network, and storage
infrastructure of the SPSRC described in Sec. 2. An important consideration when deploying
this IaaS is the possibility of future scaling of resources and especially of managing them in a
comfortable way, given the number of components. Thus, we use Kolla and Kayobe** as building
and deployment tools for OpenStack.

These tools allow the deployment of OpenStack in containers on top of on-premise machines,
as shown in Fig. 2. The advantage of this type of deployment is clear**: (a) containers (such as
docker®) offer an attractive solution to isolate and distribute all OpenStack services throughout
our SPSRC infrastructure efficiently, allowing to have production and test environments on the
same infrastructure managing different versions of services without interfering with each other,
(b) they enable a fast provision of nodes from a single startup host, in this way, the entire
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Fig. 2 Kayobe deployment for OpenStack.

orchestration of services and hosts is centralized, and (c) it is recommended to build systems
designed around performance, sustainability, reliability and scalability, basic principles of robust
container deployment, and key features for the design pillars of this SPSRC. Kayobe uses
Ansible*® to perform system configuration and then invokes Kolla—Ansible to perform the con-
trol plane service deployment. The latter also oversees the management of every level of the
system stack, as well as the hardware life-cycle. With the Ansible playbooks and environment
files in source control, a comprehensive infrastructure-as-code*’ system is delivered for a fast
provisioning. The source code for the SPSRC deployment is hosted and maintained in a private
Gitlab repository.

3.2 OpenStack Architecture

To tackle the design of the OpenStack deployment architecture, three types of requirements have
been taken into account: project constraints (computing and storage), operational requirements
(networks, service level agreements, and maintenance), and high availability (data, services, and
network). Based on these requirements, a logical architecture was designed in which the follow-
ing core services have been deployed within OpenStack:

(a) Computing:

e Nova: service that enables the provision of computing instances (virtual servers).

e Magnum: provides container orchestration engines for container deployment and
management.

(b) Storage:

e Cinder: block storage service to deliver volumes to VM deployed with Nova.
e Glance: component to upload and discover data assets such as operating system
images.

e Manila: shared file system service to provide a file sharing platform as a service.
(¢) Network and authentication:

e Neutron: services and tools to provide network connectivity as a service between
interface devices and the rest of the OpenStack services.

e Keystone: a component in charge of managing authentication and authorization of
services and users.

(d) Service level agreements and maintenance

e  Monasca: provides a highly scalable, performance, and fault tolerant monitoring-as-a-
service solution. It also offers an extensible platform for advanced monitoring of all
OpenStack services.

e Horizon: enables a web interface for the control panel of all user-manageable services,
such as nova, neutron, cinder, glance, and others.
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In addition to these core services being deployed, other services necessary to support and
monitoring the architecture have been used:

¢ Core support services

— MariaDB Galera Cluster: a database for high availability.
— RabbitMQ: a message passing broker service for service intercommunication.
—  Memcached: data caching for distributed memory.

— HAProxy: a tool for load balancing and high availability of services.

¢ Monitoring components

—  Prometheus: a monitoring and alerting toolKkit.
— Grafana: a query, visualization, and alert GUI to summarize infrastructure data.
— Kibana: a search and data visualization tool for data indexed in Elasticsearch.

Figure 3 shows the set of OpenStack services deployed within the SPSRC infrastructure.
Each of the blocks shown in the diagram are logical elements of OpenStack deployment.
Each of these blocks (storage, monitoring, computing, and controllers) are a group of physical
nodes with a set of replicated services (cinder, manila, nova, etc.), which supports high avail-
ability to the entire infrastructure, thus not having a single point of failure. The diagram also
shows the two networks currently active: 1 GbE for infrastructure management and monitoring
and 100 GbE for high speed communication between computing and storage. Figure 1 shows
the layout of all these nodes inside the SPSRC rack.

3.3 OpenStack Massive Storage Deployment with Ceph

A main pillar of the SPSRC cloud computing infrastructure is storage and archive management.
The explosive demand for data storage for the type of information processing that SKA will
produce requires distributed storage infrastructures with near-Exascale® capacity, with agility
in retrieving and archiving data and extreme reliability. The planning of mass storage in
OpenStack is important because of its impact on the available budget. Consequently, it will put
budgetary limits on the rest of the components in the infrastructure.

OpenStack with Ceph as the storage provider supports three types of continuous storage:
block storage, object storage, and shared file systems. The SPSRC OpenStack setup supports
block storage and shared file systems.
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Fig. 3 OpenStack architecture, logical design, nodes, network, and services.
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As discussed in the hardware section (see Sec. 2), the storage platform for OpenStack is
deployed on Ceph, and the SPSRC is currently using version Octopus® (version 15.2.9).
Ceph is a massively scalable, open, software-defined, storage system running on commodity
hardware and focused on cloud storage and emerging data-intensive workloads. Ceph provides
object, block, and file storage with a management console, a graphical user interface with cluster
visualization, monitoring, and diagnostic information, as well as usage and performance statis-
tics, and it is perfectly integrated with OpenStack.

The physical configuration of the storage platform with Ceph is composed of three Ceph
monitors (mons) and eight Ceph storage nodes (also known as Object Storage Daemons,
OSDs). First, we detail the Ceph OSD nodes and then the Ceph monitors. The Ceph OSD nodes
are referred to as spsrc-osd-[00-08], as shown in Fig. 3. Thus, four of the nodes have 31 SSD
disks, each with a capacity of 7.6 TB (1 drive writes per day (DWPD), i.e., many reads and few
writes), and the remaining four nodes also have 31 SSD disks but with a capacity of 3.8 TB each
(three DWPD, enabled for write durability), reaching a gross storage capacity of 1413.4 TB
(1.4 PB). Each of these nodes includes a service called ceph-osd for each individual available
SSD OSD, giving us a total of 248 OSD services (31 OSDs per node and eight nodes).

In terms of redundancy in Ceph, it was configured with a two-way replica option, which
means that there are two copies of everything in the storage. This translates to a reduction
of the total raw space of 1.4 PB to half, but on the other hand, we gain in reliability in terms
of data availability.

To coordinate Ceph management and provide high availability for this storage, the infrastruc-
ture has three Ceph monitor nodes called spsrc-mon-[1-3] (Fig. 3, monitoring). These three
nodes provide multiple services such as ceph-mgr, ceph-mds, ceph-mon, and ceph-crash to man-
age the cluster, to manage CephFS file systems, and to monitor and manage errors, respectively.

Ceph storage is perfectly integrated into OpenStack.’® As a result, four pools (i.e., logical
partitions for storage) have been created, taking advantage of the capacity and performance pro-
vided by the different types of disks. Currently, the system has the following pools:

¢ Manila: these pools have a IDWPD-configuration (many reads and few writes). They pro-
vide share file systems type storage, which allows multiple VMs to mount a shared file
system, similar to what would be NFS or HDFS file systems.

¢ Cinder-volumes: These have a 3DWPD configuration since the pools will be used to
provide massive block storage space for VMs.

o Cinder-backups: Provides a storage service for block storage backups, with a 1IDWPD
configuration.

e Glance: This pool allows storing all the images of operating systems and assets with a
IDWPD configuration.

4 Cloud Services

4.1 On-Demand Computing Resources

The SPSRC cloud computing infrastructure allows researchers to use different configurations of
VMs on demand. Several critical points define each configuration, in particular:

o Operating system: We have enabled a selection of the most popular Linux operating sys-
tems in the astronomy and astrophysics context. Via the OpenStack’s Glance service,
we offer the following Linux distributions to be used within VMs: CentOS 7/8, Ubuntu
18.04/20.04, and Debian 9/10.

e VM resources configuration: In OpenStack, flavors define the computing, memory, and
storage capacity of the computing instances for the Nova service. A flavor is a hardware
configuration available to a server that defines the size of a virtual server that can be
launched. Figure 4 shows the set of configurations available to create VMs. As shown
in the figure, three types of environments can be deployed, (a) general purpose VMs, with
very flexible configuration possibilities ranging from light workload VMs to high load
and heavy workload configurations, (b) VMs for SKA data challenge environments, with
medium and high workloads, and (c) VMs for cluster compute nodes, such as Kubernetes
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Name CPU RAM Local HD Target/Capabilities
spsrc.c2md 2 4GB 50GB R Light load
spsrc.c4m8 4 8GB 50GB
spsrc.c8m32 8 32GB 50GB Multi-purpose
spsrc.clé6mébd 16 64GB 50GB
spsrc.c24ml94 24 194GB 50GB
spsrc.c40mlEe0 40 1000GB 50GB S High load
sdc2.cl6m64 16 64GB 100GB Data challenges
sdc2.c32m128 32 128GB 10068 |
multihub.c10m24 10 24GB 50GB

K Clusters
multihub.c16m32 16 32GB 5068 |

Fig. 4 List of flavors and features within OpenStack.

or queue management systems such as Slurm. The flavor with which a VM is created is not
a limitation because, if required, the flavor can be changed easily at any time. That is, the
resources available to a VM can be scaled up or down depending on changing project
necessities and the server load.

Mass storage: By default, all VMs have their root disk (i.e., the virtual hard drive where the
operating system is installed) placed on the local SSD of a hypervisor (the VM monitor that
runs the VM) to enable maximum performance. In addition to the default storage of each
VM instance, it is possible to include two types of storage:

—  Block storage (cinder.volumes): This type of storage is the most common for down-
loading and working with large data sets. It allows users to create volumes of any size,
from megabytes to terabytes, that are mounted on VMs. This type of storage can be
detached from one instance and reattached to another while the data remain intact,
although it cannot be shared by more than one instance. It does, however, allow the
use of extralarge volumes to store data and offers an excellent read/write performance.

—  Shared file system storage (manila.ceph): This storage model is available for use in
VMs that want to access a shared data or software repository or a service marketplace
that can be shared by different users and services. The main advantage is that this type
of storage can be shared by many VMs, which gives a great flexibility in working
collaboratively. All VMs that are created can include a number of shared file system
spaces for different purposes. In particular, we have deployed a shared file system to
store a catalog of container images with software ready to use by any of the projects
hosted in the SPSRC (Sec. 4.4).

Networking: All VMs have a public IP and their own “fully qualified domain name
(FQDN)”, so they are directly accessible from the internet through a domain, following
this pattern: vm_name.iaa.csic.es, for example, spsrcOl.iaa.csic.es (Fig. 5). VM users
belonging to the group spsrc-group can set up services within a predefined and strict range
of ports, where only a subset of ports are open to outside.

Access mode to VM resources: Each VM can be accessed through two different protocols:
SSH and RDP. By default, all VMs provide SSH access to users through public/private
keys. In addition, Apache Guacamole is installed on the VMs. This tool provides a client-
less remote desktop gateway. That is, it offers streamlined connection to VMs from any
browser, supporting standard protocols, such as VNC, RDP, and SSH.

Range of ports

1GbE !
eeo e . .
JupyterHub M <vm-name>.iaa.csic.es
Services | ~DaCHS VO }
Guacamole — . External IP
100GbE

SPSRC —88—

Fig. 5 Network and external connectivity diagram.
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Fig. 6 The process of instantiating a VM in the SPSRC infrastructure.

e Core software and science services: Two sets of software are loaded onto each VM
during creation. One is the software of the selected operating system, which includes the
basic services, access/management accounts, monitoring services, and a desktop that are
installed using Ansible. The other set consists of services for science such as JupyterHub
and a container hub of containerized astrophysics and astronomy software as well as
services that are installed on demand by the user. These last two service types are detailed
in the following subsections.

Figure 6 shows the general process of creating a VM, including the stages previously
detailed.

4.2 On-Demand Elastic Clusters

The SPSRC infrastructure is a flexible resource, ready to deliver multiple configurations to
support terabytes of storage or offer data analysis tools and workflow services. To this end,
OpenStack allows elastic clusters, i.e., multiple independent clusters to be deployed on-demand.
Currently, the infrastructure hosts a Kubernetes cluster with a configuration consisting of
10 cores and 24 GB of RAM per node (from 2 up to 20 nodes) and supports several tens of
JupyterHub instances running at the same time. Similarly, with this configuration, it would be
possible to enable the OpenStack infrastructure with on-demand and flexible clusters®'* with
Slurm or HTCondor, for science-intensive jobs.

4.3 JupyterHub

A JupyterHub™ service makes it possible for users to publish and share their codes, with rich
annotations, and execute them interactively. Two types of JupyterHub setups are available in
the SPSRC. The first option allows any VM user to launch their individual copy of JupyterHub
for all available resources, such as mass storage, data sharing between users, and integration
with other container images to run within the JupyterHub interactive process. Alternatively,
users can request an on-demand cluster on Kubernetes (see Sec. 4.2) that initiates JupyterHub
services. Currently, we have a cluster supporting three types of users (see more details in
Sec. 7.1): SPSRC/IAA-CSIC (internal, institute, and projects users), European Science
Cluster of Astronomy (ESCAPE), and participants in schools, such as SOMACHINE2020 and
SOMACHINE2021, where features and performance of the profiles are customizable to adapt to
the demand for computing.

4.4 ContainerHub

The ContainerHub is a service available for all created VMs and clusters. The ContainerHub is a
shared catalog of applications and services for radio/astronomy that currently provides more than
30 ready-to-use images from Singularity,” a container service focused on reproducibility and
execution of scientific work. With the ContainerHub service, VM instances can execute this
software without having to install virtual environments or modify its session while respecting
the configuration of libraries and software versions. One of the advantages of providing a cen-
tralized and containerized software catalog is that from the SPSRC management, it is possible to
include and update images in all running instances, for all the users simultaneously and in real
time. The catalog available at the SPSRC currently contains updated images built for specific
projects. Among these images are stimella,”> LOFAR pipelines, the set of radio astronomical
software packages KERN suite, and different versions of CASA. The hub will grow with new
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software and updated versions as required by the hosted projects, being immediately available to
the whole community of users. This single place for images also optimizes disk space, avoiding
duplicates of software in different VMs.

5 Science Archive

As stated in Sec. 1, the SKA will generate the largest amount of radio-astronomical data to date
and the data products coming out of the observatory will be ingested into the SRC network at a
rate of 600 PB/year. The SKA science archive is currently being designed as a distributed but
logically centralized system that aims to provide fully functional and continuous capabilities.*’
The size and complexity of the SKAO data will necessarily impact the design of the archive and
its connection to other subsystems that enable science analysis. The archive shall provide enough
capabilities to search and explore data directly, to minimize data movement through the SRC
network. It is primordial fulfilling the FAIR*® principles and being compliant with the virtual
observatory recommendations. The SKA science archive working group of the SRCSC is
responsible for the definition of the archive requirements as well as for the design and proto-
typing of its main components. At the time of writing, this group is led by the Spanish and
Canadian members of the SRCSC, and it consists of 35 people, which also includes a core group
of 18 experts from Australia, France, Italy, The Netherlands, Portugal, SKAO, Spain, Sweden,
and the United Kingdom.

In this section, we focus on the activities related to the SPSRC science archive, which com-
prises the storage space to preserve raw and processed data and the subsystems for searching and
accessing the data. Considering that the SKA Observatory is starting the construction phase this
year (2021), the SPSRC archive is initially being designed to satisfy the requirements of SKA
precursors/pathfinder science cases, with full ability to scale up for SKA. The handling and
sharing of the expected amount of data with the (authorized) scientific community demands
careful planning on hardware characteristics and which services will be implemented to access
archived resources.

As described in Sec. 2, we conducted a series of interviews to define the detailed require-
ments for this phase. With a capacity of 400 TB of net file storage dedicated to the archive, the
hardware characteristics described in Table 1 will allow for the required //O rates to access and
process the data from the SPSRC computational environment. High 7/ 0O rate is one of the most
important requirements, due to the large size of the data, which consequently impacts data
processing times and the feasibility of deploying analysis services on top of the archive.
The SPSRC archive will include advanced services on top of the infrastructure, such as user-
archive interface services (supporting authentication, authorization, and querying), data and
metadata visualization, cut-out services, a web portal, access from virtual observatory services,
APIs (i.e., via scripts), etc. Some of these services require a significant amount of computational
resources due to the nature of the data from the SKA precursors. The resilience of the subsystem
is another key aspect that the SPSRC has addressed by including different levels of redundancy,
i.e., at hardware and storage levels.

The subsystems to allow searching and accessing the data are an ongoing development. After
testing existing virtual observatory libraries and software, we are currently deploying DaCHS in
the infrastructure. DaCHS is an integrated framework for building web services connected to the
Virtual Observatory ecosystem while supporting the entire workflow from ingestion to data map-
ping to service definition.’” The SPSRC will host a series of services that will be registered at the
European Virtual Observatory (EURO-VO) registry to ensure that they are discoverable from the
astronomy software ecosystem. (IVOA Registries have information of all Virtual Observatory
known web services. See Ref. 58.)

In particular, the SPSRC will provide access to catalogs using web services that enable SQL-
like queries™ to tabular data. These kinds of services can be queried from Virtual Observatory
desktop software®®! and from libraries accessing Virtual Observatory services.®>** Images and
data cubes will be findable from services compliant with the IVOA Simple Image Access
recommendation.®* In addition, we are developing specific services to provide access to derived
radio data such as cut-outs (subsets of full data sets), by following the IVOA Server-side

J. Astron. Telesc. Instrum. Syst. 011004-14 Jan-Mar 2022 « Vol. 8(1)



Garrido et al.: Toward a Spanish SKA Regional Centre fully engaged with open science

Operations for Data Access (SODA) recommendation,® a standard to develop services that per-
form operations on the data. Catalogs and image services will be implemented on the DaCHS
framework whereas the SODA services will be developed separately. Interoperability with the
rest of astronomy archives is fundamental to create a transversal facility that aims to enhance
research and facilitate multimessenger science based on Open Science/FAIR practices.

As part of the SPSRC Science Archive developments, we are contributing to the development
of the archive for the ASKAP WALLABY Hi survey.®® This work is undertaken by its technical
working group 7, and several copies of this archive are planned to be hosted at the SPSRC,
Australian SRC, and in Canada. The WALLABY team has extended the capability of SoFiA
(source finding software for three-dimensional spectral line data) by developing an automated,
parallel HI source-finding pipeline for the WALLABY survey (SoFiA 2).°” SoFiAX executes
SoFiA-2 and automatically merges, resolves, and inserts extracted sources into a database for
further inspection and analysis. The resulting cubelets, moment maps, or spectral data are acces-
sible via a table access protocol (TAP) interface. At the time of writing, we are experimenting
with a containerized DaCHS deployment.’’

Considering that SKA will not generally preserve raw data due to size issues, it is especially
relevant to understand the processes and data transformations happening in the SKA SDP. With
the aim to provide archive services that contribute to a better understanding of the data, we have
studied how provenance data models can be applied to the SKA science data products and to the
derived products that will be created at the SRCs. The term provenance refers to capturing the
whole process involved to obtain the ADPs, such as actions, pipelines, versions, and parameters.
This action of preserving the workflows used to generate the SKA data products and their prov-
enance is an important step toward SKA science reproducibility. In collaboration with GMV
Aerospace and Defence S.A.U, we have compared the ProvONE data model,®® the W3C data
model recommendation, and the IVOA data model recommendation.®” ProvONE and the IVOA
data models are both based on the W3C standard. The ProvONE extension was designed for a
better description of scientific workflows and in particular its computational processes, whereas
the IVOA recommendation is aiming to bring the provenance data model to the astronomy
domain by adding new elements that are domain-specific. As a result of this study, we have
concluded that the IVOA provenance data model can be applied to the SKA 7 in a similar way
to its application to a Cherenkov Telescope Array provenance implementation.”! However, the
SKA pipelines and computational workflows are so complex that there may be a benefit using
a combination of two models or a modification of the IVOA recommendation.”

6 Support and Training

Our aim is to support preparatory activities for the SKA key science projects and the science
enabled by the SKA precursors and pathfinders. Therefore, the SPSRC has allocated human
resources to support the projects hosted in the platform. Support and training are key to optimize
the throughput of the platform by helping users to make efficient use of the available software
and hardware resources, to gather new community requirements and to train the community on
how to manage the data in the new data processing paradigm required by the SKAO. The SPSRC
provides support and training on radio interferometry, state-of-the-art software tools, and auto-
mation of data processing workflows, all to enhance the scientific throughput of the platform.

The user support and helpdesk service are delivered through different channels to ensure
flexible and effective communication. First, we have developed documentation providing infor-
mation for users and a detailed description of the most useful procedures.”” Second, we use a
dedicated SPSRC email address to deliver announcements, as well as to receive and solve ques-
tions from the users. This is complemented with a Slack workspace for the SPSRC in which we
give technical and scientific support, including specific support in private channels for each
project we host. When required, we also organize videocons and face-to-face meetings to discuss
particular issues that users want to clarify. Last, we created a repository of singularity images
with radio astronomical software to be used from the different VMs.

The most common support questions are on technical issues related to configuration and
usage of the platform. We also help users to get familiar with and use the services provided,
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for example, how to use Guacamole as an access point, how to use JupyterHub to execute note-
books interactively, and how to access our SPSRC repository of singularity images. From the
science point of view, we help users to access data from different observatories, find resources
describing data processing pipelines for different instruments, and clarify general questions on
radio interferometry, calibration, or potential use of instruments. Examples of these are discus-
sions on best practices to access and retrieve MeerKAT data or discussions on how the calibra-
tion procedures of the MeerKAT pipeline oxkat’® work, among other topics. To motivate the use
of open science tools, we also give support and provide examples on tools, such as git, Github,
conda software management, Jupyter notebooks, Binder, and Zenodo.

Apart from direct support using the communication channels described above, we also organ-
ize training events to promote the use of these tools and good practices related to them for a wider
community. For example, we have conducted a series of short hands-on training events called
Open Science Droplets,”* describing and showing the usage of open science tools. We are also
currently preparing two training schools: one focused on open science and another one on radio
interferometry. The goal of these programs is to motivate and facilitate the community to adopt
more flexible, efficient, collaborative, open tools. Apart from being a useful asset for conducting
their own research, these practices will enhance the quality of the future SKA science.

7 SPSRC Operations and Management

The SPSRC infrastructure is actively managed by a team with different purposes. First, to host a
series of development and scientific projects that make use of those resources and services.
Second, to enable the community to access the platform and get the support and training needed.
Third, to ensure the daily operations of the available services. Lastly, to upgrade the software
resources and to test and deploy new functionalities and services. Here, we summarize the cur-
rent usage of the platform by development, scientific, and training programs as well as describing
how the SPSRC is managed and organized.

7.1 Usage of the SPSRC Services

The ultimate purpose of setting up all the hardware, software, services, and support described
above is to provide a platform to conduct research projects. The SPSRC started to host the first
science projects at the end of 2020. Once the deployment of the OpenStack server was finalized,
by September 2020, a commissioning period started, until the end of 2020, to benchmark the
disk and CPU usage of the VMs, deploy access services, and to verify all the functionalities of
those services.

During the lifetime of the platform thus far, we have hosted 20 projects: 16 requiring VMs
and four requiring JupyterHub deployments. We classify the hosted projects in three categories
(see Fig. 7): (1) research projects, led by the IAA-CSIC researchers to conduct data processing
and analysis on different astrophysical fields; (2) development projects, which have the goal of
creating or enhancing services needed in an SRC and improving the platform; (3) training proj-
ects that include data processing or analysis schools and also temporary machines to be used
during other observatory schools or to verify the capability of the platform for specific purposes
(see Sec. 6)

The research projects currently hosted at the SPSRC include analysis of data from the SKA
precursor MeerKAT: observations of radio emission induced by star-planet interaction. We also
host an e-MERLIN (SKA pathfinder) legacy project on resolved radio emission of ultraluminous
infrared galaxies,”® and a project on star-planet interaction based on LOFAR (SKA pathfinder)
observations. Other research projects include, for example, the analysis of galactic radial
profiles.

As some examples of development projects, we have deployed an online file repository and
are developing an archive platform compatible with the virtual observatory (see Sec. 5), and we
host a project to test the installation and execution of data processing pipelines for SKA pre-
cursors and pathfinders, among other projects. As part of a master’s thesis, we conducted a study
of the data transfer quality between different international research centers using network tests.
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Fig. 7 Overall view of the hosted SPSRC projects.

The training projects at the SPSRC cover a wide range of services. We have hosted a
JupyterHub service for two editions of SOMACHINE, which is an international school on
machine learning, big data, and deep learning in astronomy. Likewise, we deployed temporary
VMs to allow users to participate and execute the tutorials of the sixth LOFAR Data School.
In addition, we are one of eight facilities providing infrastructure for the second SKA Data
Challenge (see Sec. 1) issued by the SKA Observatory, hosting two teams.

Currently about 80% of the CPUs and memory are assigned to active projects. The usage has
been continuously increasing since the beginning of the year. In terms of storage, until the
archive services will become available (see Sec. 5), the main use is processing storage via block
storage, with a mean assignation of 12 TB per month, on average. Current projects have required
transferring and storing 110 TB of raw data. We have received requests to transfer a volume of
338 TB of raw data in the near future. Subsequent data processing usually requires disk space
between one and five times the raw data volume. Apart from the block storage assigned to indi-
vidual projects, we have deployed a shared storage unit that hosts a central service of software
containers, currently including a catalog of singularity images with radio astronomical software
ready to be used by any user from the different VMs.

7.2 Management and Organization

The SRC White Paper®’ provides a guideline on how to scale up the SRC capacity and func-
tionality, and it also estimates the associated costs. It explains that the SRC network needs to
achieve most of the functionality by 2025 while only 10% of the required storage/processing
capacity, and it should achieve full capacity and functionality by 2030. The SPSRC is being
developed considering these guidelines. Its development was fostered in July 2018 since the
TAA-CSIC was accredited as a “Severo Ochoa” Center of Excellence by the Spanish Ministry
of Science, Universities and Research, after an evaluation by an international committee of its
research activity and the presentation of a strategic plan for the period 2018 to 2021. This plan
included the creation of an SRC prototype. This marked a major milestone in the roadmap to
develop the SPSRC, as well as the SKA Office in Spain. The SPSRC has already been presented
at national and international level including contributions in the “SKA in Spain!” meeting
(2019), the “SEA 2020 meeting” (2020), the “ADASS XXX (2020), “2021 SKA Science
Conference A precursor view of the SKA Sky” (2021), among others.
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At the time of writing, the SPSRC is independently funded by the Severo Ochoa program and
complementary competitive regional and national funds. In particular, the existing infrastructure
(see Sec. 2) was acquired using competitive funding (~700 k), and we are currently planning to
scale up the platform, if the additional funding already requested is secured.

The development of the SPSRC is led by the IAA-CSIC, and the team is coordinated by the
Spanish representative at the SRCSC. In close cooperation with the IAA-CSIC team respon-
sible of the coordination of the Spanish participation in SKA, the SPSRC team disseminates
the SPSRC capabilities, gathers community requirements, manages the platform usage by
establishing scientific priorities and human resources availability, organizing the support
astronomers work and providing a link with the technical personnel. The technical coordinator
is responsible for supervising the computational platform installation and maintenance,
defining the services offered in coordination with the SRC Network, the SKAO, as well as
with other related initiatives (e.g., European projects, SKA precursors collaborations, etc). The
SPSRC infrastructure was deployed in the Computing Center at the IAA-CSIC with the
support of the head of the facility. In addition, the External Advisory Board of the IAA-CSIC,
formed by international experts who review IAA-CSIC activities and provide advice for
future actions, informed very positively on the development of the SPSRC in its last report
(2020).

The current team is composed of eight FTEs combining radio astronomers, astroinformatics,
and software engineers with expertise in open science, system administration, OpenStack
management, radio interferometry, machine learning, artificial intelligence, and outreach.

8 Conclusions and Future Work

Preparatory activities for the SRCs started in 2016 with the SRC Coordination Group, and they
increased with the AENEAS and ERIDANUS projects. In Spain, the development of a prototype
is led by the IAA-CSIC. One of the first activities was to gather requirements from a variety of
science cases (especially those related to SKA precursors and pathfinders). In 2019, we inter-
viewed seven groups as a representative sample of use cases. Then, we designed the SPSRC
computing infrastructure to satisfy the requirements identified in those interviews, together with
the SRC Coordination Group and AENEAS requirements. As a result, the SPSRC infrastructure
is flexible and can redistribute resources. In addition, it can be adapted to heterogeneous projects
and will support the science with SKA precursors and pathfinders. These abilities are key to
identify (and solve) potential bottlenecks in the future SKA data processing. Moreover, the scal-
ability offered by this infrastructure will allow increasing the SPSRC resources steadily until
fulfilling the computing requirements for the next phases of the project and those that a fully
operational SKA will introduce by (around) the year 2029.

The set-up of the SPSRC computing infrastructure was finalized in July 2020, followed by a
commissioning period that lasted until the end of that year. During 2021, we gave progressively
access to different research groups to deploy their own software and at the same time services
like we deployed JupyterHub on the infrastructure. In the lifetime of the platform, it has hosted
20 projects (including research, development, and training projects) that have required 16 VMs
and four JupyterHub services.

The services offered by the SPSRC are oriented to facilitate collaboration with a globally
distributed community and to enable the best possible scientific practices. The SPSRC team is
making a special effort to develop a platform that enables scientists to follow open science prac-
tices. This effort is channeled through three main areas:

o Engaging with initiatives focused on investigating ways for supporting open science, such
as the ESCAPE project, the collaboration with GMV Aerospace and Defence S.A.U, and
the participation in the IVOA.

o Populating the SPSRC platform with tools able to support open science. In particular, the
SPSRC platform includes a JupyterHub service as well as a container image repository.

In addition, a science archive is being implemented taking into account the standards and
models published by IVOA.
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o Training in open science practices. In addition to the open science droplets training events,
given that the SPSRC platform is focused on supporting open science, the training on
SPSRC tools will contribute to empower the community with the skills required to analyze
SKA data following the FAIR principles.

The establishment of a Spanish SRC will play an essential role in providing the scientific
community with access to SKAO data, as well as processing capacity and tools to generate and
analyze ADPs. This will be done in collaboration with other SRCs and as a consequence, rel-
evant topics for future work and research can be derived from the collaboration to be established
within the framework of the SRC network. This collaboration, in the coming years, will make it
possible to interconnect and interoperate all the individual SRCs, offering a global distributed
and fully resilient service. The SPSRC team will carry out open science and radio astronomy
training activities to bring best practices to the community. As well, we will offer support to
precursor and pathfinder projects as primary activities during the interim. A key improvement
of the SPSRC infrastructure will be the inclusion of a data transfer node, which will enhance data
transfers and connectivity to the SKAO and SRC network. Another key objective will be to
complete the science archive development, with core services that will allow access to the data
through virtual observatory protocols. Apart from these, other improvements will be considered,
such as the provision of a marketplace service for the creation of VMs, the allocation of storage
space, or the installation of software and services on demand, as well as the use of workflow
management services such as Slurm.
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