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Abstract. We describe a computer-aidedmeasuring tool, named parapapillary atrophy and optic disc region assess-
ment (PANDORA), for automated detection and quantification of both the parapapillary atrophy (PPA) and the optic
disc (OD) regions in two-dimensional color retinal fundus images. The OD region is segmented using a combina-
tion of edge detection and ellipse fitting methods. The PPA region is identified by the presence of bright pixels in the
temporal zone of the OD, and it is segmented using a sequence of techniques, including a modified Chan-Vese
approach, thresholding, scanning filter, and multiseed region growing. PANDORA has been tested with 133 color
retinal images (82 with PPA; 51 without PPA) drawn randomly from the Lothian Birth Cohort (LBC) database,
together with a “ground truth” estimate from an ophthalmologist. The PPA detection rate is 89.47%with a sensitivity
of 0.83 and a specificity of 1. The mean accuracy in defining the OD region is 81.31% (SD ¼ 10.45) when PPA is
present and 95.32% (SD ¼ 4.36) when PPA is absent. The mean accuracy in defining the PPA region is 73.57%
(SD ¼ 11.62). PANDORA demonstrates for the first time how to quantify the OD and PPA regions using two-dimen-
sional fundus images, enabling ophthalmologists to study ocular diseases related to PPA using a standard fundus
camera. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.106010]
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1 Introduction
Two-dimensional (2-D) color retinal fundus images not only
provide information about different eye conditions and ophthal-
mic diseases (e.g., myopia, macular degeneration and glau-
coma), but they could also show signs of systemic diseases
such as diabetes.1–4 The optic disc (OD) is one of the fundamen-
tal features of interest. The OD is located anatomically at
the distal end of optic nerve (Fig. 1) and appears as a bright
yellowish-white ellipse partially overshadowed by retinal
blood vessels in the fundus image. Segmenting the OD is not a
trivial task, owing to light artefacts, blood vessels, and often ill-
defined boundaries, particularly in the presence of parapapillary
atrophy (PPA).

Clinically, PPA can be categorized into alpha- and beta-zone
PPA.5 The α-zone often refers to the outer zone of PPA covering
irregular hyper- and hypo-pigmented areas in the retinal pigment
epithelium (RPE), either on their own or in the surrounding
β-zone; the β-zone is usually the zone of complete RPE atrophy,
next to the OD. However, such division will not be made in this
work. The detection and quantification of PPAwill be based on
the outermost boundaries of single or both zones of PPA. The
reason PPA develops has remained unclear, but PPA has been
linked to degenerative myopia6 and glaucoma,7 both of which
can lead to sight loss. Early detection and monitoring of PPA

could therefore offer a way to monitor degeneration in retinal
nerve fibre layer (RNFL) and degenerative myopia. PPA appears
as an irregular shape (e.g., scleral crescents, temporal choroidal,
or a ring around the periphery of the OD) and is of similar
brightness to the OD, although β-zone PPA may appear slightly
brighter than the OD region while the α-zone appears darker.
Figure 2 shows an example.

The literature surrounding OD detection and segmentation is
rich, as the OD is an important parameter in glaucoma diagno-
sis8,9 and a common landmark when locating regions of interest
such as the macula.10,11 The detection and segmentation of the
OD region has been performed using 2-D fundus images
directly12–14 and through three-dimensional (3-D) planimetric
images generated from multimodal imaging systems.15,16 The
detection methods have searched for either a large cluster of
bright pixels17 or a region with the highest variation in grey
level intensity.18 However, such methods are susceptible to ret-
inal lesions (e.g., exudates), which can also appear bright in fun-
dus images and artefacts (e.g., intensity gradient across the
image).

An alternative method based on watershed transformation
and morphological filtering has been proposed,19 but obstruc-
tions such as retinal vessels are difficult to remove completely
without introducing significant distortion and loss to the fundus
image. Techniques based on vascular models have proved more
robust, at the expense of higher computational complexity.12
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and used Hausdorff-based template matching techniques to
detect the OD. More recently, a combination of level set and
Chan-Vese (CV) methods has been explored,20 as CV has the
potential to auto-compensate discontinuities in the OD bound-
ary. However, this approach suffers from major drawbacks, e.g.,
the segmentation process is likely to be time-consuming, CV
requires an accurate initial “guess” of the OD boundary, and
it is likely to achieve good results only when the OD region
is of homogenous intensity. Applying a circular Hough trans-
form on the Prewitt edge map on the dual channel (red and
green) of images would prove a faster approach.21 This method
achieves a mean accuracy level of 86%. However, the inhomo-
geneity in the OD region would lead to a noisy edge map and
hence incorrect results from the Hough transform.21 Besides,
several other OD segmentation approaches have also been
reported. These approaches are based on graph search,22 an
adaptive method using mathematical morphology,23 a active
contour model,24 or blood vessel information with graph con-
struction.25

In addition, feasibility studies using 3-D multimodal imaging
systems also exist.10,26 These systems are not yet widely avail-
able, and the required image processing time is likely to be as
demanding as that required by the CV method. Stereo imaging
techniques have also been exploited using a “Snake” algorithm,
together with p-tile thresholding on an edge map, to outline the

OD boundary.27 However, the presence of PPA remains a pro-
blem. One possible solution is to predetermine the presence of
PPA and subsequently devise a corresponding strategy to seg-
ment the OD region.

Despite its importance as a potential biomarker for sight loss,
very little has been done to develop tools to detect and segment
PPA using 2-D fundus images. One early system has been devel-
oped (PAMELA) which can detect certain types of PPA auto-
matically.6,28 However, the system cannot quantify the extent
and hence describe the development of PPA. PAMELA uses tex-
ture analysis to extract PPA features and applies an artificial
neural network known as a Support Vector Machine to perform
binary classification (i.e., PPA present or not). Because the PPA
has similar attributes to the OD in terms of contrast and bright-
ness, segregating one from another accurately is nontrivial.

Current ophthalmic imaging techniques available for the
examination of both the OD and the PPA regions are Heidelberg
retina tomography (HRT), optical coherence tomography
(OCT), and the more recent ultra-high resolution (UHR) OCT,
which offers a pseudo-color 3-D visualisation of the aforemen-
tioned regions.29 These techniques have provided some success,
but they still have four main limitations.30 First, these techniques
are not widely used in ophthalmology clinics, because they
operate with more expensive and specialized lasers.31,32 Second,
a technician or photographer needs an intimate understanding of
retinal anatomy to identify the OD boundary manually before
the PPA and OD variable can be estimated from the image con-
tour based on third dimensional depth information.32,33 Third,
the patient is required to remain motionless for quite a long
time during the scanning procedure executed by OCT. Any
eye movement would produce artefacts in images. Fourth,
these techniques are limited as an aid for monitoring disease
progression. The existing software for OCT does not allow
users to retrieve and display images acquired from previous
examinations to compare them with a new image. Moreover,
there is a lack of automated software for large-scale screening
programs.32 This paper aims to address the technical challenges
and presents an integrated solution (PANDORA: Parapapillary
atrophy AND Optic disc Region Assessment) that both detects
the presence of PPA and quantifies the OD and PPA regions
using 2-D color fundus images. We exploit both the red and
blue channels in the RGB space to maximize feature extraction
(OD/PPA) while minimizing the interference caused by blood
vessels. PANDORA has been designed to be fully automated,
to allow large population studies in the future and to reduce pro-
blems associated with human errors (e.g., habituation and
fatigue).

2 Methodology
All the color fundus images for the assessment of PANDORA
were randomly drawn from the database of the Lothian Birth
Cohort (LBC) 1936 study.34 The LBC study included the
surviving members of the 1947 Scottish Mental Survey
(n ¼ 70,805) who were born in 1936 and currently reside in
the Edinburgh area (Lothian) of Scotland. Three hundred and
twelve individuals were tracked successfully and had their ret-
inal photos taken at the Wellcome Trust Clinical Research
Facility, Western General Hospital, NHS Lothian, Scotland.
This research complied with the Declaration of Helsinki and
was approved by the Lothian (Scotland A) Research Ethics
Committee.

Fig. 1 The sagittal section of the eyeball. The optic disc is situated ana-
tomically at the distal end of the optic nerve.

Fig. 2 (a) The original color retinal fundus image. Annotations describe
the four different zones of the optic disc. (b) The optic disc boundary
and the parapapillary atrophy (PPA) region.
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Our imaging tool, PANDORA, is implemented in MATLAB
(Mathworks Inc., Natick, MA, USA). All fundus images were
first cropped manually to the region of interest (ROI) and had a
“ground truth” estimate of the OD and PPA regions defined by
an ophthalmologist (author AL), who had not seen the results
from PANDORA. Figure 3 shows an example of the ROI selec-
tion on a left eye fundus image.

Figure 4 illustrates the flow chart of the PANDORA
algorithm, which can be divided into three phases. The OD
segmentation module uses an ellipse fitting technique on a
(Sobel) edge map in the red channel to outline the OD boundary.
With the OD removed, the PPA detection module then deter-
mines the presence of PPA in the temporal zone using prior
knowledge about the nature of PPA. Note that the temporal
zone is one of the four zones in the fundus image (see Fig. 5),

in which PPA normally first develops. Once the PPA region is
detected, we then conduct PPA segmentation using a combina-
tion of image processing techniques: thresholding, a scanning
filter, and multiseed region growing methods.20

2.1 Phase 1: OD Segmentation

The OD is extracted using a direct least square fitting algorithm
of an ellipse (DLSFE).35 This algorithm yields an elliptical solu-
tion that minimizes the sum of squared algebraic distances from
the image edge points to the fitted ellipse. However, this ellipse
fitting technique is susceptible to noise and requires preproces-
sing to remove unwanted pixels from the fundus image before
fitting.

First of all, a Sobel edge detector is applied to the red channel
of the cropped image, generating an edge map. The Sobel opera-
tor was chosen for two reasons: (a) it could compute the gradient
of image intensity and describe the smoothness of an edge
(abrupt or gradual), hence providing a more reliable result (ran-
dom noise would appear as abrupt edges); and (b) with a large
convolution kernel, it could also act as a noise-filtering function.
Once an edge map is produced, a two-stage preprocessing tech-
nique is used to eliminate noise. The first stage removes the ret-
inal vessels originating from the OD region, as they may
interfere with the accurate segmentation of the OD area. The
detection of retinal vessels is achieved by applying the thresh-
olding technique in hue channel of the images. The second stage
isolates the OD (and the PPA) from the background by using a
clustering technique with the nearest neighbor rule36 in the
L*a*b* color space. To achieve that, samples of the ROI region
and the background are first extracted in L*a*b* color space and
then used as markers to classify each pixel (as the ROI or the
background) by using the nearest neighbor rule. Upon comple-
tion, a DLSFE is fitted to estimate the OD boundary. To reduce
fitting errors, we fit the OD region iteratively until the center of
the fitting result is within a predetermined “tolerance” distance,
which is 1/35th of the image width (in pixels), from the center of
the cropped image (ROI).

2.2 Phase 2: PPA Detection

The OD is clinically divided into four zones: temporal, superior,
nasal, and inferior. Figure 5 shows an example of a right eye
image. The temporal and nasal zones must be exchanged if
the image is from a left eye. The type of image (right or left
eye) was prelabeled on each file name during the image record-
ing. As previously mentioned, the OD and PPA account for the
brighter region of the image (the threshold is set empirically at
the top 12% of the histogram of the image intensity). If the OD
region (estimated from Phase 1) is removed, we can detect PPA
by the presence of any remaining bright pixels in the temporal
zone, as shown in Fig. 5(c) and 5(h). This phase of operation is
carried out in the blue channel, where the PPA appears most
clearly.

2.3 Phase 3: PPA Segmentation

We previously developed an automated scheme for the extrac-
tion and quantification of the PPA region.20 This scheme used an
initial segmentation and estimation of the OD-plus-PPA bound-
ary based on a modified Chan-Vase analysis37 of the blue chan-
nel. The OD region is then removed from the OD-plus-PPA
using the result obtained from Phase 1, leaving the first order

Fig. 3 An example fundus image of a left eye. The white box, which is
manually drawn, encloses the region of interest.

Fig. 4 A flow chart for segmentation of the OD and PPA. The scheme
consists of three main phases: OD segmentation (gray), PPA detection
(pale yellow), and PPA segmentation (cyan).
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estimation of the PPA region. The actual PPA boundary is sub-
sequently refined by using a multiseed region growing
method. 20

PANDORA combines these techniques and exploits both
global and local information for PPA and OD segmentation.
As before, it could derive the following three physiological para-
meters (all in pixel):

(1) the size of the OD;

(2) the length of minor/major OD axis;

(3) the size of the PPA.

PANDORA uses a different approach to extract the OD, so it
does not require any additional calibration to compensate for the
underestimation (due to premature termination of snake evolu-
tion), as in our previous tool.14,20 In addition, PANDORA offers
a new feature: it could reveal the shape of PPA, which may be
important in understanding the development process of PPA.

3 Results
A total of 133 color fundus images (including 31 poor-quality
images as determined by an ophthalmologist, author AL) from
101 subjects were randomly selected from the LBC database.
Without knowing the results from PANDORA, the human asses-
sor identified images with PPA (82 images with PPA; 51 images
without PPA) and provided a “ground truth” estimate of the OD
and PPA region in each image. The assessor first observed in full
color space (RGB) the scleral ring and the retinal vessel bending
to identify the boundary of the OD. Subsequently, the region of
PPAwas identified based on the brightness and texture of image
pixels. In this work, we do not divide the PPA region into dif-
ferent zones but view them as one. We further randomly drew a
subsample of 30 images with PPA and 20 images without PPA
to evaluate the segmentation results from PANDORA. The area
enclosed by the ground estimate/the segmentation result from

PANDORA is counted pixel by pixel with the MATLAB soft-
ware development tool to quantify the size of each region.

PANDORA achieved a PPA detection rate of 89.47%. In this
context, the detection rate refers to the probability of a correct
test among all the 133 test images. Figures 6 and 7 show six
samples from the OD segmentation results of fundus images
without and with PPA, respectively. The first column shows
examples of the best results achieved, while the second column
shows the worst. The ground estimate is enclosed by black
spots, and the OD segmentation result is enclosed by a blue solid
line. Figure 8 shows six samples of the PPA segmentation results
from PANDORA. The segmentation result is enclosed by red
triangles, and the ground truth estimate is enclosed by a solid
black line. The results indicate that PANDORA is able to detect
and capture the boundary separating the OD and PPA regions
reasonably well, despite its poorly defined nature. Apart from
the variation in color, size, and shape of the OD and PPA,
there are additional factors shown in Figs. 6 and 7 to take into
account. The OD boundary and the blood vessels do not always
have a sharp contrast, making it difficult to remove all the back-
ground noise before fitting an ellipse. The presence of PPA
further complicates this process, as shown in Fig. 7(b), 7(d),
and 7(f).

The examples given in Fig. 7(b) and 7(f) shows overesti-
mates of the OD region. This, in effect, reduces the possible PPA
area, which is shown in Fig. 8(b) and 8(f). Conversely, under-
estimation of the OD region could also lead to inaccurate seg-
mentation of the PPA region, as shown in Fig. 8(c) to 8(e).
Therefore, the use of the multiseed region growing method in
Phase 3 to refine the PPA boundary is necessary to eliminate any
contribution from the OD, as Fig. 8(c) illustrates.

4 Validity of the Tool
There are two main functions of PANDORA: to determine the
presence of PPA and to quantify the area of PPA and OD. We
therefore adopted two different validation methods. First, we

Fig. 5 The process of PPA detection: (a) and (f) Examples of original fundus images. (b) and (g) Examples of original fundus images in the blue channel.
(c) and (h) OD segmentation results from Phase 1. (d) Left clinical knowledge-based mask. (i) Right clinical knowledge-based mask. (e) and (j) The
detection results shown as images with and without PPA, respectively.
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calculated PANDORA’s PPA detection rate as well as its spe-
cificity and sensitivity. The specificity, defined as the number
of true negatives (TN) divided by the sum of TN and false posi-
tives (FP), indicates how well a tool can correctly identify nega-
tives. The sensitivity, defined as the number of true positives
(TP) divided by the sum of TP and false negatives (FN), indi-
cates how well a tool can identify actual positives. Based on the
PPA detection results, PANDORA is able to achieve a sensitivity
of 0.83 and a specificity of 1.

Second, in terms of area estimation, the accuracy is measured
by comparing the segmentation results against the ophthalmol-
ogist’s ground truth estimate of the OD/PPA region. PANDORA
is assessed by a simple yet effective overlap measure (M) of the
matching between two estimates, which is defined as:

M ¼ NðR ∩ TÞ
NðR ∪ TÞ ; (1)

where R and T represent the segmentation result and the ground
estimate, respectively, and N(.) is the number of pixels within
the targeted region. The accuracy in defining a region means the
percentage of the overlap measure (i.e., M × 100%). Table 1

summarizes the segmentation results on 50 images. In Table 1,
mean accuracy refers to the average value of the accuracy in
defining a region for a set of n test images (n ¼ 30 for images
with PPA and n ¼ 20 for images without PPA).

5 Discussion
This paper introduces PANDORA, a novel automated retinal
imaging tool for both detecting the presence of PPA and quan-
tifying OD and PPA using 2-D color fundus images. Experimen-
tal results showed that PANDORA achieves a high PPA
detection rate (89.47%), despite the wide variation in fundus
image quality. These results are comparable with those reported
by Liu et al.,28 in which the detection rate is 87.5%, the sensi-
tivity is 0.85, and the specificity is 0.9 of the database (40
images with PPA; 40 images without PPA) from the Singapore
Eye Research Institute (SERI).

Figure 9 shows the segmentation results of the OD and PPA
regions for images with and without PPA. As expected, the
results indicate that PANDORA segments the OD better in
images without PPA than in those with PPA, as the OD is
the sole bright object. The OD region may be overestimated
or underestimated when there is no clear boundary, as is
often the case in images with PPA.

Fig. 6 Segmentation results on the images without PPA from PAN-
DORA. Images (a), (c), and (e) on the left represent the best results,
while images (b), (d), and (f) on the right represent the worst results.
The ground truth estimate is drawn on the black spots, while the esti-
mated OD region is outlined by the blue solid line.

Fig. 7 Segmentation results on the images with PPA from PANDORA.
Images (a), (c), and (e) on the left represent the best results, while images
(b), (d), and (f) on the right represent the worst results. The ground truth
estimate is drawn on the black spots, while the estimated OD region is
outlined by the blue solid line.
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In addition, the mean accuracy of OD segmentation in
images with and without PPA of the proposed method in 50
trials are 81.31 (S:D: ¼ 10.45) and 95.32% (S:D: ¼ 4.36),
respectively. These results are comparable to the best
state-of-the-art performance as listed in Table 2. It should be
mentioned that Gradient Vector Flow (GVF) Snake38 and our
previous method20 have a much lower OD segmentation accu-
racy in the images with PPA (e.g., 48.65% and 68.35%, respec-
tively), because they face a convergence problem whenever the
boundary of a region is not clear (in this case, PPA region).

PANDORA has three primary advantages over alternative
approaches. First, it both detects the presence of PPA and allows
quantification of the PPA region automatically from 2-D color
fundus images alone. Previous studies6,28 were limited to the
detection of PPA. Conventionally, the size of the PPA region
is quantified manually.2,39 PANDORA therefore provides the
first automated tool to allow PPA development to be tracked.
Second, PANDORA improves upon our previous tool14,20 by
using an OD segmentation approach based on an edge map,
which estimates the OD/PPA boundary more accurately. There-
fore, it can describe the actual shape of the regions, allowing
more detailed study of the relationship between PPA and differ-
ent ocular diseases. The previous approach, which was based on
the ‘snake’ algorithm, suffered from a random offset in defining
the boundary and could give only an estimate of the size. Third,
PANDORA has been fully automated, reducing the dependency
on a human assessor and minimizing problems related to human
errors such as habituation. PANDORA’s physiological measure-
ments offer additional information for clinicians studying
ophthalmic or systemic diseases. Fourth, PANDORA is intrin-
sically more appropriate for large-scale screening programs
owing to the utilization of a 2-D fundus camera as an alternative
to the OCT equipment. A digital fundus camera40 could acquire
fundus images quickly, without the time-consuming scanning
procedure required by the OCT machine. It is also relatively
cheap and has become a standard examination tool in ophthal-
mology clinics. Therefore, working on 2-D fundus images is
both cost-effective and time-effective, and it is more convenient
to the users as compared with OCT instruments.

There remain some limitations within our method. Firstly,
PANDORA is susceptible to noise, due to an ill-defined bound-
ary, from overlapping blood vessels and from lighting artefacts.
Creating a noise-free edge map for ellipse fitting is essential to
avoid underestimation or overestimation of the actual region. In
this work, we used a naïve thresholding technique to segment

Fig. 8 PPA segmentation results on the images from PANDORA. Images
(a), (c), and (e) on the left represent the best results, while images (b), (d),
and (f) on the right represent the worst results. The ground truth estimate
is enclosed by the black solid line, while the estimated PPA region is
enclosed by the red triangles.

Table 1 The statistical results of PPA and OD segmentation in 50
trials.

Results

Images with PPA
Images with no

PPA

PPA OD PPA OD

Mean accuracy (%) 73.57 81.31 – 95.32

Standard deviation 11.62 10.45 – 4.36

Fig. 9 Box plots for the quantification results of the OD and the PPA on
the images with PPA and without PPA. The lower outliers are denoted
by red stars. The bars specify the ranges of quantification results, and the
boxes specify the first and third quartiles, with the median represented
by the center lines.
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retinal blood vessels from the fundus images. Techniques such
as an artificial neural network41–43 will be explored in future
development to improve the robustness of retinal vessel segmen-
tation. Second, the proposed method uses only the brightness of
the pixels to detect the presence of PPA. Adding texture infor-
mation, for instance, should improve the detection rate. Third,
the OD is not always perfectly elliptical, despite its general
appearance. The assumption made in this work (i.e., the OD is
always elliptical or circular) helps to estimate the boundary of
the OD, especially when it is poorly defined (i.e., it appears as
broken lines in the edge map). Admittedly, this assumption
could also limit the fit to the real OD size and shape, as in
Fig. 6(d). While more complex segmentation algorithms
might be able to describe a nonelliptical shape better, it will
remain difficult to estimate a poorly defined boundary. As
such, we argue that the principle of Occam’s razor may be best
applied.

6 Conclusions
PPA has been linked to degenerative myopia and glaucoma,
both of which can lead to loss of sight. Early detection and quan-
tification offer an opportunity for medical intervention to halt or
slow the development of ophthalmic diseases. However, existing
methods are manual and subjective. They also require multimo-
dal imaging systems (i.e., a 2-D standard laser ophthalmoscope
plus an optical coherence tomograph) which are not widely
available. In this paper, we demonstrate a tool that can detect
PPA and quantify its size automatically using 2-D color fundus
images alone. The presence of PPA is detected with an accuracy
of 89.47% in the trial of 133 test images. The sensitivity of PPA
detection is 0.83, and the specificity is 1. Our proposed tool also
achieves an accuracy of 81.31% (SD ¼ 10.45) and 95.32%
(SD ¼ 4.36) in estimating the OD region in images with and
without PPA, respectively. The accuracy of PPA segmentation
is 73.57% (SD ¼ 11.62), compared with the “gold standard”
defined by an experienced ophthalmologist. Further develop-
ment of PANDORAwill allow a wider study of the development
of PPA and its significance in disease diagnosis.
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