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Abstract. The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes
under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being
the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality
and is typically chosen empirically or based on prior experience. An automated method for optimal selection of
regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared
with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom
data indicate that the MRM-based method is capable of providing the optimal regularization parameter. © 2012 Society
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1 Introduction
Diffuse optical tomography (DOT) is one of the promising ima-
ging modalities that provides functional information of the soft
biological tissues under investigation using near infrared (NIR)
light (600 to 1000 nm) as the probing radiation. This NIR light
illuminates the tissue through the optical fibers positioned on the
surface, and the same fibers also collect the emerging light at the
boundary.1–6 By using these limited boundary measurements of
the exiting light, the optical properties of the tissue are estimated
by making use of a model-based image-reconstruction algo-
rithm.7 As NIR light is nonionizing, the prolonged monitoring
of tissue physiology is feasible and is capable of providing func-
tional parameters of the tissue when multiple wavelengths of
NIR light are used.8

Reconstructing the internal distribution of optical properties
by solving the inverse problem using the limited boundary data
is a challenging task and, in general, only approximate solutions
are obtained. This inverse problem is nonlinear, ill-posed, and
under-determined, which is the result of the multiple scatterings
of the light in a dense biological tissue and requires advanced
numerical methods to solve it. One of the most powerful meth-
ods in existence is the Newton-Raphson-based technique via
Tikhonov regularization.9,10 This involves the inversion of the
large Hessian matrix obtained by using the Jacobian (or sensi-
tivity) matrix. This inversion typically requires regularization,
and the most often used one is Tikhonov-type regularization.
The Tikhonov-type regularization adds a fixed diagonal value
to the Hessian, also known as a regularization parameter. The
regularization parameter in this case dictates the quality of the
reconstructed image. A higher value compared to the optimal
one smoothes the reconstructed images resulting in loss of reso-
lution; a lower case results in high-frequency noise in images.
This makes the choice of such a regularization parameter critical

in the image reconstruction procedure.9–11 The regularization
parameter choice theoretically depends on the noise character-
istics both in data and image space, and it is highly impractical
to obtain the same in real-time, leading to empirical choice of the
same.9,10

Determination of the regularization parameter empirically
leads to subjectivity and an unwarranted bias in the solution.
Also, such empirical determination varies with the problem at
hand and requires prior knowledge about the target images as
well as noise in the data. One of the most commonly used auto-
mated technique for determining the regularization parameter in
Newton-type inversion schemes is generalized cross-validation
(GCV),12–14 which is often used for Tikhonov-type regulariza-
tion. The GCV method is applicable to linear inverse problems
and is widely used in image deblurring.12–15 As the inverse pro-
blem here is nonlinear, which is solved in a series of linear steps,
application of GCV to find the optimal regularization parameter
will be shown to be suboptimal for the problem under consid-
eration. More importantly, it will be shown that one can obtain
the optimal regularization parameter in these cases using the reg-
ularized minimal residual method.16 Such determination of
the regularization parameter requires an additional optimization
procedure and is not computationally expensive compared to the
estimation of optical properties. The cases considered here are
both numerical as well as gelatin phantom experiments to prove
that the proposed minimal residual method provides an optimal
regularization parameter.

As the aim of this work is to introduce a novel way of obtain-
ing the optimal regularization parameter, the discussion is lim-
ited to a two-dimensional continuous-wave (CW) case, in which
the distribution of coefficient of absorption (μa) is estimated
from the limited boundary measurements of the amplitude of
exiting light. The implementation of the same is achieved
through MATLAB-based open-source NIRFAST,17 and the
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concerned code of the proposed algorithm is also available for
enthusiastic readers/users as an open-source.18

2 Methods

2.1 Diffuse Optical Tomography: Forward Problem

The forward problem in diffuse optical imaging is defined as
finding the photon fluence rate through the medium given
the optical properties of the medium and source detector
locations. The propagation of CW NIR light in a thick nonho-
mogeneous medium like biological tissues is modeled using an
approximation of the radiative transfer equation, called as diffu-
sion equation (DE),7,17,19 given by,

−∇:DðrÞ∇ΦðrÞ þ μaðrÞΦðrÞ ¼ SoðrÞ; (1)

where ΦðrÞ is the photon fluence rate at a given position r and
SoðrÞ is the isotropic light source. The optical diffusion and
absorption coefficients are given by DðrÞ and μaðrÞ, respec-
tively and also note that

DðrÞ ¼ 1

3½μaðrÞ þ μ 0
sðrÞ�

; (2)

where μ 0
sðrÞ is the reduced scattering coefficient, which is

defined as μ 0
s ¼ μsð1 − gÞ. μs is the scattering coefficient and

g is the anisotropy factor. A Type-III boundary condition is
employed to the DE [Eq. (1)], which accounts for the refrac-
tive-index mismatch at the boundary.20 The finite element
method (FEM) is used to solve Eq. (1) to generate the modeled
data GðμaÞ for a given distribution of absorption coefficient
μaðrÞ,7,17,19 and under the Rytov approximation, the data
obtained (y) is the natural logarithm of the intensity (I)
i.e., y ¼ ½lnðIÞ�.

2.2 Diffuse Optical Tomography: Inverse Problem

The goal of the inverse problem is to recover the distribution of
absorption coefficient using the limited number of boundary
measurements of light intensity. The inverse problem is typically
posed as a least-square minimization scheme,1,5–7,10,17 where the
aim is to iteratively match the modeled data obtained using the
forward problem with the experimentally measured boundary
data. A regularization term is typically added to stabilize the
solution. The objective function (Ω) to be minimized with
respect to μa is written as follows,

Ω ¼ ky − GðμaÞk2 þ αkμa − μa0k2: (3)

This type of scheme is known to be a Tikhonov regularization
scheme, where y is the experimental data collected at the bound-
ary of the object, i.e., y ¼ ln ðAÞmeasured andGðμaÞ is obtained by
solving the diffusion-based forward model, as described in the
previous section, for the given distribution of the absorption
coefficient (μa). μa0 is the initial guess for the absorption coeffi-
cient and α is known to be the regularization parameter. The α
can be shown to be the ratio of variances in the data, and esti-
mated properties10 and such determination requires prior infor-
mation about the data noise and image noise characteristics,
which are impractical to obtain in real-time.

Writing the Taylor series expansion of GðμaÞ around the
initial distribution of the absorption coefficient μa0,

GðμaÞ ¼ Gðμa0Þ þG 0ðμa − μa0Þ
þ ðμa − μa0ÞtG 0 0ðμa − μa0Þ þ : : : ; (4)

where G 0 ¼ J ¼ dGðμaÞ
dμa

is the Jacobian and similarly G 0 0 is
the second order derivative. Ignoring the higher order term-
ing by assuming the initial guess is very close to the solution
gives rise to the linearized inverse problem21 [using Eq. (4)
in Eq. (3)]

Ω ¼ kδ − JΔμak2 þ αkΔμak2; (5)

where Δμa ¼ ðμa − μa0Þ and assuming δ ¼ y −Gðμa0Þ as the
data-model misfit. Note that the inverse problem in Eq. (3) is
nonlinear, and the above equation is linear, making the nonlinear
inverse problem to be solved in a series of linear steps. The
direct solution for Eq. (5) is given by10,16

ðJTJ þ αIÞΔμa ¼ JTδ; (6)

which is known to be the Euler equations,16 which is known to
be the direct method for minimizing the Eq. (5). The computa-
tional complexity of obtaining a direct solution using the above
equation isOðNN3Þwith NN being the number of finite element
nodes, making it computationally expensive for large problems.
After each inversion, the corresponding update in μa is followed
by recomputation of Jacobian. The new linear inverse problem is
reformulated [Eq. (5)]; this iterative procedure is stopped when
the L2 norm of the data-model misfit does not improve by more
than 2%.10 Typically α is chosen empirically at every iteration
and is known to influence the reconstructed image quality.

2.2.1 Regularized minimal residual method

The minimization problem that is given in Eq. (5) could also be
solved by using the minimal residual method (MRM).16,22 The
regularized minimal residual method is equivalent to the regu-
larized steepest descent method and is an iterative technique that
minimizes Eq. (5). This method could be seen as solving linear
system of equations in Eq. (5) using an iterative method.16,22 The
formulation for the n update in μa for a given α is as follows:

ðΔμaÞnþ1 ¼ ðΔμaÞn − kαnlαn; (7)

where lαn ¼ JTrn þ αðΔμaÞn with rn ¼ JðΔμaÞn − δ and

kαn ¼
klαnk2

kJlαnk2 þ αklαnk2
: (8)

The iteration is stopped when the krnk2 − krn−1k2 is less than
ϵ ¼ 10−6 (equal within single-precision limits). The computa-
tional complexity of the MRM method is Oðm � NN2Þ,
where m is the number of iterations needed to reach the stopping
criterion. It will be shown later with a numerical example that
minimal residual method is equivalent to solving the Euler equa-
tion (direct solution) given in Eq. (6).

2.2.2 Estimating optimal regularization parameter using
minimal residual method

The choice of proper regularization is a key to successful estima-
tion of the optical parameters. The regularization can be ob-
tained optimally using the regularized MRM. For every given
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α the MRM converges to a suitable distribution of the absorption
coefficient (μa) as explained in the previous section. Now this
solution of the inverse problem for a given regularization α can
be used to find the corresponding data-model misfit, computed
using the updated μa. This ensures that the data-model misfit
[ky −GðμaÞk2], depends only on the scalar quantity (α). So
the optimal α is the one that gives the least data-model misfit
(or matches the experimental data with the modeled data within
a smallest possible neighborhood). This existence of optimal α
through the proposed method is discussed in the appendix and
shown analytically and graphically that this procedure results in
an optimal (suboptimal in noisy data cases) solution for α.
Implementation of finding optimal α is algorithmically summar-
ized in the following steps.

1. Compute J, μa, and δ for the given iteration.

2. Find the α for which ky −Gðμa þ ΔμαaÞk2 is mini-
mum, wherein Δμαa is obtained using regularized
MRM described in Sec. 2.2.1 with the inputs com-
puted in step 1.

For finding such an α, a gradient-free simplex method type
algorithm23 is used due to its computational efficiency. Note that
the objective function in here (Step 2) requires computing the
modeled data (or equivalently solving the forward model) at
every iteration of finding an optimal α.

2.2.3 Estimation optimal regularization using
generalized cross-validation

The GCV 12–14 method is the most popular method for estimat-
ing the regularization parameter (α). This is based on the prin-
ciple that an omitted data point could be easily estimated using
the regularized solution that is obtained using the reduced data-
set. Obtaining an estimate of the regularization is achieved by
minimizing a function GðαÞ defined to be:

GðαÞ ¼ kðJJT þ αIÞ−1δk2
ðtraceðJJT þ αIÞ−1Þ2 : (9)

Efficient evaluation of the GðαÞ is possible by applying the sin-
gular value decomposition (SVD) of the Jacobian and doing
some algebraic simplification. If the SVD of the Jacobian
matrix(J) is given to be J ¼ UΣVt, then the above functional is
simplified to the following form:

GðαÞ ¼
PrankðJÞ

i¼1

�
uTi δ

σ2iþα2

�
2

�PrankðJÞ
i¼1

1
σ2iþα2

�
2
; (10)

where the ith column of the matrix U is represented as ui, and σi
are the singular values of the Jacobian. The function [GðαÞ] thus
defined is continuous for every value of α, and this is minimized
with respect to α using the same methods as in the previous
section. This results in the required regularization parameter
(αGCV) for the inverse problem. This is achieved through the
usage of MATLAB-based open-source regularization toolbox.15

3 Experiments

3.1 Simulation Studies

The effectiveness of the proposed method is assessed on circular
meshes with the background optical properties being μa ¼
0.01 mm−1, μ 0

s ¼ 1 mm−1 and a uniform refractive index
of 1.33. The diameter of all circular meshes used in this
work is 86 mm, and the experimental data are generated on a
fine FEM mesh with 10,249 nodes was (corresponding to
20,160 linear triangular elements) and the reconstruction was
performed on a coarser mesh with 1,785 nodes (corresponding
to 3418 linear triangular elements). The source-detector geome-
try had 16 fibers that were arranged in circular, equi-spaced
fashion and each fiber has a dual function of both acting as
source and detector. When one fiber acts as a source, the remain-
ing 15 fibers act as detectors and hence we obtain 240 (15 × 16)
light amplitude measurements (NM). To simulate experimental
conditions, the source was modeled as the Gaussian source with
a full width at half maximum of 3 mm24 and was placed at the
one mean transport length inside the boundary. All meshes were
centered around origin.

Two cases of targets were considered here, with the initial
case of showing that the solution obtained using MRM is
equivalent to standard reconstruction using direct method
[Euler equation; Eq. (6)]. For this, a circular target of radius
7.5 mm was placed at (15,0) having μa ¼ 0.02 mm−1,
μ 0
s ¼ 1 mm−1 and the distribution of μa is shown in first column

of Fig. 1. A regularization parameter of 0.01 has been used in
this case. A normally distributed Gaussian noise of 1% has been
added to the numerically generated data to mimic the experi-
mental case.24 In the second case, two circular targets that
were separated by 5 mm centered around origin with a radius
of 7.5 mm were considered. The optical properties were similar
to the first case, and the target distribution of μa is given in the
first column of Fig. 2. At every iteration, the regularization para-
meter (α) has been obtained using both MRM and GCV meth-
ods as described in Secs. 2.2.2 and 2.2.3, respectively. In this
case, both 1% and 3% normally distributed Gaussian noise
added data was considered to show the effectiveness of the pro-
posed method.

Fig. 1 Reconstructed μa distributions using standard (direct inversion)
and minimal residual methods (iterative inversion) with numerically
generated 1% noisy data and α being 0.01. One-dimensional cross-sec-
tional plot of μa along the line (shown on the target) for the target and
reconstructed results presented here are given in the second row.
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3.2 Gelatin Phantom Studies

For objective verification of the method, the experimental data
collected using a gelatin phantom was used. A multilayer
cylindrical gelatin phantom of diameter 86 mm, height
25 mm was fabricated following the procedure as explained
in Ref. 25. Mixtures of 80% of deionised water and 20% of gela-
tin (G2625, Sigma Inc.) along with India ink for absorption and
Titanium oxide (TiO2) for scattering was used. These layers of
gelatin were successively hardened to form a three-layer phan-
tom to mimic typical breast tissue. The outer layer had optical
properties of μa ¼ 0.0065 mm−1, μ 0

s ¼ 0.65 mm−1 with a thick-
ness of 10 mm, mimicking the fatty layer of the breast. The inner
layer, mimicking the fibro-glandular layer, had properties of
μa ¼ 0.01 mm−1, μ 0

s ¼ 1.0 mm−1. To mimic the tumor charac-
teristics, along the Z direction a cylindrical hole having a radius
of 8 mm and height of 24 mm was made and filled with intra-
lipid mixed with India ink to act as an absorptive target having
the optical properties μa ¼ 0.02 mm−1, μ 0

s ¼ 1.2 mm−1. The
optical properties were validated using 785 nm wavelength
laser diode as the source. The log-amplitude data collection
of the exiting light were collected using only one layer of fibers
placed at the middle of the cylinder (at z ¼ 0 mm). The col-
lected data was calibrated using the coarser mesh that was
used in the simulation studies using the procedure explained
in Ref. 26. The adipose layer optical properties were used as
an initial guess for reconstruction procedures.

All computations were carried out on a Linux workstation
with dual quad-core Intel Xeon processor of 2.33 GHz with
64 GB RAM. The algorithms were implemented in MATLAB.

4 Results
Initial results to show that regularized MRM is equivalent to
standard (direct) reconstruction [Eq. (6)] are given in Fig. 1.
The reconstruction methods that were used are given on top
of each μa distribution. A one-dimensional profile plot across
the dotted line as shown in Target μa is given in the second
row of Fig. 1. Note that the number of iterations that were
needed to converge in both cases were 13 and in case of
MRM at each iteration included about 400 inner iterations.

From results shown in Fig. 1, it can be clearly seen that the
reconstructed μa distribution using MRM matches with the
one obtained using the standard method within 2% error, assur-
ing that the solution obtained usingMRM is numerically equiva-
lent to the solution obtained using direct inversion [Euler
equation, Eq. (6)]. Using the standard reconstruction method,
the computation time needed per iteration was 0.829 s and
for MRM, it was 0.688 s.

In the second case of numerical experiments using 1% and
3% noisy data, the regularization parameter was found using
both MRM and GCV methods as outlined in Secs. 2.2.2 and
2.2.3. The obtained reconstruction results are given in Fig. 2.
The one-dimensional cross-sectional plot for the obtained
results similar to Fig. 1 is given in the second row of Fig. 2.
The MRM-based estimation of regularization for the 1% noisy
data case has resulted in convergence in four iterations with α
being 1.3e-2, 1.1e-3, 2.7e-4, and 6.0e-6. For the GCV the con-
vergence was achieved in three iterations with α being 1.4e-2,
1.2e-2, and 1000. Note that for the 3% noisy data case, the
obtained α values were in the same numerical range. The results
also indicate that the resolution characteristics were better using
the MRM-based regularization parameter compared to its coun-
terpart. The number of iterations that were required to find the α
in either case were highly dependent on the initial guess.

The results that were obtained using estimated α with MRM
and GCVmethods for the case of gelatin phantom data are given
in Fig. 3. In here as well, the MRM-based regularization para-
meter selection resulted in convergence in four iterations with α
being 1.1e-2, 2.6e-3, 8.1e-4, and 6.0e-6. Correspondingly, the
convergence for the GCV-based method was in three iterations,
with α being 8.0e-3, 7.8e-3, and 1.69. The one-dimensional
cross-sectional plot along the dashed line in the target is
given in the second row of Fig. 3. The results indicate that
the performance of the MRM to find an optimal α is better com-
pared to the GCV-based method as the reconstructed target μa
value is closer to the expected one. The total computational time
for the three cases considered in this work is reported in Table 1
and as mentioned earlier, the MRM-method computational com-
plexity is much higher compared to the GCV-method.

Fig. 2 Comparison of reconstruction performance using the two methods discussed in this work for the two circular targets of dimension 7.5 mm radius
separated by a distance of 5 mm with numerically generated 1% and 3% noisy data. The reconstructed images obtained along with the corresponding
method with the percentage of the noise added (given on top of image) are given along with the target image. One-dimensional cross-sectional plot of
μa along the line (shown on the target) for the target and reconstructed results presented here are given in the second row.
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5 Discussion
The diffuse optical tomographic image reconstruction problem
is ill-posed in nature due to multiple scatterings of near infrared
light. Many reconstruction methods were proposed for improv-
ing the reconstruction accuracy, making it more quantitative in
nature, which uses structural and/or functional information.10,27–30

The quantitative accuracy of the results are dependent on the
choice of regularization, making the problem of finding optimal
α in an automated way highly relevant to the ongoing efforts.
Moreover, such an automated method will remove the unwar-
ranted bias in the reconstruction results due to heuristic choice
of regularization parameter. Until now, the most successful
methods in the literature include the GCV and L-curve meth-
ods.31–33 In this work, the proposed method is compared with
the GCV-based approach and is found to be sub-optimal. The
L-curve method is not considered in this work as results in
overly smooth solutions in DOT31 as it can not exhibit a
clear corner to find an optimal regularization parameter.32,33

Finding the regularization parameter using the MRMmethod
could also be achieved using Euler equations [Eq. (6)], but this
increases the computational complexity associated with it by an
order [OðNN2Þ versus OðNN3Þ]. In the case of GCV, the reg-
ularization parameter increased abruptly before the last global
iteration of the reconstruction procedure, resulting in sub-
optimal estimates of μa compared to the MRM-based method.
This trend of GCV inability to find an optimal α is also discussed
in Ref. 32, where this is caused by either a function being flat or
displaying multiple minima, leading to a sub-optimal choice of
α, causing over smoothing of the reconstructed images.

To show the inner iterative behavior of the proposed method,
the semi-log plot of data-model misfit and the corresponding α
was plotted in Fig. 4 for 60 iterations for the set of results pre-
sented in Fig. 2 (first global iteration). These plots indicate that
there is a clear convergence in finding α and correspondingly the
data-model misfit is also a minimum for the optimal α.

For the case of numerically generated 3% noisy data, the
reconstruction results were poor in terms of resolution for the
case GCV (Fig. 2), making the targets indistinguishable. For
the MRM case, it is clearly evident that the reconstructed
image quality is better in comparison to the result obtained
using the GCV method (Fig. 2). The results also indicate that
the spatial resolution in the reconstructed μa image is higher
by the usage of the MRM method compared to the deployment
of the GCV method. The boundary artifacts for the case of the
MRM method with 3% noisy data is pronounced compared to
the result obtained using the GCV method (Fig. 2) as the last
iteration of GCV always leads to higher value of regularization
parameter making the reconstructed image appear more smooth.
Note that for the MRM-based method, the regularization para-
meter monotonically decreases with iterations.

Finding the optimal α requires repeated solving of the for-
ward problem, which might be computationally expensive in
the case of large problems, especially involving a large number
of measurements. The additional step of finding the optimal α
through the MRM method for the cases discussed in here,
requires about 9.6 s, and for the GCV method it is 2.7 s.

Fig. 3 Similar effort as Fig. 2 for the case of experimental gelatin phan-
tom data.

Table 1 Comparison of total computational time (in seconds) includ-
ing the overhead, for three reconstruction results (first column) pre-
sented in this work. The corresponding method is given in the first
row of the table. The total number of iterations taken to converge
are given in the parentheses.

Result MRM method GCV method

Fig. 2 (1% Noise-case) 55.42 (3) 12.20 (3)

Fig. 2 (3% Noise-case) 104.88 (4) 12.15 (3)

Fig. 3 (Gelatin phantom) 167.75 (4) 12.36 (3)

0 10 20 30 40 50 60
−5

0

5

lo
g 10

(α
)

 Iteration Number
0 10 20 30 40 50 60

−1

0

1

lo
g 10

(Ω
)

log
10

(α)

log
10

(Ω)

Fig. 4 Plot of the estimated regularization parameter (α) usingMRM and
the corresponding data-model misfit ½Ω ¼ ky −GðμaÞk2� as a function of
the inner iteration number for the first global iteration of the results pre-
sented in Fig. 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
0

Ω

αα

Fig. 5 The semi-logy plot of the objective function ½Ω ¼ ky −GðμαaÞk2�
versus regularization parameter α for the results presented in Fig. 2 (first
iteration of the 1% noisy data case). The optimal α, indicated by α� in
the plot, is where Ω takes the minimal value.
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This additional computational complexity (Table 1) added by
the optimization procedure of finding optimal α is justifiable
as it removes the unwarranted bias in the reconstruction results
due to either poor or desirable choice of α heuristically and does
not require any additional information in finding optimal α. This
computation time could be further reduced by the usage of GPU-
based computing environments,34 which can speed up the com-
putations in providing the optimal α.

6 Conclusions
The regularization parameter that is typically used in the diffuse
optical tomographic image reconstruction procedure provides a
fidelity in improving the reconstructed image quality, with a
caveat that such fidelity can also bias the results. An automated
estimation of regularization parameter that is based on regular-
ized minimal residual method is presented in this work and is
compared with the traditional GCV-based method. The recon-
struction results using numerical and gelatin phantom data indi-
cate that the proposed MRM-based method can provide an
optimal regularization parameter, overcoming the pitfalls of
the GCV-based method. Such an automated method requires
repeated computations of forward solutions and is not compu-
tationally complex compared to the direct image reconstruction
step. The computer programs for the developed method that is
used in this work are provided as open source.18
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Appendix: Existence of Optimal Regularization
Parameter
In every iterative step of the diffuse optical tomographic image
reconstruction, the modeled data is matched with the experimen-
tal data in the least-square sense as explained in Sec. 2.2. So the
objective function to be minimized is posed as follows,

Ω ¼ ky − GðμaÞk2: (11)

Since the iterative procedure of minimizing this starts with a
guess of the initial distribution of the absorption coefficient
(μa0), the above equation can be written as

Ω ¼ ky − Gðμa0 þ ΔμaÞk2. (12)

Applying Taylor’s series expansion, as explained earlier in
Sec. 2.2, modifies the above objective function to

Ω ¼ kðδ − JΔμaÞk2 ¼ ðδ − JΔμaÞTðδ − JΔμaÞ: (13)

The update (Δμa) in the above equation can be obtained using
the regularized minimal residual method (MRM), which
requires a scalar (α) as a regularization parameter (refer to
Sec. 2.2.1). This implies that for every given positive real

number (α) there is a unique update (Δμαa), in turn making
the objective function Ω as a continuous function of α.

Finding the minima of the objective function,Ω, with respect
to α requires the calculation of a first-order derivative, which can
be written as

∂Ω
∂α

¼ 2½JTðJΔμαa − δÞ�T
�
∂Δμαa
∂α

�
: (14)

Similarly, the second-order derivative is given by

∂2Ω
∂α2

¼ 2½JTðJΔμαa − δÞ�T
�
∂2Δμαa
∂α2

�

þ
�
JTJ

∂Δμαa
∂α

�
T
�
∂Δμαa
∂α

�
: (15)

The optimal regularization parameter (α�) is the one that makes
the first-order derivative [Eq. (14)] go to zero, simultaneously
making the second-order derivative [Eq. (15)] have a positive
value, ensuring that the objective function attains the minimum
value.

The optimal solution (Δμa) for the linearized problem makes
the objective function, given by Eq. (13), achieve a minimal
value. Assuming perfect system characteristics (including noise-
less data) ensures that the residue jjrjj ¼ jjðJΔμα�a − δÞjj is zero,
where the α� represents the optimal regularization parameter. So
in the case of α�, the right-hand side of Eq. (14) becomes zero,
as JΔμα�a − δ ¼ 0 (with the partial derivative being non-zero).
Using this in the right-hand side of Eq. (15), results in

∂2Ω
∂α2

����
α�

¼
��

∂Δμαa
∂α

�
T
JTJ

�
∂Δμαa
∂α

������
α�
; (16)

as JTJ is symmetric and positive semi-definite matrix,10 and the
partial derivative term is non-zero ensures that Eq. (16) results in
a positive quantity. This assures that α� exists for the minimiza-
tion problem and is achievable when the objective function for
the image reconstruction problem has a minima.

This argument could also be validated through graphical
representation by plotting the objective function (Ω) as a func-
tion of the regularization parameter α for an example problem.
Figure 5 shows such an effort for the results presented in Fig. 2,
where the plot shows α� for which the function has a minima,
but not zero due to noise in the data and numerical model errors.
This makes the choice of α� in the real-time (for a limited num-
ber of iterations) being only sub-optimal (optimal in the asymp-
totic range).

References
1. D. A. Boas et al., “Imaging the body with diffuse optical tomography,”

IEEE Sig. Proc. Mag. 18(6), 57–75 (2001).
2. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,”

J. Biomed. Opt. 13(4), 041302 (2008).
3. A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse

optical tomography,” Phys. Med. Biol. 50(4), R1–R43 (2005).
4. A. Gibson and H. Dehghani, “Diffuse Optical Imaging,” Phil. Trans. R.

Soc. A 367(1900), 3055–3072 (2009).
5. S. R. Arridge, “Optical tomography in medical imaging,” Inv. Problems

15(2), R41–R93 (1999).
6. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. mod-

elling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).

Journal of Biomedical Optics 106015-6 October 2012 • Vol. 17(10)

Jagannath and Yalavarthy: Minimal residual method provides optimal regularization parameter . . .

http://dx.doi.org/10.1109/79.962278
http://dx.doi.org/10.1117/1.2967535
http://dx.doi.org/10.1088/0031-9155/50/4/R01
http://dx.doi.org/10.1098/rsta.2009.0080
http://dx.doi.org/10.1098/rsta.2009.0080
http://dx.doi.org/10.1088/0266-5611/15/2/022
http://dx.doi.org/10.1088/0031-9155/42/5/008


7. H. Dehghani et al., “Numerical modelling and image reconstruction in
diffuse optical tomography,” Phil. Trans. R. Soc. A 367(1900), 3073–
3093 (2009).

8. X. Intes et al., “Diffuse optical tomography with physiological and spa-
tial a priori constraints,” Phys. Med. Biol. 49(12), N155–N163 (2004).

9. B. W. Pogue et al., “Spatially variant regularization improves diffuse
optical tomography,” Appl. Opt. 38(13), 2950–2961 (1999).

10. P. K. Yalavarthy et al., “Weight-matrix structured regularization
provides optimal generalized least-squares estimate in diffuse optical
tomography,” Med. Phys. 34(6), 2085–2098 (2007).

11. B. W. Pogue et al., “Statistical analysis of nonlinearly reconstructed
near-infrared tomographic images: Part I theory and simulations,”
IEEE Trans. Med. Imag. 21(7), 755–763 (2002).

12. G. Golub and U. von Matt, “A generalized cross-validation for large-
scale problems,” J. Comput. Graph. Statist. 6(1), 1–34 (1997).

13. N. Nguyen, P. Milanfar, and G. Golub, “A computationally efficient
superresolution image reconstruction algorithm,” IEEE Trans. Image
Process. 10(4), 573–583 (2001).

14. P. C. Hansen, J. G. Nagy, and D. P. O. Leary, Deblurring Images:
Matrices, Spectra, and Filtering, 1st ed, SIAM, Philadelphia (2006).

15. P. C. Hansen, “Regularization Tools Version 4.0 for Matlab 7.3,”
Numer. Algorithms 46(2), 189–194 (2007).

16. M. S. Zhdanov, Geophysical Inverse Theory and Regularization Pro-
blems, 1st ed., Elsevier Science, New York (2002).

17. H. Dehghani et al., “Near infrared optical tomography using NIRFAST:
algorithms for numerical model and image reconstruction algorithms,”
Commun. Numer. Meth. Eng. 25(6), 711–732 (2009).

18. https://sites.google.com/site/sercmig/home/regdot (11 September
2012).

19. S. R. Arridge and M. Schweiger, “Photon-measurement density func-
tions. Part 2: finite-element-method calculations,” Appl. Opt. 34(34),
8026–8037 (1995).

20. M. Schweiger et al., “The finite element model for the propagation of
light in scattering media: boundary and source conditions,” Med. Phys.
22(11), 1779–1792 (1995).

21. M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for
image reconstruction in diffuse optical tomography,” Phys. Med. Biol.
50(10), 2365–2386 (2005).

22. C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid
dynamic near-infrared diffuse optical tomography using l1-norm-based

linear image reconstruction method,” J. Biomed. Opt. 17(8), 086009
(2012).

23. J. C. Lagarias et al., “Convergence properties of the nelder-mead sim-
plex method in low dimensions,” SIAM J. Optimization 9(1), 112–147
(1998).

24. T. O. Mcbride et al., “A parallel-detection frequency-domain near-infra-
red tomography system for hemoglobin imaging of the breast in vivo,”
Rev. Sci. Instr. 72(3), 1817–1824 (2001).

25. B. W. Pogue and M. Patterson, “Review of tissue simulating phantoms
for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4),
041102 (2006).

26. B. W. Pogue et al., “Calibration of near infrared frequency-domain tis-
sue spectroscopy for absolute absorption coefficient quantitation in neo-
natal head-simulating phantoms,” J. Biomed. Opt. 5(2), 182–193
(2000).

27. P. K. Yalavarthy et al., “Structural information within regularization
matrices improves near infrared diffuse optical tomography,” Opt.
Express 15(3), 8043–8058 (2007).

28. S. H. Katamreddy and P. K. Yalavarthy, “Model-resolution based reg-
ularization improves near infrared diffuse optical tomography,” J. Opt.
Soc. Am. A 29(5), 649–656 (2012).

29. M. E. Eames and H. Dehghani, “Wavelength dependence of sensitivity
in spectral diffuse optical imaging: effect of normalization on image
reconstruction,” Opt. Express 16(22), 17780 (2008).

30. F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image recon-
struction for diffuse optical tomography,” Biomed. Opt. Express 2(34),
946–965 (2011).

31. J. P. Culver et al., “Three-dimensional diffuse optical tomography in the
parallel plane transmission geometry: evaluation of a hybrid frequency
domain/continuous wave clinical system for breast imaging,” Med.
Phys. 30(2), 235–247 (2003).

32. T. Correia et al., “Selection of regularization parameter for optical topo-
graphy,” J. Biomed. Opt. 14(3), 034044 (2009).

33. J. Chamorro-Servent et al., “Feasibility of U-curve method to select the
regularization parameter for fluorescence diffuse optical tomography in
phantom and small animal studies,” Opt. Express 19(12), 11490–11506
(2011).

34. J. Prakash et al., “Accelerating frequency-domain diffuse optical tomo-
graphic image reconstruction using graphics processing units,”
J. Biomed. Opt. 15(6), 066009 (2010).

Journal of Biomedical Optics 106015-7 October 2012 • Vol. 17(10)

Jagannath and Yalavarthy: Minimal residual method provides optimal regularization parameter . . .

http://dx.doi.org/10.1098/rsta.2009.0090
http://dx.doi.org/10.1088/0031-9155/49/12/N01
http://dx.doi.org/10.1364/AO.38.002950
http://dx.doi.org/10.1118/1.2733803
http://dx.doi.org/10.1109/TMI.2002.801155
http://dx.doi.org/10.1080/10618600.1997.10474725
http://dx.doi.org/10.1109/83.913592
http://dx.doi.org/10.1109/83.913592
http://dx.doi.org/10.1007/s11075-007-9136-9
http://dx.doi.org/10.1002/cnm.v25:6
https://sites.google.com/site/sercmig/home/regdot
https://sites.google.com/site/sercmig/home/regdot
https://sites.google.com/site/sercmig/home/regdot
http://dx.doi.org/10.1364/AO.34.008026
http://dx.doi.org/10.1118/1.597634
http://dx.doi.org/10.1088/0031-9155/50/10/013
http://dx.doi.org/10.1117/1.JBO.17.8.086009
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1063/1.1344180
http://dx.doi.org/10.1117/1.2335429
http://dx.doi.org/10.1117/1.429985
http://dx.doi.org/10.1364/OE.15.008043
http://dx.doi.org/10.1364/OE.15.008043
http://dx.doi.org/10.1364/JOSAA.29.000649
http://dx.doi.org/10.1364/JOSAA.29.000649
http://dx.doi.org/10.1364/OE.16.017780
http://dx.doi.org/10.1364/BOE.2.000946
http://dx.doi.org/10.1118/1.1534109
http://dx.doi.org/10.1118/1.1534109
http://dx.doi.org/10.1117/1.3156839
http://dx.doi.org/10.1364/OE.19.011490
http://dx.doi.org/10.1117/1.3506216

