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Abstract. Decreasing turnaround time is a paramount objective in clinical diagnosis. We evaluated the discrimi-
nation power of Raman spectroscopy when analyzing colonies from 80 strains belonging to nine bacterial and
one yeast species directly on solid culture medium after 24-h (macrocolonies) and 6-h (microcolonies) incuba-
tion. This approach, that minimizes sample preparation and culture time, would allow resuming culture after
identification to perform downstream antibiotic susceptibility testing. Correct identification rates measured for
macrocolonies and microcolonies reached 94.1% and 91.5%, respectively, in a leave-one-strain-out cross-val-
idation mode without any correction for possible medium interference. Large spectral differences were observed
between macrocolonies and microcolonies, that were attributed to true biological differences. Our results, con-
ducted on a very diversified panel of species and strains, were obtained by using simple and robust sample
preparation and preprocessing procedures, while still confirming published results obtained by using more com-
plex elaborated protocols. Instrumentation is simplified by the use of 532-nm laser excitation yielding a Raman
signal in the visible range. It is, to our knowledge, the first side-by-side full classification study of microorganisms
in the exponential and stationary phases confirming the excellent performance of Raman spectroscopy for early
species-level identification of microorganisms directly from an agar culture. © The Authors. Published by SPIE under a
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1 Introduction
In vitro microbiological diagnostics are still heavily relying on
time-consuming cultivation of microorganisms to identify infec-
tious agents and to prescribe therapeutic antibiotics against the
diseases they cause. Because of long turnaround time (TAT),
clinicians prescribe broad-spectrum antibiotics prior to the avail-
ability of a more precise diagnosis facilitating a more targeted
therapy. In addition, pathogens accumulate multiple antibiotic
resistance traits. This phenomenon added to the fact that fewer
new antibiotics are being discovered constitutes a major public
health problem. Reducing the TAT and the time needed for the
microbial identification from 24 h or more to approximately 6 h
would be a valuable step in the right direction.

Raman spectroscopy is a technology with strong assets for
the use in in vitro diagnostic (IVD) applications as it is a sensi-
tive technique amenable to automation,1 nonintrusive and pos-
sibly nondestructive assuming a proper selection of acquisition
parameters. In microbiology, the ultimate sensitivity has been
demonstrated as good quality Raman spectra can be acquired
from a single bacterium,2 therefore even suggesting the possible
elimination of culture as a whole. The fact that the technology

may be nondestructive is another key point since resistance and
susceptibility testing of pathogens is systematically conducted
after identification. Another key element is the possibility to per-
form real-time analysis of pathogens directly on the culture
medium. This would allow for further cultivation or immediate
abrogation of the process in case no further characterization
would be required. In addition to the clinical value, this would
reduce the cost of running a clinical laboratory and it could
increase the process traceability and robustness.

The questions raised by the direct measurement of micro-
organisms on solid culture media at different development stages
were already addressed in earlier works. In 2000, Maquelin
et al.3 demonstrated for the first time the possibility to discrimi-
nate at the species level between four species by direct meas-
urement of Raman spectra from 6-h old microcolonies on the
solid culture medium. The possibility to cluster the data in
definite classes based on microcolonies’ Raman spectra was
demonstrated through hierarchical clustering analysis (HCA).
In 2002, Maquelin et al.4 conducted a full classification study
on 6-h old microcolonies of five yeasts (42 strains) belonging
to the Candida genus, demonstrating the possibility to identify
at the species level with a high prediction accuracy ranging from
97% to 100%. Classification was performed using a rather com-
plex methodology based on the use of four linear discriminant
analyses (LDA), each based on a separate model, requiring to
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run a posteriori an HCA. An orthogonalization procedure had
been used to correct for medium and water contributions. This
step, deemed necessary by the author, requires 60 min of acquis-
ition time on bare medium, presumably a one-time procedure
for a given medium. A 97% average correct identification
level was reported. In 2003, Maquelin et al.5 conducted a more
extensive study, building a larger reference database of bacteria
and yeasts commonly detected in bloodstream infections,
collected from positive hemocultures and grown 6 to 8 h on
the solid culture medium and then directly analyzed by Raman
spectroscopy. This study resulted in a correct classification level
of 92.2%, after the analysis of 115 strains grouped in 11 classes
(some of those classes included more than one species and 17
strains were excluded from the comparison because the pheno-
typic identification yielded a species not included in the data-
base). Lowest identification rates were observed at 80% for
Enterobacter aerogenes and Enterobacter cloacae. The total
acquisition time reported per sample (50 spectra per sample
for 10 replicates from five colonies) was 25 min not including
the orthogonalization step. All data processing was conducted
on first derivative spectra, as a way to remove the fluorescence
background, and the classification analysis was conducted
according to a leave-one-strain-out cross-validation method,
what we call a “stringent” mode. In the three studies mentioned
above, a procedure6 based on vector algebra was used to subtract
unwanted signals from the medium (although a highly confocal
optical setup was being used to minimize signal contribution
originating from the culture medium and variations in water
content).

In all those works, an 830-nm near-infrared (NIR) laser was
used to minimize sample auto-fluorescence. Unfortunately, clas-
sification performance obtained from spectra after fluorescence
suppression but without prior correction for medium and water
variation was not shown, preventing the quantification of the
benefits of such an approach.

In 2001, Choo-Smith et al.7 conducted a thorough study to
compare compositional heterogeneities in microcolonies and
macrocolonies cultured 6, 10, and 24 h. Taking advantage of
the high spatial resolution provided by Raman spectroscopy,
a precise depth-profile analysis of the colonies was conducted,
showing that microcolonies are more homogeneous than
macrocolonies and therefore presumably better suited for
classification studies. Levels of RNA and glycogen were shown
to differ depending on the growth stage, with young bacteria
being characterized by a higher metabolism and therefore
a higher RNA content compared to old bacteria. Old colonies,
being constituted of a mix of young and old bacteria, appeared
to be more heterogeneous in their biochemical composition.
In this study, no compensation of the signal from water or
medium was attempted (probably because judged unnecessary
when conducting a mere clustering study in opposition to
identification).

In 2008, Samek et al.8 analyzed 24-h old macrocolonies of
Staphylococcus epidermidis directly on Mueller–Hinton (MH)
agar in a mostly qualitative study with proposed band assign-
ments and concluded that, based on the relative ratios of
Raman peaks, differentiation of S. epidermidis should be achiev-
able. In 2012, Almarashi et al.9 analyzed colonies from at least
30 colonies of four strains directly on Columbia blood agar
(CBA), using a 785-nm excitation wavelength. Despite the
medium complexity due to the presence of blood, colonies of
the same bacterial species and/or strains clustered together in

a distinct domain, although with a higher data dispersion attrib-
uted to the heterogeneity of the colonies (in accordance with
Choo-Smith results7).

It is worthwhile to notice that Raman spectra of solid culture
media show peaks in a similar Raman-shift region of interest
compared to bacteria. Marotta and Bottomley10 clearly showed
some similarities between surface-enhanced Raman spectra
acquired on 14 different solid culture media and spectra of
Escherichia coli. This is easily understandable as organic
nutrients have similar chemical structures as bacterial constitu-
ents. It is very difficult to estimate a posteriori to what extent
the culture medium contributed to the sample Raman signal.
This extent is presumably small as the optical configuration
being used is highly confocal (axial resolution smaller than
the colony height).

Single cell analyses have shown the impact on the Raman
signal of biochemical composition changes occurring at differ-
ent bacterial growth stages. Xie et al.11 showed, using Laser
Tweezer Raman Spectroscopy (LTRS), that nucleic acid and
protein Raman signals varied with the growth stage because
of changes in metabolism. It was proposed that for unsynchron-
ized cultures, growing the cells to stationary phase would help to
improve the identification. Those qualitative results were
confirmed and quantified by Moritz et al.12 who conducted
a single-cell analysis by LTRS. E. coli was sampled at 2-h inter-
vals after inoculation, allowing for a more accurate kinetic
analysis of nucleic acid and protein Raman bands (confirming
the results of Talukder et al.13 reported an increase of nucleoid
proteins levels when comparing E. coli cultured for 5 and 24 h).
When reaching the stationary stage, it is reported that both pro-
tein synthesis and cell division will eventually be reduced.

Those observations were confirmed by other studies con-
ducted on yeasts14 in the first 3 h of inoculation transitioning
from the lag to the early exponential phase, or when comparing
6- and 18-h old single cells of S. epidermidis.15 In addition,
Huang et al.16 showed that although Raman is sensitive enough
to discriminate bacteria harvested from 4 and 24 h cultures
(respectively, representative of the exponential and stationary
phases), it did not prevent discrimination between the three spe-
cies of the studied model. It has been also shown17 that correct
identification rates (CIRs) of Bacillus species were essentially
unaffected by time of growth between 24 and 48 h (supporting
the fact that most metabolic activity changes occur in the
first 24 h).

Modifications of glycogens observed at the surface of E. coli
microcolonies had also been reported to vary significantly
during prolonged culture as well as formation of extra-cellular
polymeric substances (EPS). Eboigbodin and Biggs18 conducted
a systematic analysis of free and bound EPS using IR vibrational
spectroscopy at different growth stages after 6 and 24 h: E. coli
was shown to produce very little EPS while Bacillus subtilis
showed large changes in carbohydrate/protein ratio. Ciobotă
et al.19 later demonstrated that the presence of polyhydroxybu-
tyrate in microbial cells did not prevent Raman identification as
long as the microorganisms were in the exponential growth
phase.

Most studies converge on the concept that direct on-agar
Raman identification at the species level (and even possibly at
the strain level) performs well in the limited context of each
study, concluding that an effort to standardize, to extend the
size of the database, and to better understand individual spectral
contributions are needed to move the field forward.
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In our study, we first chose not to compensate for possible
interference by medium. Before going to an elaborated pro-
cedure to attempt to correct for possible media effects, we
thought that the first step was to establish the level of perfor-
mance achievable “as is” and we are eager to report rather
high CIRs without any correction for the underlying medium.
Besides, the risk of losing information by performing spectra
correction cannot be ruled out. We corrected for a background,
mainly consisting of fluorescence signal, with no additional
attempts to quantify or identify sources of variability originating
from the acquisition procedure or the sample itself. In order to
reduce the biological variations, we chose instead to work at
constant growth time (exactly 6 or 24 h) on the single culture
medium and to process the samples immediately, without any
storage period. This was taken as a precautionary measure in
an effort to simplify the identification problem and to avoid con-
founding factors, but it is not mandatory (no decrease in the
Pearson correlation coefficient between fresh cultures on one
side and fresh cultures stored up to 5 days at 4°C on the
other side). We chose to carry out our work on trypticase soy
agar (TSA) as it is a very generic medium, but we have reasons
to believe that similar results could be achieved at least on most
nonchromogenic media as the prior art teaches us that discrimi-
nation is achievable, at various levels, on a variety of media:
Sabouraud agar3–5 (MH), and even CBA despite the presence
of hemoglobin.9

Several points differentiate our study from the prior art,
besides the obvious diversity of the species and strains and the
large number of strains included in the database. First, no cor-
rection for possible agar contribution was attempted as done by
the group of Puppels5 by a systematic orthogonalization step,
circumventing the need to perform control measurements on
the culture medium and therefore saving the time and demon-
strating some level of robustness. Inversely, a large panel of
preprocessing and classification methods was studied for sys-
tematic comparison. Second, spectra were acquired at 532-nm
excitation wavelength instead of 830 or 785 nm as done in other
on-agar studies. Although it is commonly accepted that the
higher fluorescence level observed at shorter wavelength should
decrease the Raman signal-to-noise ratios (SNRs) and the clas-
sification performance, we demonstrated a good classification at
532 nm. Benefits of working at 532 nm include: (i) improved
spatial resolution leading to a smaller confocal depth, (ii) ulti-
mately decreased acquisition time, and (iii) staying in the con-
venient “visible range” (no need for NIR optics and large Raman
shift range).

2 Materials and Methods

2.1 Choice of Species and Strains

Nine bacterial and one yeast species were selected which all
belong to the ones most frequently encountered in clinical
microbiology. They include six Gram-negative species compris-
ing three Enterobacteriaceae species (E. coli, E. aerogenes, and
E. cloacae) and three nonEnterobacteriaceae species (Acineto-
bacter baumannii, A. johnsonii, and Stenotrophomonas malto-
philia). Some of these species are known to be difficult to
identify by the phenotypic methods. Four Gram-positive species
were added, including three bacterial species (Bacillus cereus,
Staphylococcus aureus, and S. epidermidis) and one yeast spe-
cies, selected as an eukaryotic outlier (Candida albicans). Eight
well-characterized strains were selected per species. They were

provided by the American Type Culture Collection (Manassas,
VA, USA), by the Centers for Disease Control (Atlanta, GA,
USA) or were taken from the bioMérieux culture collection.

2.2 Sample Preparation

Efforts were made to minimize variation in sample handling:
standardized time of growth, short elapsed time between culture
and measurement, no storage, and single culture medium origi-
nating from the same lot. Strains were stored at −80°C in broth
containing glycerol. Before Raman analysis, a first overnight
culture was performed on TSA (bioMérieux Ref. 43011) at
37°C (except for A. baumannii and A. johnsonii that were
grown at 30°C). This first culture was stored at 4°C and consti-
tuted a “stock culture” which was used as source during the
measurement campaign (3 weeks of storage at most). TSA
was selected as the preferred artificial solid culture medium as
it expressed a weaker fluorescence or less pronounced Raman
features than other tested suitable media from bioMérieux:
Columbia Agar with 5% Sheep Blood (Ref. 43041); manni-
tol-salt agar containing 2 μg∕mL of oxacillin (Ref. 43671);
Drigalski agar (Ref. 43341); medium dedicated to cultures of
E. coli, Proteus, Streptococci (CPS3, Ref. 43541); lactose agar
with Bromocresol purple (Ref. 43021); and TSAþ 5% sheep
blood (Ref. 43001).

For the macrocolony study, the preparation consisted in pick-
ing up colonies from a stock culture, streaking on TSA and cul-
turing for 24 h. For the microcolony study, an intermediate
culture was done by picking up colonies from stock culture
on TSA and culturing them overnight to revitalize the bacteria.
This overnight culture was followed by a 6-h long culture to
obtain microcolonies. The time elapsed between the end of
growth and reading did not exceed 30 min. Culture temperature
was 37°C for all species, except for A. baumannii and A. john-
sonii (30°C).

2.3 Spectroscopic Device and Measurements

Raman spectra were acquired using a LabRam ARAMIS
(Horiba Jobin Yvon, Villeneuve d’Ascq, France) micro-spec-
trometer equipped with a 532-nm laser (Ventus LP 532
50 mW, Laser Quantum, Stockport, UK) and a −70°C Peltier-
cooled CCD detector (Synapse TE cooled, Horiba Jobin
Yvon). The acquisition spectral window ranged from 395 to
3075 cm−1, given the choice of a 600 line∕mm grating. The
1024 channels yield a spectral resolution ranging from 3.07
to 2.65 cm−1 in the ½470 to 1700� cm−1 region selected for
data processing. Optimal acquisition conditions, established
experimentally, appeared to be quite different between macro-
colonies and microcolonies. The parameters used, respectively,
on macrocolonies and microcolonies are summarized in Table 1.

Petri dishes with bacterial cultures were directly transferred
from the incubator to the spectrometer and Raman spectra
were recorded directly from the grown colonies without any
additional preprocessing. To account for most variations in
bacterial samples, as well as to avoid significant variation of
the material during Raman measurements, the following criteria
were applied:

• Since bacteria continue their growth even at room temper-
ature, total measurement time for every Petri dish did not
exceed 1 h.
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• To account for possible intercolony variations, Raman
spectra were recorded from several isolated colonies on
the Petri dish.

• To account for possible intracolony variations, Raman
spectra were taken from several points within a colony.
On macrocolonies, an automated acquisition was usually
possible with a distance between points of 20 μm.

• To probe as much microbial material as possible, acquis-
ition focusing was set inside the colony by applying a sys-
tematic vertical offset relative to the surface of the colony.

• The number of spectra before averaging and the integra-
tion time of each single spectrum were optimized to pro-
vide an SNR sufficient for further data processing within
the shortest possible time. Five successive spectra were
acquired for every single measurement at constant focus-
ing. This recording sequence enabled to eliminate offline
saturated individual spectra, which sometimes occurred at
the beginning of the sequence, as strong and rapidly
decreasing fluorescence signal was observed for a limited
number of species on macrocolonies due to photobleach-
ing (chemical photodegradation of highly unsaturated
organic molecules present in the sample, often observed
in the conditions of acquisition). The mean of the unsatu-
rated spectra acquired at a given position was used as the
input spectrum for data processing. Hence, we were able
to apply an identical acquisition protocol for all species,
with constant laser power and integration time, while both
coping with occasional signal saturation and avoiding too
low value of SNR.

2.4 Indicators of Spectra Quality

Three indicators were used to assess the quality of a spectrum:
the SNR, the relative standard deviation (STD), and the Pearson
coefficient of correlation (R). The first quality indicator, SNR, is
derived from the signal, defined as the mean of the net spectrum
in the region of interest [see Sec. 2.5 (iii)], and the noise, defined
as the STD of the net spectrum between 1800 and 2000 cm−1 (a
region deemed free of Raman signal). The second index, STD,
used to estimate reproducibility between spectra (preferably net
spectra) of the same species, is defined as the within-species
STD of each spectral channel, averaged on all channels. It
directly provides a relative (mean) STD for spectra previously
normalized by their own mean intensity. The third quality index,
used to evaluate similarity between spectra originating from a
given strain or species, is the Pearson correlation coefficient
(R), calculated for each pair of spectra in a given dataset of spec-
tra. Plotting the distribution of R enabled a quick visualization
of the homogeneity of a dataset. The mean value of these

coefficients is an indicator of the similarity of spectra within
the dataset.

2.5 Data Preprocessing

The preprocessing of the initial Raman spectra is important for
the subsequent data analysis and classification since it elimi-
nates or reduces significantly the impact of the nonbacterial vari-
ability (e.g., instrumental or stochastic). Four preprocessing
steps were used in this study:

• suppression of “cosmic” spikes;

• correction of possible wavenumber shift of the spectra,
which has instrumental origin;

• extraction of the signal of interest (by deriving, or sub-
tracting background, or the raw signal itself), accompa-
nied with smoothing to reduce random spectral noise;

• normalization of spectral intensities to exclude the effect
of varying laser power, focusing grade, sample density,
etc.

All preprocessing was performed automatically in the R soft-
ware environment20 using the existing or developed in-house
routines. Elapsed time for preprocessing of 100 spectra did
not exceed 20 s, including 7 s for cosmic spikes suppression,
and 12 s for the background suppression.

i. Suppression of spikes due to gamma rays from sur-
rounding radioactivity and cosmic rays impinging the
CCD detector21 (the so-called “cosmic” spikes) was
the first step of preprocessing. For each spectrum, a
peak search was done using the second derivative of
the spectrum. Identification of these spikes in the peak
list was done from smoothed spectra as the spikes, being
thinner and often of larger intensities than Raman peaks,
decrease more rapidly upon smoothing than Raman
peaks. Detected spikes were replaced by a linear inter-
polation of the surrounding signal. This method was
preferred to the more usual one of detecting spikes by
comparing multiple spectra acquired successively on
a given spot of the colony because of possible photo-
bleaching between successive spectra.

ii. Wavenumber shifts of the same spectral features
between different spectra were observed within and
between days. Their origin was mainly instrumental, as
shown by their time dependence. The shift is constant
for the entire spectrum if expressed as a number of spec-
trum channels. Selected peaks of each net spectrum
[see (iii)], at approximate fixed positions, were fitted
by a Gaussian function with a linear background. The
applied realignment is the mean of the shift values of

Table 1 Parameters and conditions of Raman spectra acquisition for microbial macrocolonies and microcolonies.

Colony
type

Time of
growth (h)

Microscope
objective
(x∕NA)

Confocal
hole (μm)

Axial confocal
thickness (μm)

Focus
offset (μm)

Laser power
sample (mW)

Acquisition
time (s)

Points per
colony

Macro 24 50∕0.5 800 60 −20 11 5 × 20 6 to 8

Micro 6 100∕0.8 200 5 −3 to −8 36 5 × 15 1 to 4
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the selected peaks compared to their fixed reference
positions. Only peaks common to all spectra and char-
acterized by a sufficient SNR value were selected which
limited their number to two. The two peaks were at
746 and 1127 cm−1 for macrocolonies and at 783 and
1003 cm−1 for microcolonies.

iii. To select the signal of interest before classification, sev-
eral preprocessing methods were tested and compared,
including very simple ones: simple smoothing without
further extraction (the signal thus preprocessed is called
“raw spectra”), background estimation by peak-clipping
and subtraction (“net spectra”), and first and second
(smoothed) derivative spectra. Smoothed spectra as
well as first and second derivatives were calculated
using Savitzky–Golay filters22 (degree 2, on 13 points).
The peak-clipping algorithm for background suppres-
sion was based on the SNIP algorithm,23 already suc-
cessfully applied to Raman spectra processing,24,25

here with an initial smoothing done by the same
Savitzky–Golay filter and the neighborhood window
reduced to a radius of 1 (this implies more iterations but
less parameters). By “background” is meant a broad,
slowly varying signal combined with the Raman signal
of interest and presumably very variable and poorly
informative. It is mainly due to the fluorescence of
the microorganisms themselves and possibly the under-
lying medium, to the CCD background signal, and
to various diffusive, parasite light sources. The sub-
tracted signal unavoidably also includes some part of
the Raman signal itself, especially in the presence
of broad bands, with presumably little interesting
information.

iv. The last step of preprocessing was the spectrum nor-
malization which was essential to compare spectra as
the laser power or the thickness and density of the
observed colony may vary, therefore preventing a
robust control of the signal intensity. The region of inter-
est providing the best classification results was the
½470 to 1600� cm−1 region for macrocolonies and the
½650 to 1700� cm−1 region for microcolonies. Normali-
zation was done by dividing each signal by its mean
(or by the mean of its absolute value in the case of
first or second derivatives) in this region.

2.6 Classification

Two types of cross-validation were carried out in the so-called
“stringent” and “nonstringent” modes.

When performing a classification at the species level in the
stringent mode, all spectra belonging to the strain being classi-
fied were previously removed from the reference database, thus
preventing an artificially almost perfect match. Our biological
model contained eight strains per species and 10 species, so
10 strains (one per species) were randomly chosen and simulta-
neously removed from the reference spectra to constitute the test
group. An eightfold cross-validation was therefore sufficient to
test all spectra.

In the nonstringent mode, all strains were represented in the
reference database. In this case, one-eighth of the spectra of
each strain was randomly chosen, removed from the reference
database, and tested. In those conditions, an eightfold cross-
validation was also sufficient to test all spectra.

The stringent mode is thought to be more representative of a
clinical situation, where the exact microbial strain present in the
sample of interest is most often absent from the reference data-
base used for the identification. In each mode, 10 cross-valida-
tions were done, with randomly chosen eightfold partitions. It
allowed for the calculation of mean and STD for the CIR. It has
been verified that these values are not significantly modified
when the number of cross-validations is increased (e.g., to 100).

Several classification algorithms were tested:

i. The Euclidean distance (ED), where an averaged refer-
ence spectrum (or signal of interest), is calculated for
each species, and the nearest reference spectrum gives
the selected species.

ii. The k-nearest neighbors (KNN), with k ¼ 3, where all
reference spectra are kept (without averaging), and a
vote between the k-nearest (in the sense of ED) refer-
ence spectra decides the selected species (function
“knn” of the R package “class”26).

iii. The LDA provided by function “lda” of the R package
“MASS.”26

iv. The regularized quadratic discriminant analysis (rQDA),
where the selected species is given by the smallest
Mahalanobis distance, based on the variance-covariance
matrix calculated (hence regularized), for each species,
using the n − 1 discriminant variables provided by LDA
(where n ¼ 10 is the number of species).

v. The support vector machine (SVM) with a vote between
the nðn − 1Þ∕2 one-versus-one SVMs (function “svm”
of the R package “e1071,” interfacing the “LIBSVM”
library27).

Classification results of each method are summarized by the
mean of the CIRs of all species. They are also given with more
details in the form of a confusion matrix which consists in a
cross-table of actual and found species membership, with clas-
sification rates expressed in percentages of the number of tested
spectra in the actual species. Sensitivity and specificity for a
given species can be obtained from this confusion matrix,
since sensitivity simply is the corresponding CIR, and specific-
ity is given, after removing the row and column of that species,
by summing in each row and then averaging. Nevertheless, since
the classification scheme consists of choosing one class among
10, the specificity is naturally high (90% for a random classifier)
whereas getting a high sensitivity (or CIR) is much more chal-
lenging (a random classifier would give 10%).

3 Results

3.1 Databases Description

The databases of macrocolonies and microcolonies contain
2533 spectra and 1813 spectra, respectively (Table 2), acquired
for the same 80 strains from 10 species. Each raw spectrum is
subdivided into 1024 channels corresponding to a Raman shift
ranging from 395 to 3075 cm−1.

3.2 Indicators of Spectral Quality

The mean SNR values per species, for both macrocolony and
microcolony bases, are listed in Table 3. They show that single
spectra acquired on microcolonies are of better quality than
those from macrocolonies since their SNRs are approximately

Journal of Biomedical Optics 027004-5 February 2014 • Vol. 19(2)

Espagnon et al.: Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies. . .



2.7-fold higher than those of the latter (average SNR of 10.3 for
microcolonies versus 3.8 for macrocolonies). Moreover, the rel-
ative STD of spectra in each species (Table 4) clearly demon-
strates that the within-species reproducibility is significantly
higher with microcolonies (STD of 0.10) than with macrocol-
onies (STD of 0.17). This is further illustrated by the Pearson
correlation analysis of the E. coli spectra (Fig. 1) quantifying the
observed similarities among macrocolonies, among microcolo-
nies, and between macrocolonies and microcolonies. It was
observed that spectra correlated with an average R value of
0.97 and 0.98 for macrocolonies and microcolonies,

respectively, while the correlation dropped dramatically to
0.48 when comparing the macrocolonies to microcolonies,
which clearly shows that their spectra are very different. The
Pearson coefficient distribution was narrower for microcolonies,
a further indication of the better reproducibility of the microcol-
ony dataset.

3.3 Macrocolonies

Figure 2 presents raw spectra of E. coli strain API 9203096,
before and after normalization. Because of the high variability
in spectral background in both cases, it was deemed essential to
remove the background before classifying, as is commonly
performed in spectroscopic analysis.

The mean, normalized, preprocessed spectra for each species
are shown in Fig. 3, for the (smoothed) raw spectra, the net spec-
tra after background suppression, and the first derivative (second
derivative is not shown). It is important to notice that nearly the
same peaks are present in all species. The main differences
between species lie in the relative abundances, an observation
easily explained by the fact that all species have similar bio-
chemical compositions and are therefore characterized by
identical chemical bounds, differing mostly by the relative abun-
dance of particular biogroups. One exception is presented by
S. aureus, where six of the eight strains had the characteristic
golden pigmentation, due to carotenoids and associated with
the intense and very specific Raman peaks28 at 1160 and
1520 cm−1, clearly visible in the averaged signal (Fig. 3).
The corresponding principal component analysis (PCA) plots
(Fig. 3, bottom) suggest that the background subtraction step,
by the peak-clipping algorithm or by deriving the spectra, sub-
stantially improves the discrimination between species.

The CIRs of the five classification methods tested on these
four sets of raw or preprocessed spectra are shown for stringent
and (partially) for nonstringent modes in Table 5 (upper part).
Figure 4 shows the confusion matrix obtained for the stringent
mode in the best configuration, which is the rQDA method
applied to the first derivative spectra. In this case, the CIR is
94.1� 0.6%. It decreases to 93.3� 0.9%, when the realignment
step is skipped. Same results are presented in terms of sensitivity
(i.e., CIR) and specificity in Table 6. As anticipated in Sec. 3,
specificities are very high, with an average value of 99.3%.

We observe that the rQDA method still provides the
best CIRs for the net and second derivative signals. It is also
noticeable that the CIRs obtained with the raw spectra and

Table 2 List of species, code, number of strains, and number of
acquired spectra per species, in macrocolonies and microcolonies
databases.

Species Code
No. of
strains

No. of spectra

Macrocolonies Microcolonies

Acinetobacter
baumannii

ACN-BAU 8 257 182

Acinetobacter
johnsonii

ACN-JOH 8 236 192

Bacillus cereus BAC-CEU 8 190 180

Candida albicans CAN-ALB 8 261 143

Enterobacter
aerogenes

ENT-AER 8 260 213

Enterobacter
cloacae

ENT-CLC 8 264 191

Escherichia coli ESH-COL 8 288 193

Staphylococcus
aureus

STA-AUA 8 235 202

Staphylococcus
epidermidis

STA-EPI 8 288 180

Stenotrophomonas
maltophilia

STE-MLT 8 254 137

Total 80 2533 1813

Table 3 Average signal-to-noise ratio (SNR) per species for macrocolonies and microcolonies studies.

ACN-BAU ACN-JOH BAC-CEU CAN-ALB ENT-AER ENT-CLC ESH-COL STA-AUA STA-EPI STE-MLT Av.

Macro 3.7 3.5 2.2 3.9 4.1 4.2 4.0 4.6 2.9 5.0 3.8

Micro 12.9 9.7 12.5 6.8 13.5 10.2 12.4 10.1 8.6 5.8 10.3

Table 4 Mean standard deviation (STD) of normalized net spectra per species for macrocolonies and microcolonies studies.

ACN-BAU ACN-JOH BAC-CEU CAN-ALB ENT-AER ENT-CLC ESH-COL STA-AUA STA-EPI STE-MLT Av.

Macro 0.14 0.21 0.14 0.12 0.11 0.11 0.14 0.47 0.13 0.08 0.17

Micro 0.09 0.09 0.08 0.15 0.07 0.11 0.08 0.08 0.11 0.11 0.10
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the more advanced classification methods (92.0% with LDA,
92.7% with rQDA, and 93.3% with SVM) are barely lower
than the best CIR. This is very different from the results obtained
with the ED and KNN, where subtracting the background (by
the peak-clipping algorithm or by deriving) clearly improves the
CIR, as suggested by the PCA plots. This is a direct conse-
quence of the close relationship between PCA and ED.

In the nonstringent mode, the best CIR is 99.8� 0.1% and
was obtained with SVM. It is worthwhile to notice that it was
obtained for the raw spectra and is very close to the one obtained
with SVM on first derivative (99.7� 0.1%).

3.4 Microcolonies

Figure 5 shows the same set of raw and preprocessed spectra as
in Fig. 3, also with the corresponding PCA plots, here for the
microcolonies. We also observed in the PCA plots that the back-
ground subtraction by peak-clipping or the derivative improves
the discrimination between species, although it is seemingly
poorer than with macrocolonies. Interestingly, the yellow strains
of S. aureus did not have detectable Raman peaks specific to
carotenoids. This is in agreement with the absence of observable
pigmentation of those strains at the microcolony stage.

The CIRs for the microcolonies are shown in the lower part
of Table 5 for the stringent and nonstringent modes. Figure 6
shows the confusion matrix obtained in the best stringent
configuration, which is applying the SVM method to the first

derivative spectra. The corresponding CIR is 91.5� 0.4%
(decreasing to 88.7� 0.4% when the realignment is skipped).
Once again, the ED and KNN are the only classification meth-
ods that showed a clear improvement when background signal
was removed compared to raw spectra. In the nonstringent
mode, the best CIR is 98.0� 0.1% and was obtained with
SVM on raw spectra, as for macrocolonies.

4 Discussion

4.1 Misclassifications and Taxonomy

Species that are the most difficult to differentiate by Raman
spectroscopy are also the ones being very close in their taxo-
nomic position, as defined by using conventional phenotypic
and molecular methods. With macrocolonies as well as with
microcolonies, the lowest CIRs were observed inside the Enter-
obacteriaceae family (for E. aerogenes, E. cloacae, and E. coli)
and inside the Acinetobacter genus (A. johnsonii and A. bau-
mannii). Other significant errors occurred with E. cloacae
instead of A. johnsonii for macrocolonies and S. maltophilia
instead of E. cloacae for microcolonies. Confusions confined
under the genus level accounted for 89% of all errors for macro-
colonies and 44% for microcolonies. When errors inside the
Enterobacteriaceae family are included, the proportion increased
to 93% of all errors with macrocolonies and 85% with microcol-
onies. These results are similar to earlier findings28 showing con-
fusions between Enterococcus faecalis and E. faecium.

4.2 Comparison Between Macrocolonies and
Microcolonies and Influence of the Agar Signal

For any given species, spectra acquired on microcolonies were
very different from spectra acquired on macrocolonies. This was
illustrated by the Pearson correlation analysis of the E. coli spec-
tra (Fig. 1), which clearly implies that identification is only pos-
sible if the spectra of the tested sample are acquired at the same
culture age as the reference spectra forming the database, at least
for times of culture where the growth stage is expected to be very
different as is the case in this study.

These differences are more directly shown in Fig. 7 for
species E. coli by comparing the mean net spectra of macrocol-
onies and microcolonies. The Raman spectrum of TSA is also
shown to demonstrate that the difference cannot be due to
the contribution of the underlying agar as the TSA medium
has a few characteristics unique peaks (although it also clearly

Fig. 1 Frequency distribution of R Pearson coefficients when corre-
lating normalized net spectra of Escherichia coli (i) frommicrocolonies
2 × 2, (ii) from macrocolonies 2 × 2, and (iii) from microcolonies with
spectra from macrocolonies.

Fig. 2 Raw spectra of strain “ESH-COL API 9203096,” (a) on the full Raman-shift range without nor-
malization and (b) restricted and normalized on the region of interest (macrocolonies).
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shows multiple peaks in the same region of interest as the colo-
nies). We suggest that the large differences observed between
microcolonies and macrocolonies are indeed due to the biological
differences and not to the underlying growth medium (a result to
be expected for microorganisms at different growth stages).

The following three arguments support our proposition:

• First, we noticed that the TSAmedium [Fig. 7(a)] is show-
ing a peak at 1414 cm−1 which is absent from spectra of
both macrocolonies and microcolonies, an indication that

Fig. 3 Mean spectra per species for macrocolonies, for (a) raw spectra, (b) net spectra, (c) first deriva-
tive, and (d, e, f) corresponding PCA plots (first two components, with one color per species). NB: Orange
strains of Staphylococcus aureus have been excluded from PCA to provide more details.
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the culture medium might indeed not be significantly con-
tributing to the measured Raman signal.

• Second, the microcolony average spectrum [Fig. 7(c)]
shows some characteristic peaks (664, 781, 808, 1095,
and 1569 cm−1) that match the position and tendency
(higher nucleic acid content observed in the exponential

phase compared to the stationary phase) of the metabolic
activity markers identified by Moritz et al.12 and assigned
to DNA and RNA nucleic acid bands (at 668, 783, 811,
1099, and 1578 cm−1). Of the two very intense peaks
present in macrocolonies at 745 and 1126 cm−1, we have
assigned the peak at 1126 cm−1 to C─N and C─C stretch-
ing mainly associated with proteins12,29 but were not able
to assign the peak at 745 cm−1.

• Third, we have tested and rejected the assumption that
differences between microcolonies and macrocolonies
could be due solely to the underlying growth medium (to
be expected if the confocal height happens to be too large
or in case of improper focalization); as we failed to recon-
struct the spectra of microcolonies using a simple linear
combination of the TSA signal and of the pure macrocol-
ony bacteria signal. The highest coefficient of the corre-
lation R between the closest modeled spectrum and the
microcolony was only of 0.53 for 60% bacteria/40% agar).

4.3 Comparison of CIRs Between Macrocolonies
and Microcolonies

Another clear difference between macrocolonies and microcol-
onies lies in the fact that the CIRs from microcolonies were

Fig. 4 Confusion matrix for macrocolonies with rQDA method in strin-
gent mode on first derivative spectra (CIR ¼ 94.1� 0.6%).

Table 6 Sensitivity and specificity calculated from confusion matrix of Fig. 4 (rQDA on first derivative spectra for macrocolonies and stringent
cross-validation).

ACN-BAU
(%)

ACN-JOH
(%)

BAC-CEU
(%)

CAN-ALB
(%)

ENT-AER
(%)

ENT-CLC
(%)

ESH-COL
(%)

STA-AUA
(%)

STA-EPI
(%)

STE-MLT
(%)

Av.
(%)

Sensitivity 89.8 92.0 100.0 100.0 88.4 79.3 98.3 93.1 99.8 100.0 94.1

Specificity 99.5 98.7 100.0 100.0 97.8 98.2 100.0 100.0 99.2 100.0 99.3

Table 5 Correct identification rates (CIR) obtained for the macrocolonies and microcolonies in stringent and nonstringent modes with the five
classification methods and the four sets of preprocessed spectra.

Stringent CV Nonstringent CV

ED KNN LDA rQDA SVM ED SVM

Macrocolonies

Raw spectra 58.5� 0.3 77.7� 0.7 92.0� 0.6 92.7� 0.4 93.3� 0.4 62.1� 0.1 99.8� 0.1

Net spectra 74.1� 1.0 81.4� 0.5 89.1� 0.7 91.6� 0.6 88.3� 0.7 82.8� 0.1 99.0� 0.1

First derivative 74.4� 0.8 84.5� 0.5 91.2� 0.8 94.1� 0.6 91.6� 0.7 80.2� 0.2 99.7� 0.1

Second derivative 81.3� 0.2 80.0� 0.5 90.3� 1.0 92.4� 0.4 89.8� 0.5 84.8� 0.1 98.6� 0.1

Microcolonies

Raw spectra 66.9� 0.4 77.1� 0.2 88.3� 0.6 88.4� 0.7 90.8� 0.3 69.7� 0.2 98.0� 0.1

Net spectra 77.3� 0.4 83.9� 0.6 88.1� 0.5 87.2� 0.4 90.7� 0.4 81.7� 0.2 97.7� 0.3

First derivative 78.4� 0.4 85.2� 0.3 88.5� 0.6 88.2� 0.6 91.5� 0.4 82.7� 0.2 97.8� 0.2

Second derivative 79.3� 0.4 81.8� 0.5 88.7� 0.6 88.2� 0.7 88.9� 0.4 84.7� 0.1 95.8� 0.2
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significantly lower than those obtained from macrocolonies (see
CIRs in Table 5 and confusion matrices in Figs. 4 and 6). The
reasons for this observed drop of performance were not eluci-
dated. Logical explanations could be a lower specific Raman
signal from microcolonies because of the smaller quantity of
biological material, hence a lower SNR, or a higher contribution
of the underlying culture medium, due to the confocal volume

extending beyond microcolony depth, hence a less specific
signal. These assumptions are denied by the fact that despite
the reduced overall signal, the spectra quality actually appeared
to be better for microcolonies than for macrocolonies, since they
showed a higher SNR (10 versus 4; see Table 3). Moreover,
Fig. 1 illustrates (for E. coli) that the normalized net spectra
were slightly better correlated within species for the

Fig. 5 Mean spectra per species for microcolonies, for (a) raw spectra, (b) net spectra, (c) first derivative,
and (d, e, f) corresponding PCA plots (first two components, with one color per species).
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microcolonies than for the macrocolonies and Table 4
shows (for all species) that they had a lower STD on average
(0.10 versus 0.17). This is in agreement with the already
cited study by Choo-Smith et al.7 who observed that microcol-
onies are more homogeneous in their composition than
macrocolonies.

A possible way to reconcile the fact that lower CIRs are
observed for microcolonies despite a lower dispersion inside
each class and a higher SNR could be to assume that the micro-
colonies show less chemical composition differences between
species than macrocolonies, therefore making the discrimination
between species more difficult. Possibly the Raman peaks asso-
ciated with a high metabolic activity are not that species-
specific, otherwise discrimination would be improved as the
relative importance of those marker peaks decreases in the sta-
tionary phase.

4.4 Influence of Background Subtraction on
Classification

It was already mentioned that the best classification results (in
stringent mode) were obtained for the derivative spectra, which
are deemed to be background subtracted, with the rQDA and
SVM methods (for macrocolonies and microcolonies, respec-
tively), but that the same methods give barely lower CIRs on
raw spectra (see Table 5). This seems contradictory with the
PCA plots of Figs. 3 and 5 which suggest that the background
subtraction substantially improves discrimination between spe-
cies, as actually observed in the CIRs obtained with the ED and
KNN methods. This logically questions the astonishingly small
improvement in the classification performance of LDA, rQDA,
and SVM methods between raw and background-subtracted
spectra. Or, one could equivalently ask why they proceed so well

Fig. 6 Confusion matrix for microcolonies with SVM method in strin-
gent mode on first derivative spectra (CIR ¼ 91.5� 0.4%).

Fig. 7 From top to bottom: average normalized net Raman spectra (offset for clarity) of (a) TSA culture
medium, (b) E. coli microcolonies (�1 SD in thin traces), (c) E. coli macrocolonies, and (d) difference
between microcolonies and macrocolonies.
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with the raw spectra. A part of the answer lies in the fact that,
contrary to ED and KNN (closely related with PCA through the
ED), those methods are not based on constant weights for all
channels throughout the spectrum. They instead determine opti-
mized weights (by taking account of the common or specific
variance-covariance matrix for LDA and rQDA, or by searching
for the separating hyperplane with maximum margin and mini-
mum classification errors for SVM), which shows equivalent
performance in terms of classification to explicitly subtracting
the background.

Now we come to the question: is it really necessary to sub-
tract the background? In fact, even if raw spectra give good clas-
sification results, it seems dangerous to keep background in the
signal of interest. Indeed, background depends a lot on exper-
imental conditions. In our study, sources of variability were
minimized by for instance choosing a constant acquisition time
for spectra for all 80 strains of our experimental collection and
selecting a unique culture medium. This is a valuable approach
here, as we wanted to evaluate the ultimate discriminatory power
of Raman spectroscopy under nearly ideal conditions while min-
imizing possible confounding factors. For obvious reasons, it
might be not very practical, as for instance a common time
of acquisition is unlikely to be found as the number of species
and strains will be significantly expanded. Variable acquisition
time will very likely cause an increase in fluorescence back-
ground variability as photobleaching is concurrent to acquisi-
tion. Also, multiple media and low temperature storage will
certainly be in frequent use in real life. For those reasons,
removing the background seems mandatory because it is likely
to render the Raman procedure more robust.

5 Conclusion
Our original intent was to evaluate spectral classification
performance while minimizing data preprocessing to establish
a benchmark for the performance of identification. We have
shown that it was possible to discriminate, at the species level,
80 strains belonging to 10 different bacterial and yeast species,
with a CIR ranging from 91.5% for microcolonies to 94.1% for
macrocolonies, via direct measurements on the culture medium.
Importantly, these numbers were obtained in a stringent cross-
validation analysis. This opens the door to an innovative clinical
diagnostic workflow, allowing the possible interrogation of cul-
tures as early as 6 h from culture start with the possibility of
resuming the culture after Raman spectroscopy in order to facili-
tate other forms of downstream microbiological analysis. Inter-
ference from the underlying medium is most likely absent and
we are strongly suggesting that most of the difference observed
between microcolonies and macrocolonies are of biological ori-
gin. Without any attempt to correct for the medium contribution,
results are judged excellent as significantly above the 90% cut-
off limit routinely accepted in IVD identification.

In real clinical settings, the nature of a sample is likely to be
important, whether or not a patient was treated with antibiotics
for instance. If bacteria are fastidious and long culture periods
are required, the medium composition may change drastically.
As TSA is not the most frequently used medium in a clinical
laboratory, the study should be extended to other media but
there is little risk that the performances will be affected (at
least for nonchromogenic media) as shown by the diversity of
media used in the published prior art. The power of discrimina-
tion of Raman might decrease with a larger number of species

included in the database, but more efforts are needed to confirm
or refute this proposition.

The simplicity of the preprocessing method used in this study
as well as the absence of any sample preparation after culture,
coupled with low biomass requirements, low invasiveness, and
real-time measurement make Raman spectroscopy an outstand-
ing technology candidate for rapid and automated IVD.
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