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Abstract

Significance: Hyperspectral reflectance imaging can be used in medicine to identify tissue
types, such as tumor tissue. Tissue classification algorithms are developed based on, e.g.,
machine learning or principle component analysis. For the development of these algorithms,
data are generally preprocessed to remove variability in data not related to the tissue itself since
this will improve the performance of the classification algorithm. In hyperspectral imaging, the
measured spectra are also influenced by reflections from the surface (glare) and height variations
within and between tissue samples.

Aim: To compare the ability of different preprocessing algorithms to decrease variations in spec-
tra induced by glare and height differences while maintaining contrast based on differences in
optical properties between tissue types.

Approach: We compare eight preprocessing algorithms commonly used in medical hyperspec-
tral imaging: standard normal variate, multiplicative scatter correction, min–max normalization,
mean centering, area under the curve normalization, single wavelength normalization, first
derivative, and second derivative. We investigate conservation of contrast stemming from
differences in: blood volume fraction, presence of different absorbers, scatter amplitude, and
scatter slope—while correcting for glare and height variations. We use a similarity metric, the
overlap coefficient, to quantify contrast between spectra. We also investigate the algorithms for
clinical datasets from the colon and breast.

Conclusions: Preprocessing reduces the overlap due to glare and distance variations. In general,
the algorithms standard normal variate, min–max, area under the curve, and single wavelength
normalization are the most suitable to preprocess data used to develop a classification algorithm
for tissue classification. The type of contrast between tissue types determines which of these four
algorithms is most suitable.
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1 Introduction

Hyperspectral imaging can be used in medical applications to distinguish tissue types based on
differences in their spectral signature.1–5 Currently, many researchers use a variety of methods to
develop classification algorithms for hyperspectral imaging, such as machine learning, statistical
analysis, or fitting algorithms, which identify tissue types based on spectral differences between
tissue types. The quality of the data used by the classification algorithm influences the accuracy
and robustness of the developed algorithm. Ideally, the spectra used to distinguish tissue types
are only influenced by the tissue composition, but unfortunately these spectra are also influenced
by other factors, such as surface reflections and sample thickness variations. Removing in-
fluences not related to tissue composition is expected to improve the accuracy of the developed
algorithm itself, and it would also make the developed algorithm more generalizable, because
it does not depend on the amount of surface reflections and sample thickness variations present
in the dataset used to develop the algorithm. Thus, reducing these influences is a valuable step
in the development of classification algorithms for hyperspectral imaging.

The measured reflectance is the sum of diffuse [Fig. 1(a)] and surface reflections [Figs. 1(b)
and 1(c)]. Surface reflections can be divided into mirror-like specular reflections from a smooth
tissue surface [Fig. 1(b)] and specular reflections from a rough tissue surface, known as glare
[Fig. 1(c)]. Glare is a form of specular reflection, albeit on a much smaller scale, that is influ-
enced by the roughness of the tissue surface. To prevent mirror-like specular reflections from a
smooth surface, the light source and camera are generally placed at an angle with respect to each
other. However, this will not prevent glare. Due to the surface roughness of the tissue, light from
the tissue surface will be reflected in many directions of which some will be detected by the
camera. Assuming surface roughness is not homogeneous, the orientation of the tissue sample
with respect to the camera will influence the detected amount of glare. Thus, the amount of glare
in a measured spectrum depends not only on the tissue composition but also on the geometry of
the hyperspectral setup.

In ex-vivo settings with benchtop systems, the influence of surface reflections can be reduced
by polarization filters and the influence of variable sample heights by surface profilometry.
However, for in-vivo applications, data analysis should be fast to provide clinicians with
real-time information. Surface profilometry takes additional time during a measurement and
has to be redone frequently to allow the clinician to move the hyperspectral imaging device.

Fig. 1 Three different types of reflected light: (a) diffuse reflectance, where the light travels through
the tissue, (b) specular reflectance from a smooth tissue surface, and (c) glare as a result of
surface roughness, where light is reflected from the surface in many directions. Only the light
that reaches the sensor should be considered for the measured signal.
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Polarization filters not only remove glare but also reduce the intensity of the diffuse reflectance
since the diffuse reflectance will be unpolarized. Thus, to obtain a good signal-to-noise ratio, this
could increase measurement times, especially in low-light settings such as endoscopy. Instead of
hardware solutions, the influence of surface reflections and sample height variations can also be
reduced by preprocessing the measured spectra used by tissue classification algorithms.

In theory, when sophisticated algorithms such as convolutional neural networks are used on
vast amounts of data, algorithms should be able to learn to identify tissue types in the presence of
additional variations such as surface reflections. However, for clinical applications, algorithms
are always developed with limited sample sizes, especially when hyperspectral imaging is used
to identify tissue types since it requires correlation with histopathology, which is expensive and
time-consuming. Algorithms developed on limited sample sizes with additional variations in the
spectra that are not related to tissue composition could result in a poorer performance. Multiple
studies have shown that, in general, preprocessing data before feeding it to a convolutional neural
network improves the performance of the developed algorithm.6–8

An example of the influence of glare can be seen in the study by Kho et al.4 where they
imaged breast tissue slices. In Fig. 2, spectra from two regions with different tissue types as
indicated by the rectangles are shown. Within each rectangle, the tissue type is the same
[Fig. 2(a)–2(c)], but large variations exist in the obtained spectra [Figs. 2(a) and 2(d)].
Because the size of these rectangles is small, no variation in tissue composition is expected.
The large variations shown in Figs. 2(d) and 2(e) give the impression of a wavelength-indepen-
dent offset. Specular reflection, and thus glare by extension, is related to the difference in refrac-
tive index of tissue and air. As the refractive index of tissue does not change dramatically with
wavelength (for both pure water and pure fat it varies <2% over the entire 400 to 1600 nm range),
the specular reflection and thus also the glare will only vary slightly with wavelength at lower
wavelengths. Hence, glare would result in an offset, and thus the large variations in the measured
spectra shown in Figs. 2(d) and 2(e) are likely to be attributed to glare.

The pipeline for classifying tissue using hyperspectral data can often be broken down into
three steps: calibration, which is necessary to compensate for wavelength-dependent properties
of the setup; preprocessing, which is needed to reduce unwanted variation in the data; and a
classification algorithm, where the actual classification based on the data is made. For the devel-
opment of a classification algorithm, there are several possibilities, such as fitting spectra with
diffusion theory and using optical properties or principle component analysis. In recent years,
machine learning is increasingly used in hyperspectral imaging to develop classification
algorithms.

Hyperspectral imaging setups require calibration primarily to compensate for wavelength-
dependent properties of the setup such as: sensor sensitivity, transmission of lenses used, variable
properties of the light source, and the physical layout of the setup. Ideally, a calibration is done
with a reference sample, performed at a location corresponding to the location of the imaged
sample. However, in practice, this is rarely the case. Sample thickness variations introduce dis-
tance differences between the sample, light source, and camera. When the tissue is closer to the
light source, the incident intensity will increase; if the tissue is closer to the camera, the surface
area represented by a pixel on the camera will decrease. The character of these spectral variations
is very different from the variations in glare: where glare adds an offset to the spectrum from
within the sample, sample height variations influence the amount of light that is detected. Height
differences will result in a multiplication of the entire spectrum with a wavelength-independent
constant and introduce differences in the size of the tissue area that corresponds to a pixel in the
camera.

Thus, glare and sample thickness variations introduce variations in the measured spectra,
which are not related to tissue composition. This makes spectra from different tissue types harder
to distinguish from each other. For the development of tissue classification algorithms in hyper-
spectral imaging, several preprocessing algorithms have been used to reduce the variations that
are not related to tissue composition. An ideal preprocessing algorithm would reduce the
differences in the spectra that are due to glare and height differences while retaining the spectral
signatures that differ between tissue types. Currently, which preprocessing algorithm is more
suitable for a specific clinical application is unknown. One approach of choosing a preprocessing
algorithm would be to test combinations of preprocessing algorithms and classification
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algorithms and determine which combination results in the highest accuracy of the classifier.
However, this approach (data-dredging—testing multiple hypotheses on a single dataset by
extensively searching for the most optimal approach) could increase the probability of lucky
shots and thereby nonreproducible results.9 Reducing the amount of considered preprocessing
techniques and introducing selection criteria could reduce these effects. In this paper, we provide
researchers with a solid basis to identify the most suitable preprocessing algorithm for their
application.

By a literature search, we identified eight commonly used preprocessing algorithms applied
to medical hyperspectral images: standard normal variate (SNV),10–17 multiplicative scatter cor-
rection (MSC),18–20 min-max normalization (MM),16,21–29 mean centering (MC),30,31 area under
the curve normalization (AUC),32–37 single wavelength normalization (SW),1,38 first derivative
(FD),16,18,39–41 and second derivative (SD).42,43 The details of each algorithm are discussed
in Sec. 2.3.

In this study, synthetic reflection spectra (based on a simulated dataset resembling diffuse
reflectance spectra from human tissue from 400 to 1600 nm) were created with known

Fig. 2 An illustration of variations in measured spectra, which are not directly related to tissue
composition or sample thickness, obtained from resected breast tissue. (a) White light image
of the tissue specimen, (b) stained H&E section, (c) image from the hyperspectral camera with
annotations based on histopathology to indicate the tissue class of each pixel, (d) spectra from the
red region of interest containing invasive carcinoma, (e) spectra from the blue region of interest
containing adipose tissue. Because the size of these rectangles is small, no variation in tissue
composition or height differences are expected. The variation between spectra within a rectangle
are likely attributable to glare. Figure modified from Kho et al.4

Witteveen et al.: Comparison of preprocessing techniques to reduce nontissue-related variations. . .

Journal of Biomedical Optics 106003-4 October 2022 • Vol. 27(10)



differences in optical properties from absorption [blood volume fraction (BVF) and presence of
absorbers] and scattering (scatter amplitude and slope). For each set of tissue properties, 100
spectra with variable amounts of glare and variable height differences and noise were generated.
Ideally, a preprocessing algorithm would reduce the differences in spectra within one tissue type
while maintaining the differences in spectra between tissue types. To quantify how well an algo-
rithm does this, we calculated the “overlap coefficient” of the spectra, a measure of similarity
(ranging from 0 to 1), for any of combination of two sets of tissue properties. For two sets of
spectra with different tissue properties, a reduced overlap coefficient after preprocessing would
imply that variations due to glare and height differences are reduced, while the contrast related to
the difference in optical properties is retained. Thus, a lower overlap coefficient would likely
improve the discrimination ability of tissue classification algorithms. Finally, we investigate the
effect of the preprocessing algorithms on clinical data, measured on colon10 and breast11 tissues
to determine whether the trends we identify based on the synthetic data translate to clinical
applications.

2 Methods

2.1 Synthetic Spectra Theoretical Background

The diffuse reflectance consists of light that has traveled though the tissue. For the illumination
geometry commonly used in hyperspectral imaging, an infinite wide beam and infinite sample
thickness can be assumed. Consequently, the diffuse reflectance (RdiffuseðλÞ) of a homogeneous
sample with μa ≪ μ 0

s can be approximated using diffusion theory as:44

EQ-TARGET;temp:intralink-;e001;116;458RdiffuseðλÞ ¼
α 0ðλÞ

1þ 2kð1 − α 0ðλÞÞ þ
�
1þ 2k

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − α 0ðλÞÞp ; (1)

where k is the internal reflection coefficient due to the tissue–air refractive index mismatch and
α 0ðλÞ is the transport albedo, which equals:

EQ-TARGET;temp:intralink-;e002;116;384α 0ðλÞ ¼ μ 0
sðλÞ

μ 0
sðλÞ þ μaðλÞ

: (2)

Here, μ 0
s is the reduced scattering coefficient and μa is the absorption coefficient, which both

depend on the wavelength λ. The reduced scattering coefficient μ 0
sðλÞ can be described as

μ 0
sðλÞ ¼ a · ð λλ0Þ−b, where a is the scatter amplitude, b is the scatter slope, and λ0 is the reference

wavelength to normalize the reduced scattering coefficient and make it dimensionless. In this
paper, the reference wavelength was set to 500 nm.

For light incident perpendicular to a boundary where the refractive index changes from n1 to
n2, the specular reflection Rs is given by the Fresnel equation:

EQ-TARGET;temp:intralink-;e003;116;254RsðλÞ ¼
����
n1ðλÞ − n2ðλÞ
n1ðλÞ þ n2ðλÞ

����
2

: (3)

We assume that glare will be proportional to but smaller than Rs—depending on the surface
roughness of the tissue, the tissue refractive index, and the illumination/detection geometry.
We will simulate this effect as a fraction of Rs reaching the detector, independent of the wave-
length. For the synthetic spectra, glare is then simulated as

EQ-TARGET;temp:intralink-;e004;116;163RglareðλÞ ¼ RsðλÞ · randð0; 1Þ; (4)

where Rs is the maximum reflection given by Eq. (3), multiplied by a random number between
0 and 1 from a uniform distribution.

In most clinical applications, the imaged tissue specimen is not a flat surface. In addition
to surface roughness, as discussed above, sample thickness variations introduce distance
differences among the sample, light source, and camera. When the tissue is closer to the light
source, the incident intensity per surface area will increase; if the tissue is closer to the camera,
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the surface area represented by a pixel on the camera will decrease. Thus, sample thickness
variations have a multiplicative effect on the measured spectra. We model the light source
as an isotropic point source, in which case the intensity decreases with the square of the distance
from the point source (dsource). Glare can be seen as a form of specular (mirror-like) reflection
and does not interact with the tissue, therefore the light can be modeled as having traveled the
combined distance between the source and the tissue (dsource) and from the tissue to the detector
(ddet). Assuming the distance between the source and the tissue is equal to the distance between
the tissue and the detector (d), the effect of distance on glare is then equal to the inverse square
law over the combined total distance:

EQ-TARGET;temp:intralink-;e005;116;628βglare ¼
1

ðdsource þ ddetÞ2
¼ 1

4d2
: (5)

Diffuse light interacts with the tissue and can therefore not be modeled in the same manner.
After the light has entered the tissue, under the diffusion approximation the light will exit the
tissue with isotropic radiance.45 For isotropic radiance, the diffusely reflected light can be mod-
eled using the inverse square law:

EQ-TARGET;temp:intralink-;e006;116;536βdiffuse ¼
1

d2source · d2det
¼ 1

d4
: (6)

Thus, glare and distance scale with different factors. The total measured reflectance RtotðλÞ can
be simulated as the sum of the diffusely reflected light (RdiffuseðλÞ) multiplied by the scaling
factor for the distance (βdiffuse), glare (RglareðλÞ) multiplied by the scaling factor for the distance
(βglare), and noise (γ):

EQ-TARGET;temp:intralink-;e007;116;442RtotðλÞ ¼ ½RdiffuseðλÞ · βdiffuse� þ ½RglareðλÞ · βglare� þ γðλÞ: (7)

2.2 Synthetic Spectra Generation

First, Rdiffuse was created from 400 to 1600 nm with a step size of 1 nm, using diffusion theory
[Eq. (1)] and the absorption coefficients of water,46 fat,47 hemoglobin,48 and bilirubin46 in com-
bination with the optical tissue parameters from Table 1. Sets of spectra were made in which the
contrast between tissue types was either a varying BVF, the presence of different absorbers,
a varying scatter amplitude (a), or a varying scatter slope (b). Table 1 specifies the properties
used for each set of simulations. The values were chosen to simulate general soft tissue based on
the review by Jacques.49

Next, for each Rdiffuse, 100 spectra with variable amounts of glare, sample heights, and noise
were generated [Eq. (7)]. The specular reflection was calculated using the Fresnel equations for
the reflection of light at an interface between two media with different optical properties—in this
case water and air [Eq. (3)]. Glare was added as a variable fraction (between 0 and 1) of the
specular reflection, using the “rand” function in MathLab (MathWorks, Natick, Massachusetts)
picking values from a uniform distribution. The added glare is then defined in Eq. (4) as Rglare.

The simulated height differences were based on the height differences observed in the study
of Kho et al.11 Within a single specimen, height differences of ∼1 cm were observed, and
between specimens, height differences are between 1 and 5 cm. The detector in the benchtop
system was placed at 30 cm from the measurement plate, giving a maximum distance variation of
20% between all the measurements. Thus, the maximum value for d in Eqs. (5) and (6) is
equal to 1.2.

We simulated realistic white noise and added this to all the spectra to make our results more
comparable to real-life measurements. From the clinical datasets of the breast11 and colon10

obtained previously within our group, a noise estimation was made. The noise estimation was
done by taking the difference between a Savitzky–Golay smoothed reflectance spectrum and the
unprocessed spectrum.50 This was done for the breast and colon datasets and then the average of
those two was taken, which was approximated as
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EQ-TARGET;temp:intralink-;e008;116;445IntensityγðλÞ ¼ 1.0497 · 10−15 · jλ − λj5 þ 9.5469 · 10−4; (8)

λ is the mean wavelength, such that for a spectra from 400 to 1600 nm, λ ¼ 1000 nm. The
intensity of the noise is highest at the extremes of the spectra and reduces in the middle, as
was seen in the clinical datasets. For the simulated spectra, we multiplied IntensityγðλÞ by a
random number from a uniform distribution between −0.5 and 0.5 for each wavelength:

EQ-TARGET;temp:intralink-;e009;116;375γðλÞ ¼ IntensityγðλÞ · randð−0.5; 0.5Þ: (9)

2.3 Preprocessing Algorithms

A literature search was done on hyperspectral imaging for medical applications, which resulted
in almost 200 papers. In most of those papers, no preprocessing was mentioned. It was not
always clear whether a preprocessing algorithm was used and not mentioned, or no preprocess-
ing algorithm was applied. From the remaining papers, we identified 11 preprocessing algo-
rithms, of which we excluded two since they are not widely applicable or require additional
measurements. The algorithms that were excluded were: resonant Mie scattering extended multi-
plicative signal correction, due to its complexity and iterative nature being only selectively
implementable;16,51 and retrieved background correction, due to the additional measurements
that need to be made to correct for the spatial deviation of the light source.52

The eight remaining algorithms that we discuss in this paper are: SNV, MSC, MM, MC, AUC
normalization, SW normalization, FD, and SD.

2.3.1 Standard Normal Variate

SNV is commonly used in chemical analysis to remove the effects of scattering from a measured
spectrum.53 In medical hyperspectral imaging, this method was used by Baltussen et al.,10 Kho
et al.,11 Li et al.,12 Collins et al.,13 Maktabi et al.,14 Malegori et al.,15 Peñaranda et al.,16 and Pardo
et al.54 In the most used version of SNV, the mean of each individual reflectance spectrum Rtot is
subtracted from that same individual spectrum RtotðλÞ, and the resulting values are divided by
the standard deviation of the spectrum σ of that same individual reflectance spectrum:

Table 1 Tissue parameters used to create the synthetic data, based on the review by Jacques.49

B, blood; F, fat; W, water; Bi, bilirubin; VF, volume fraction; a, scatter amplitude; b, scatter slope.
For the oxygen saturation of blood, a value of 75% was used.

Contrast Absorbers

Optical properties

BVF (%)
FVF
(%)

WVF
(%)

Bi
(mg/dL)

a
(cm−1) b

BVF B + F + W 0.5; 2.0; 3.5;
5.0; 6.5

35 35 0 15.35 1.25

Presence
of different
absorbers

B 4.0 0 0 0 15.35 1.25

B + W; 0 70 0

B + W + F; 35 35 0

B + W + Bi; 0 70 13.5

B + W + F + Bi 35 35 13.5

Scatter
amplitude

B + F + W 4.0 35 35 0 8; 12; 16;
20; 24

1.25

Scatter
slope

B + F + W 4.0 35 35 0 15.35 0.500; 0.875;
1.250; 1.625; 2.00
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EQ-TARGET;temp:intralink-;e010;116;735RSNVðλÞ ¼
RtotðλÞ − Rtot

σ
: (10)

2.3.2 Multiplicative Scatter Correction

MSC is often used in the chemical field and food-sciences. As the name implies, this algorithm
aims to minimize the effects of scattering on the obtained spectra of samples.55 In medical hyper-
spectral imaging, MSC was used by Amigo et al.,18 Jian et al.,19 and Alrezj et al.20 The goal of
MSC is to correct for offsets and scaling in individual spectra, so they are as similar as possible to
a “reference spectrum.” In general, the “reference spectrum” is taken as the mean spectrum of the
entire dataset:

EQ-TARGET;temp:intralink-;e011;116;609RrefðλÞ ¼
P

m
i¼1 Rtot;iðλÞ

m
; (11)

where m is the number of spectra within the dataset. For any single spectrum within the dataset,
Rtot;i, it is assumed that it can be modeled as

EQ-TARGET;temp:intralink-;e012;116;547Rtot;iðλÞ ¼ cþ d · RrefðλÞ: (12)

The values of c and d are obtained for each individual reflectance spectrum by fitting Eq. (12) to
each individual measured spectrum Rtot;iðλÞ using mean square error minimization.56 The final
MSC corrected spectrum is then calculated as

EQ-TARGET;temp:intralink-;e013;116;483RMSC;iðλÞ ¼
Rtot;iðλÞ − c

d
: (13)

Note that MSC and SNV both correct for scaling and an offset. However, in the implemented
MSC approach, the reference spectrum Rref will change when spectra are added or removed from
the database, which will in turn change and affect the shape of all spectra Rtot;iðλÞ. SNV process-
ing is done on each spectrum separately and thus is not influenced by other spectra.

2.3.3 Min–max normalization

MM, as used by Halicek et al.,21,57 Koprowski et al.,22 Wu et al.,24 Fabelo et al.,25 Martinez
et al.,26 Leon et al.,27 Aboughaleb et al.,28 Peñaranda et al.,16 and Luthman et al.,29 is an algorithm
that uses the minimum and maximum values of each individual measured reflectance spectrum
RtotðλÞ to scale and offset that same individual spectrum:

EQ-TARGET;temp:intralink-;e014;116;314RMMðλÞ ¼
RtotðλÞ −minðRtotðλÞÞ

maxðRtotðλÞÞ −minðRtotðλÞÞ
: (14)

2.3.4 Mean centering

MC, as used by Lasch and Noda.30 and Morais et al.,31 is aimed at reducing the effect of
unwanted offsets to the signal. MC is defined as

EQ-TARGET;temp:intralink-;e015;116;216RMCðλÞ ¼ RtotðλÞ − Rtot; (15)

where the mean reflectance value of each individual spectrum Rtot is subtracted from that same
individual spectrum RtotðλÞ.

2.3.5 Area under the curve

AUC normalization, as used by Lu et al.,32,33 Kumashiro et al.,34 Ma et all.,35 Waterhouse et al.,36

and Leitner et al.,37 divides each measured spectrum RtotðλÞ by the AUC of that same individual
spectrum:
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EQ-TARGET;temp:intralink-;e016;116;735RAUCðλÞ ¼
RtotðλÞPλend

λ¼λbegin
RtotðλÞ

: (16)

Note that since reflectance values in hyperspectral imaging are always positive, this algorithm
is equal to l1-normalization as used by Wirkert et al.58

2.3.6 Single wavelength

SW scaling, as used by Lu et al.38 and Baltussen et al.,1 is an algorithm in which each spectrum is
divided by its value at a reference wavelength λ0:

EQ-TARGET;temp:intralink-;e017;116;614RSWðλÞ ¼
RtotðλÞ
Rtotðλ0Þ

: (17)

A reference wavelength is chosen in a wavelength range where absorption is minimal. This low
absorption wavelength can differ between tissue types, but in tissue applications a wavelength
between 700 and 800 nm is often chosen, because in that wavelength range the absorption by
blood, fat, and water is low. In our analysis, we use 730 nm as λ0, which was found to produce
the best results.

2.3.7 First derivative

In FD processing, as used by Amigo et al.,18 Hu et al.,40 Liu et al.,39 Peñaranda et al.,16 and
Mellors et al.,41 the FD of the spectrum, instead of the spectrum itself, is used for tissue clas-
sification:

EQ-TARGET;temp:intralink-;e018;116;439RFDðλÞ ¼
dRtotðλÞ

dλ
: (18)

FD processing results in a characterization of the localized slope of the spectrum. FD processing
is very sensitive to noise. Therefore, in general, filtering or smoothing of the spectrum is per-
formed before FD processing, such as Savitzky–Golay filtering.16,18,39–41 In our analysis, we used
Savitzky–Golay filtering and optimized the window size so it would result in the lowest overlap
coefficient, which was a window size of 199 nm.

2.3.8 Second derivative

SD processing, as used by Wang et al.42 and Zheng et al.,43 uses the SD of the spectrum for
tissue classification:

EQ-TARGET;temp:intralink-;e019;116;278RSDðλÞ ¼
d2RtotðλÞ

dλ2
: (19)

SD processing results in a characterization of the rate with which the slope of the spectrum
changes. Similar to FD processing, filtering or smoothing of a spectrum is performed before
SD processing. In our analysis, we used again the Savitzky–Golay filtering and optimized the
window size so it would result in the lowest overlap coefficient, which was a window size
of 199 nm.

2.4 Data Analysis

2.4.1 Overlap coefficient

To quantify the effectiveness of each preprocessing algorithm, we use the Szymkiewicz–
Simpson coefficient or overlap coefficient, O, which is defined as the number of reflectance
values in the intersection of two sets of spectra, divided by the number of reflectance values
in the smallest set:59
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EQ-TARGET;temp:intralink-;e020;116;735OðλÞ ¼ jR1ðλÞ ∩ R2ðλÞj
minðjR1ðλÞj; jR2ðλÞjÞ

: (20)

The overlap coefficient is a similarity measure for two sets of spectra, giving the overlap between
the sets as a value between 0 and 1 for each wavelength.

Figure 3 shows how the overlap coefficient is calculated. Two types of tissues are simulated
[Fig. 3(a)], where one type has a BVF of 0.5% (red lines) and the other has a BVF of 2% (blue
lines). For each tissue type, 100 spectra were created with variable amounts of glare and height
differences. In Fig. 3(b), the effect of preprocessing is shown on the spectra. In the unprocessed
spectra [Fig. 3(a)], large nontissue-specific variations can be seen. In the processed spectra
[Fig. 1(b)], these nontissue-specific variations are reduced and the spectra can be better distin-
guished from each other. To quantify how well the spectra can be distinguished from each other,
the overlap coefficient is used. First, the reflectance values for a single wavelength are taken from
two sets of spectra and a histogram is created with a total of 25 bins for both spectra combined
[Figs. 3(c) and 3(d)]. The number of spectra in the intersection (purple bars) are then divided by
the number of spectra in the smallest set (which is equal to 100 for the synthetic spectra). The
overlap coefficient is calculated for each wavelength of the spectra for both the unprocessed
[Fig. 3(e)] and the processed spectra [Fig. 1(f)]. The mean is then taken over all wavelengths,
resulting in the mean overlap coefficient (dashed red line). As shown in Fig. 3, the mean overlap
coefficient is a similarity measure between the types of tissue, where less similarity means that
the two types of tissue are more distinguishable from each other.

To assess general trends, the improvement in the overlap coefficient for each preprocessing
algorithm Oimprovement, is calculated as

EQ-TARGET;temp:intralink-;e021;116;459Oimprovement ¼
Ounprocessed −Oprocessed

Ounprocessed

· 100%; (21)

where Ounprocessed is the average overlap coefficient over all wavelengths for the two sets before
any preprocessing algorithm is applied and Oprocessed is the average overlap coefficient over all
wavelengths between the two sets after a specific preprocessing algorithm is applied.

2.5 Clinical Data

To test whether our results on synthetic data can be translated to clinical applications, we also
investigated the overlap coefficient for different preprocessing algorithms on two clinical data-
sets from colorectal cancer patients10 and from breast cancer patients.11 Both datasets were col-
lected previously using a bench-top system and contain influence of glare and height differences.
A detailed description of the materials and methods can be found in these papers, but a short
description will be provided here. Both studies were performed on ex-vivo tissue samples with
bench-top hyperspectral systems. Each pixel within a hyperspectral image was correlated to
histopathology to determine the tissue type within the pixel. Data were obtained from
Baltussen et al.,10 who imaged tissue slices from resected colorectal tissue from 32 patients with
two hyperspectral line scanning camera (Spectral Imaging Ltd., Finland) in the visual (PFD-CL-
65-V10E) and the near-infrared (VLNIR CL-350-N17E) range (400 to 1600 nm with an average
resolution of 4 nm). 2170 spectra were present in the combined dataset, of which 857 from fat,
563 from muscle, and 750 from tumor tissue. Using the same setup, Kho et al.11 imaged lum-
pectomy specimens and slices from resected breast tissue. Only the lumpectomy data were
considered for this paper due to the reduced effect of height differences in the slices dataset.
From the lumpectomy dataset, the spectra of eight patients were included, which gave a total
of 1072 spectra containing 453 spectra of healthy breast tissue and 619 tissue of tumorous breast
tissue, which included both ductal carcinoma in situ and invasive carcinoma. Please note that
due to the use of two hyperspectral cameras in both setups, the preprocessing was done for each
camera separately, meaning that the data from the visual spectra were processed separately from
the infrared spectra.

A difference between the clinical and synthetic datasets lies in the variations that are included
in them. First of all, in our simulations, we compared a dataset where all the spectra had a BVF of
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Fig. 3 Calculation of the overlap coefficient for (a) unprocessed synthetic spectra and (b) pre-
processed synthetic spectra. In the unprocessed spectra, large nontissue-specific variations in
the spectra are visible, which make it difficult to distinguish tissue 1 (red lines) from tissue 2
(blue lines). In the processed spectra, the nontissue-specific variations are reduced significantly.
(c), (d) To calculate the overlap coefficient per wavelength histograms of the reflectance values at
a single wavelength are created. The overlap coefficient is equal to the number of reflectance
values in the intersection of the two sets (purple bars), divided by the number of reflectance values
in the smallest set [Eq. (20)]. (e), (f) The mean overlap coefficient over all wavelengths is calcu-
lated (dashed red line). This shows that the unprocessed spectra have a high overlap, whereas
the processed spectra have a low overlap.
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2% to a dataset where all the spectra had a BVF of 5%. However, in reality, the difference in
healthy and tumor tissues will not be such a clear dichotomy—both tissue types will have dis-
tributions of BVFs that most likely overlap. Second, while the synthetic dataset considers only
one changing optical property, a clinical dataset will include variation of multiple optical proper-
ties at the same time. To illustrate both effects, we performed simulations with optical properties
from a study with diffuse reflectance spectroscopy in the breast, which has shown that there are
indeed large variations in optical properties between tissue types60,61 (note that DRS is a contact
measurement and does not have any effect from glare or distance). Based on the optical proper-
ties they measured, we performed simulations to illustrate how these variations influence the
effect of preprocessing algorithms.

The main contrast for healthy and tumor tissue in breast comes from the fat-water ratio, but as
can be seen in Table 2, many parameters have a large variation within each tissue type. We made
spectra by combining random values for each optical property that lie within the ranges given in
Table 2. In total 2000 spectra were simulated, of which 1000 for healthy and 1000 for tumor. The
spectra are created by choosing optical properties within the range specified in the table for each
spectra and tissue type. The simulated spectra using the optical properties as stated above gives
us two distributions of spectra belonging to simulated healthy tissue and simulated breast tumors.
For the overlap coefficient a bin size of 50 was chosen.

3 Results

3.1 Synthetic Spectra

Figures 4–7 visualize the results of our analysis for the synthetic datasets, where we varied the
BVF (Fig. 4), the presence of different absorbers (Fig. 5), the scatter amplitude (Fig. 6), and the
scatter slope (Fig. 7). Each block within a figure represents the results for the unprocessed spec-
tra or spectra processed with the algorithm. Each square represents the mean overlap coefficient
between two sets of spectra with different tissue properties, where the properties of the sets are
specified on the horizontal and vertical axes. A lighter square indicates a lower overlap coef-
ficient and thus a better performance of the preprocessing algorithm. Overall, as expected, in the
unprocessed spectra (upper left corner) the overlap between sets of spectra decreases when the
differences in optical properties increase.

The results of the analysis on the synthetic data with different BVFs are visualized in Fig. 4.
As shown in the top left panel, the mean overlap coefficients between the different BVF spectra
of the unprocessed spectra are high (on average). Clearly, SNVand MSC preprocessing result in
the lowest overlap coefficients (on average 15%), whereas FD and SD show the highest overlap
coefficients (average 53% and 49%).

The results of the analysis on the synthetic data with adding absorbers water (W), fat (F), and
bilirubin (Bi) to blood (B) are visualized in Fig. 5. Here, the type of absorbers is shown on the
horizontal and vertical axes. The least overlap is seen after AUC, SNV, and MSC, which reduce
the overlap between the spectra with different absorbers, resulting in average overlap coefficients
of 13%, 13%, and 14%, respectively.

Table 2 Tissue parameters used to create the synthetic data, based on the DRS data from
de Boer et al.60,61 The numbers in the table indicate the ranges are given that were used in our
simulated spectra. In total, 2000 spectra were simulated, of which 1000 for healthy and 1000 for
tumor. The spectra were made by choosing optical properties within the range specified in the
table for each spectra and tissue type.

BVF
(%)

Saturation
(%)

WVF
(%)

FVF
(%)

Scatter
amplitude

Scatter
slope

Simulated healthy 0 to 6 30 to 80 2 to 4 30 to 68 10 to 15 0.8 to 1

Simulated tumor 2 to 10 5 to 60 35 to 37 33 to 35 12 to 35 0.9 to 1.3
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The results of the analysis on the synthetic data with different scatter amplitudes are visu-
alized in Fig. 6. For the scatter amplitude, AUC and SW reduce the overlap the most, resulting
in an average overlap coefficient of 23% and 21%, respectively; MC, FD, and SD again reduce
the overlap the least, with an overlap coefficient of 58%, 60%, and 58%, respectively, which is
worse than no preprocessing

The results of the analysis on the synthetic data with different scatter slopes are visualized in
Fig. 7. Here, AUC, SNV, and MSC reduce the overlap the most, resulting in an average overlap
coefficient of 17%, 17%, and 18%, respectively. The algorithms that reduced the overlap
the least were MC, FD, and SD, with average overlap coefficients of 52%, 53%, and 60%,
respectively.

3.2 Clinical Data

The results are presented in the same manner as the synthetic data, but the horizontal and vertical
axes indicate the tissue type to which the spectra belong instead of the tissue parameters shown
in the synthetic data.

Fig. 4 Overlap between sets of spectra with different BVFs for eight preprocessing algorithms.
The color and the number indicate the overlap coefficient, where a higher overlap coefficient indi-
cates that more of the spectra overlap and would be worse for classifying. The mean overlap
coefficient is shown for five different BVFs, where the unprocessed result is shown in the top left
image, and the various preprocessing techniques in the rest of the image. Here, it can be seen that
SNV andMSC result in a low overlap. AUC, SW, andMM have similar overlap but higher than SNV
and MSC. MC, FD, and SD have significantly higher overlap after processing, with FD and SD
having the highest.

Witteveen et al.: Comparison of preprocessing techniques to reduce nontissue-related variations. . .

Journal of Biomedical Optics 106003-13 October 2022 • Vol. 27(10)



3.2.1 Colon

The colon data were divided into three categories, muscle, fat, and tumor. In all cases, the overlap
between spectra from tumor and muscle tissue was much higher than the overlap between tumor
and muscle tissue compared with fat (Fig. 8). Most preprocessing algorithms reduce the overlap
coefficient compared with the unprocessed spectra. However, AUC and MC increase the overlap
coefficient for fat versus muscle. Overall, SNV and MSC resulted in the lowest overlap coef-
ficients, whereas MC and AUC resulted in the highest overlap coefficients. SW produces the
lowest overlap between tumor and muscle.

3.2.2 Breast

For the breast data, the tissue was divided into two categories: healthy and tumor tissues.
Therefore, we only obtained a single value for the overlap for each algorithm (Fig. 9). All algo-
rithms reduced the overlap coefficient compared with unprocessed data. SNVand MSC resulted
in the lowest overlap coefficients.

3.2.3 Simulated mixed tissue

The results of the mixed tissue type that includes the variations discussed are shown in Fig. 10.
In the simulated data, SNV, MSC, and SW reduce the overlap the most, whereas MC, FD, and
SD perform the worst.

Fig. 5 Overlap between sets of spectra with different absorbers for eight preprocessing algo-
rithms. The axes are labeled with the type of absorbers included, where B, blood; W, water;
F, fat; and Bi, bilirubin. SNV, MSC, and AUC reduce the overlap the most, followed by MM, which
reduces the overlap less than SNV, MSC, or AUC but still reduces the overlap significantly. MC
reduces the overlap less. Finally, FD, SD, and SW reduce the overlap the least with some high
values for a few combinations remaining.
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To facilitate easier comparison of the different algorithms for the tissue types and the clinical
data, the mean improvement in overlap coefficient relative to the unprocessed data is shown in
Fig. 11. The first four columns show the improvement for the synthetic spectra and the last two
columns show the results for the clinical data. For the colon, the improvement in the overlap
coefficient shown is the average improvement for all three classes of tissue (fat, muscle, and
tumor). For the synthetic data, SNVand AUC have the highest overall improvement in the over-
lap coefficient. Algorithms that correct for scaling and an offset (blue bars; SNV, MSC, and MM)
have the highest improvement in the overlap coefficient for the BVF, different absorbers, and
scatter slope. MM generally performs less well compared to MSC and SNV. Algorithms that
correct for scaling alone have the highest improvement for the scatter amplitude (red bars; AUC
and SW). The two algorithms that use the derivate of the spectrum (green bars; FD and SD) and
the algorithm that only subtracts an offset (MC) have a much smaller decrease in the overlap
coefficient compared with all the other algorithms.

For the clinical data, the improvement in the overlap coefficient is less pronounced. For both
the breast and colon tissues, similar trends can be observed as in the synthetic data, where the
algorithms that correct for scaling and an offset (blue bars) and the algorithms that correct for
scaling alone (red bars) perform better than the algorithms that only correct for an offset (yellow
bar) and use differentiation (green bars). For the colon and the breast, MSC and SNV perform the
best. For the colon, MC and AUC increase the overlap between the spectra from different tissue

Fig. 6 Overlap between sets of spectra with different scatter amplitudes (a) for eight preprocess-
ing algorithms. The mean overlap coefficient is shown for five different values of a. The unproc-
essed result is shown in the top left image, here a high overlap due to the nontissue-specific
variations can be seen between the different values of a. AUC and SW reduce the overlap sig-
nificantly. MM, SNV, and MSC remove the overlap less than AUC and SW. MC, FD, and SD
reduce the overlap the least.
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types. For the simulated mixed breast data, the improvement in overlap is lower than for the
synthetic data and closer to the clinical data. Again, similar trends hold for the simulated breast
data, where both the scaling and subtraction techniques (blue bars), and the only scaling tech-
niques (red bars) perform well in reducing the overlap.

4 Discussion

In this paper, we compared the suitability of preprocessing algorithms to reduce the nontissue-
specific spectral variations caused by glare and sample thickness variations in a simulated dataset
resembling diffuse reflection spectra from human tissue, and in a clinical dataset containing
hyperspectral images of breast and colon tissues. Overall, our results indicate that preprocessing
algorithms can reduce the unwanted spectral variations caused by variations in glare and sample
thickness while retaining contrast due to differences in tissue optical properties.

Glare and sample thickness variations introduce both an offset and a multiplication.
Therefore, it was expected that algorithms that subtract an offset and divide by a scaling factor
would perform the best. SNV, MSC, and MM determine an offset and scaling factor for each
individual spectrum, thereby reducing the influences of glare and sample thickness variations. In
general, the algorithms that subtract an offset and divide by a scaling factor (SNV, MSC, and
MM) perform the best, except for tissue contrast related to the scatter amplitude. Since glare and

Fig. 7 Overlap between sets of spectra with different scatter slopes (b) for eight preprocessing
algorithms. The mean overlap coefficient is shown for five different values of b. The unprocessed
result is shown in the top left image, here a high overlap due to the nontissue-specific variations
can be seen between the different values of b. Here, SNV, MSC, and AUC reduce the overlap the
most. SW and MM perform comparably with SW reducing the overlap only slightly more. MC, FD,
and SD reduce the overlap the least, with SD increasing the overlap.
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sample thickness variations introduce both an offset and a multiplication, it was expected that
SNV, MSC, andMM reduce these variations the best. Since SNVandMSC were originally devel-
oped to reduce the effects of scattering, it was interesting that SNVand MSC do not only perform
well for tissue contrast related to absorption but also related to the scatter slope. SNV and MSC
produce very similar results, and MM generally performs slightly worse. Algorithms that only
divide by a scaling factor but do not correct for an offset (AUC and SW) also perform well but
slightly less than the above-discussed algorithms that also subtract an offset before dividing by a
scaling factor. The algorithm that only removes the offset (MC) performs poorly on reducing the
overlap coefficient, which can be explained by the fact that it does not reduce variations as a result
of variations in the sample thickness, leaving overlap in the spectra as can be seen in the
Supplementary Material. The two algorithms that use the derivative of the spectrum (FD and
SD) perform significantly worse for all types of tissue contrast compared with the other algo-
rithms. We had expected that FD and SD would also perform well since the derivatives of the
spectra are less influenced by offsets and scaling factors. In the Supplementary Material, it can be
seen that FD and SD are less able to remove the influence of glare and sample thickness variations
compared with other preprocessing algorithms and also reduce the contrast between the spectra.

The general trends observed in the synthetic datasets translated well to the clinical datasets.
The improvement in overlap coefficient is lower for the clinical dataset compared with the syn-
thetic dataset, but this is to be expected, because in the clinical spectra the natural variation in
tissue structure and composition in samples from the same tissue type is incorporated—not every
tumor is the same. For example, in our synthetic dataset, we compare two “tissue types” where
one has a BVF of 2% and the other of 5%. Even if on average, the BVF of healthy tissue is 2%
and of tumor tissue 5%, most likely in reality the ranges of BVFs for both tissue types overlap.

Fig. 8 Overlap between sets of spectra from different tissue types in colon samples measured by
Baltussen et al.10 for eight preprocessing algorithms. The unprocessed result is shown in the top
left image. SNV and MSC processing resulted in the lowest sum of overlap coefficients, whereas
MC and AUC resulted in the highest overall overlap coefficients. SW produces the lowest overlap
between tumor and muscle.
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To verify that the heterogeneity between and within patients can explain the lower overlap coef-
ficients in clinical datasets, we have simulated spectra with additional variations in optical prop-
erties within each tissue type. The results for the simulated breast spectra are comparable with
the clinical breast data, most importantly, as was the goal for the simulated breast tissue data, it
shows a clear reduction in the effectiveness of all preprocessing techniques due to the variations
mentioned above. The general trends observed in the synthetic datasets translated well to the
clinical dataset, except the performance of AUC in the colon dataset, where it resulted in worse
overlap coefficients compared with the original spectra without preprocessing.

Our results can be useful for the development of classification algorithms in a dataset with
variations in glare and sample thickness. For example, De Boer et al.60–62 found for breast cancer
that the fat/water ratio could discriminate between healthy and tumor tissues with an accuracy of
100% and that the fat/water ratio in breast tumor tissue was close to zero due to the absence of
fat in tumor tissue, indicating that the contrast is based on the presence of additional absorbers.
For this type of contrast, MSC, SNV, and AUC perform the best (Fig. 11). For the clinical breast
dataset, MSC and SNV indeed perform the best, whereas AUC performs worse.

For the colon, three tissue types are classified, which makes it more complex to analyze.
When analyzing multiple classes of spectra, two approaches can be taken when encountering
such a problem. First, one can identify which two classes are most important to distinguish (e.g.,
muscle versus tumor) and choose the algorithm based on the contrast between those two classes.
A second approach would be to first calculate which tissue types have the highest overlap coef-
ficient. The type of tissue contrast that gives the highest overlap, and thus the lowest distinguish-
ability, should then be the leading choice for a preprocessing algorithm. For the colon data,
we are most interested in muscle versus tumor, where we expect differences in BVF and
scattering.63–66 Based on our synthetic data, SNV, MSC, and SW would be good candidates,
which corresponds to our findings for the clinical dataset.

We did not directly test how the different preprocessing algorithms influence tissue classi-
fication algorithms since many different types of classification algorithms can be developed.

Fig. 9 Overlap between sets of spectra from different tissue types in breast samples measured by
Kho et al.11 for eight preprocessing algorithms. The unprocessed result is shown in the top left
image. SNV and MSC processing resulted in the lowest overlap coefficients, whereas AUC and
FD resulted in the highest overall overlap coefficients.
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Fig. 10 Overlap between sets of spectra from mixed tissue types, which includes the variation
between and within patients. The overlap is lowest for SNV, MSC and SW and highest for MC,
FD and SD.

Fig. 11 Summary of the data presented in Figs. 4–10. For the four types of synthetic data with differ-
ent tissue contrast (different absorbers, BVF, scatter amplitude, and scatter slope) as well as the
colon and breast data; and the simulated breast data, the mean improvement in overlap coefficient
relative to the unprocessed data is depicted per preprocessing algorithm. Preprocessing algorithms
from the same category have a similar color. For the colon, the improvement in the overlap coefficient
shown is the average of the improvement for each of the combinations of tissue classes.
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Nevertheless, the quality of the data used to develop an algorithm is known to influence the
quality of the developed algorithm. Therefore, preprocessing is often used for classification algo-
rithms. For the development of a tissue classification algorithm, removing variations in the data
not directly related to differences between tissue types is expected to improve the accuracy of the
developed algorithm. Since glare and sample height differences are not discriminating features
between tissue types, reducing unwanted spectral variations due to distance and glare while
maintaining contrast between tissues with different optical properties should improve tissue
classification algorithms.

Based on our results, for the development of tissue classification algorithms in a dataset with
variations in glare and sample thickness, we do not recommend the use of MC, FD, and SD as
preprocessing algorithms since they performed much worse compared to the other algorithms.
Because SNV and MSC normalization perform equally well, it might not be useful to test both
algorithms on the same dataset. Furthermore, since the MSC normalization of an individual
spectrum depends on the other spectra within the dataset, individually processed spectra will
change when new spectra are added to the dataset. Thus, for large datasets, the performance
of four preprocessing algorithms could be investigated: SNV, MM, AUC, and SW. A power
analysis for four algorithms could result in a larger dataset than practical for a study. If the con-
trast between tissue types is unknown, the best choice for a preprocessing algorithm would then
be AUC or SNV since on average these outperform the other algorithms for the four types of
contrast investigated in this paper. If the contrast between tissue types is known, we recommend
the following preprocessing algorithms: SNV for contrast due to changes in BVF; AUC or SNV
for contrast due to changes in the type of absorbers in the tissue; AUC or SW for contrast due to
changes in the scatter amplitude; and AUC or SNV for contrast due to changes in the scat-
ter slope.

In ex-vivo settings with benchtop systems, the influences of glare and distance differences
can be reduced by polarization filters and surface profilometry. For in vivo applications, this
would hamper real-time feedback. Since classification algorithms have to be developed on sim-
ilar data as the data that will be acquired during its clinical application, it is essential that ex-vivo
studies that are performed to develop classification algorithms for in vivo applications use the
same preprocessing algorithms (and thus not polarization filters and profilometry).

5 Conclusion

This paper provides researchers with a solid basis to identify the most suitable preprocessing
algorithm that decreases variation due to glare and sample thickness in spectra while maintaining
as much contrast between tissue types as possible. We compared eight commonly used prepro-
cessing algorithms and identified four algorithms that we found suitable to use before developing
an algorithm for tissue classification: SNV, MM, AUC, and SW. For very large datasets, all four
algorithms can be tested, but for smaller datasets, we recommend to choose one or two algo-
rithms a priori, based on the expected contrast between tissue types.
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