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Abstract

Significance: Quantitative optoacoustic imaging (QOAI) continues to be a challenge due to
the influence of nonlinear optical fluence distribution, which distorts the optoacoustic image
representation. Nonlinear optical fluence correction in OA imaging is highly ill-posed, leading
to the inaccurate recovery of optical absorption maps. This work aims to recover the optical
absorption maps using deep learning (DL) approach by correcting for the fluence effect.

Aim: Different DL models were compared and investigated to enable optical absorption coef-
ficient recovery at a particular wavelength in a nonhomogeneous foreground and background
medium.

Approach:Data-driven models were trained with two-dimensional (2D) Blood vessel and three-
dimensional (3D) numerical breast phantom with highly heterogeneous/realistic structures to
correct for the nonlinear optical fluence distribution. The trained DL models such as U-Net,
Fully Dense (FD) U-Net, Y-Net, FD Y-Net, Deep residual U-Net (Deep ResU-Net), and gen-
erative adversarial network (GAN) were tested to evaluate the performance of optical absorption
coefficient recovery (or fluence compensation) with in-silico and in-vivo datasets.

Results: The results indicated that FD U-Net-based deconvolution improves by about 10%
over reconstructed optoacoustic images in terms of peak-signal-to-noise ratio. Further, it was
observed that DL models can indeed highlight deep-seated structures with higher contrast due
to fluence compensation. Importantly, the DL models were found to be about 17 times faster
than solving diffusion equation for fluence correction.

Conclusions: The DL methods were able to compensate for nonlinear optical fluence distribu-
tion more effectively and improve the optoacoustic image quality.
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1 Introduction

Optoacoustic imaging (OAI) relies on the optoacoustic effect.1 OAI provides optical contrast at
acoustic resolution.2,3 Longitudinal noninvasive volumetric imaging of intrinsic bio-molecules
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such as oxyhemoglobin, deoxyhemoglobin, lipids, water, and extrinsic molecules are very
important for treatment monitoring and therapy response.4,5 OAI involves illuminating the
sample with a tunable nano-second pulsed laser, this illuminated light is absorbed and scattered
by the biological tissue. The absorbed light generates a small rise in temperature in the order of
milli-Kelvin, which then generates broadband acoustic waves having frequencies in the range of
kHz to a few tens of MHz. The broadband acoustic waves are then detected using an ultrasound
transducer (either single element or arrays) in a tomographic fashion, the recorded acoustic
waves are then used to reconstruct the initial pressure rise distribution by solving an acoustic
inverse problem. Note that the wavelength of the illuminated light can be varied to obtain
multispectral OAI data, which has the ability to resolve different intrinsic biological chromo-
phores such as oxyhemoglobin, deoxyhemoglobin, lipids, and water.6–12 The reconstructed
initial pressure rise signal is a product of optical fluence, the optical absorption coefficient, and
the Grüneisen parameter.13

OAI requires highly sensitive ultrasound detectors for collecting weak OA signals generated
from deeper biological tissues. Also, fluence compensation over different wavelengths to unmix
different chromophores is challenging due to the nonlinear variation of fluence distribution.14

Many OAI studies focus on obtaining the initial pressure rise distribution from the acquired
tomographic acoustic measurements wherein the optical fluence is assumed to be constant.15,16

This assumption is not valid for optoacoustic tomographic imaging setups and optical fluence
influences the reconstructed optoacoustic images. The optical fluence decreases exponentially as
a function of imaging depth due to absorption and scattering events that occur inside the medium
under investigation.17 Further the optical fluence distribution changes with wavelength since
optical absorption and scattering are nonlinear function of wavelength of light in the biological
tissue.18 This depth and wavelength-dependent optical fluence variations should be considered
while recovering optical absorption coefficient or resolving the chromophore distribution.
Hence accurate recovery of optical absorption coefficient remains challenging in OAI.19,20 The
nonlinear variation of the fluence14,16 will affect the generation and propagation of the OAwave.

The optical absorption coefficient distribution could be estimated from the initial pressure
rise distribution by correcting/compensating for the local optical fluence. Fluence compensa-
tion16,20–28 to estimate absorption coefficient (μaest) can be accomplished by dividing the initial
pressure rise distribution (Po) with the optical fluence (ϕ), which can be expressed as (assuming
the Grüneisen parameter to be unity)

EQ-TARGET;temp:intralink-;e001;116;352μaest ¼ Po∕ϕ: (1)

Note that the fluence correction method needs precise estimation of optical fluence map. Many
different light transport models exist for estimating the optical fluence map when the optical
properties, i.e., optical absorption and optical scattering are known. The light transport model
can be performed using Monte Carlo,29 NIRFAST,30–32 or COMSOL33 toolboxes. Reference 34
performed both optical and acoustical compensation for OA tomography by assuming optical
properties to be known. However in reality the optical properties are unknown, therefore fluence
estimation becomes difficult during OA imaging. Alternatively, a rough estimate of optical flu-
ence distribution can be obtained from different imaging modalities like diffuse optical tomog-
raphy, and then the obtained fluence can be used to estimate the optical absorption coefficient
distribution.35

Deep learning (DL) models have played a vital role in various medical imaging applica-
tions36,37 specifically in the context of denoising, super-resolution, and segmentation.38–41

A convolutional neural network (CNN) has the potential to learn features and embeddings from
imaging data. The DL models were used to get the target output either via preprocessing or post-
processing operation. DL methods were also employed for data visualization, reconstruction,
and improve/enhance OAI.40–52 Recently, a few DL methods were proposed for fluence com-
pensation in OAI,42,44–46,53,54 but those studies considered simple phantoms such as point/dot,
discs, line phantoms, and circle phantom.44,46,53 Very less emphasis has been placed on evalu-
ating the performance of DL models for fluence compensation on ex-vivo54 or in-vivo44,54 data.

In this paper, we explored different DL approaches to compensate for light fluence distri-
bution from the reconstructed initial pressure rise and evaluated the performance of different DL
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methods with two-dimensional (2D) blood vessel (BV) network, three-dimensional (3D)
numerical breast phantom, and 2D in-vivo dataset. In our study, light fluence compensation was
performed and evaluated using different DL networks, wherein the input OA images were recon-
structed by a conventional method like backprojection. The reconstructed images were affected
by different factors such as optical fluence, noise, and blur, these factors are known to reduce the
image quality. The degraded images/volumes are then improved by a DL model, which is
expected to correct the light fluence, noise, and other artifacts. To the best of our knowledge,
this was the first method that considered more realistic vasculature distribution (not having
binary representation) in 2D and 3D numerical phantoms for accurate recovery of optical
absorption coefficient distribution using the DL platform. Further in-vivo evaluation was also
performed using different DL methods such as U-Net,55 FD U-Net,47 Y-Net,56 FDY-Net,56 Deep
ResU-Net,57 and GAN.58

The main contributions of this paper are as follows: (1) Well-characterized and complex 2D
blood vasculature phantom having realistic foreground and background distribution are consid-
ered for the simulation study. Appropriate optical and acoustical properties are assigned to the
phantom. (2) The performance of the different DL models to compensate for the optical fluence
in the reconstructed images by varying wavelength and noise level were analyzed. In addition,
we analyzed the generalization of DL models with in-vivo data. (3) The computational times and
accuracy of the different DL models were studied using a 3D numerical breast phantom, which
could be applied for 3D whole breast OAI without compressing the breast tissue. (4) Lastly, the
parameters such as layers, batch size, and convergence were optimized for the DL-based fluence
correction model.

2 Materials and Methods

2.1 Optoacoustic Imaging Process

The OA imaging relies on a “light in and sound out” approach, i.e., the OA effect. OAI is a
combination of three processes namely, (1) optical process: The propagation of light and its
interaction with the tissue (optical forward problem), (2) OA effect: Thermalization of the
absorbed optical energy and generation of pressure waves in the tissue, and (3) acoustic process:
The propagation of ultrasound (pressure) waves through the tissue and its detection using ultra-
sound transducers (acoustic forward problem). The detected acoustic signals are then converted
into an OA image, i.e., the initial pressure rise distribution using a well-known image recon-
struction algorithm, this procedure is often called the acoustic inverse problem. The optical
inverse problem in OAI involves recovering the optical absorption coefficient from the optical
absorbed energy distribution.

2.2 Realistic Blood Vessel Extraction and Numerical Breast Phantom

The BV extraction process59,60 from a fundus image is shown in Fig. 1. The extraction process
starts by resizing the RGB image to the required size (256 × 256). The resized image is then
converted into a gray-scale image using the rgb2gray function in MATLAB. Contrast-limited
adaptive histogram equalization (CLAHE) algorithm is then used for enhancing the BV in the
gray-scale image. Image smoothing was then performed using an average filter to improve the
image quality. Isodata thresholding is applied on the difference image (obtained by subtracting
the gray-scale vasculature network and enhanced image after image smoothing) to automatically
find a threshold value for a given gray-scale image. After finding the threshold value, the im2bw
function in MATLAB is used to generate a binary image. Bwareaopen operation has been applied
to remove the small pixels or objects from the binary images. Isolated pixels from the binary image
are further removed by the morphological operation, using the bwmorph(binaryImage,’clean’)
function in MATLAB to retain only the connected vasculature network.

After all the above image processing steps, we extracted the vasculature from the fundus
image dataset, which mimics a typically observed blood vasculature. We have generated two
different random matrices. The random matrix is filled with random numbers and the range
of these random numbers is controlled to be within physiologically relevant absorption levels.
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The random matrix corresponding to the foreground is estimated to be Afore ¼ μafmin
þ

ðμafmax
− μafmin

Þ � rand½sizeðAforeÞ�; this random matrix is multiplied with the binary image,
i.e., Xfore ¼ Afore: � B; where B is the original binary image. Next, a random matrix correspond-
ing to the background is estimated to be Aback ¼ μabmin

þ ðμabmax
− μabmin

Þ � rand½sizeðAbackÞ�;
this random matrix is multiplied with the complement of the original binary image, i.e.,
Xback ¼ Aback: � B; where B is the complement of the original binary image. The resultant
realistic numerical phantom was obtained as X ¼ Xback þ Xfore. The maximum and minimum
absorption value for the foreground was set as μafmin

¼ 0.03 and μafmax
¼ 0.0438 cm−1, whereas

the maximum and minimum absorption value for the background was set as μabmin
¼ 0 and

μabmax
¼ 0.001 cm−1.

The imfill morphological operation was performed on 3D numerical breast phantom to fill
image regions and holes. Further, the different layers in the breast phantom were assigned real-
istic optical absorption values corresponding to different tissue types in the numerical phantom.

Fig. 1 Image processing steps to generate realistic vasculature phantom for OA imaging from
fundus data.
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2.3 Optical Forward Problem

The optical forward model in OA imaging describes how the light is transported through tissue
or turbid medium. The light transport model can be mathematically expressed by radiative trans-
fer equation (RTE) or diffusion equation (DE).17 When the light interacts with any tissue medium
it exhibits two important phenomena namely, (1) optical absorption: optical light energy is
absorbed by different types of chromophores that are present in the tissue, (2) scattering: light
is redirected to different direction due to the presence of subcellular structures and small cells.
In this paper, DE-based light propagation was used.

2.3.1 Diffusion equation

The RTE equation is an integrodifferential equation that has many independent parameters.17

Obtaining an analytical solution for RTE is difficult because RTE has six independent param-
eters, hence RTE is often approximated to DE. The DE is a partial differential equation and
can be solved by using the finite-element method (FEM). The continuous wave DE can be
expressed as61

EQ-TARGET;temp:intralink-;e002;116;536−∇ · ½DðrÞ∇ϕðrÞ� þ μaðrÞϕðrÞ ¼ qðrÞ; (2)

where ϕðrÞ is the light fluence at the position r, DðrÞ ¼ 1
3ðμaþμs

0Þ is the diffusion coefficient at

position r, μa and μs 0 are the optical absorption and reduced scattering coefficients, respectively,
and qðrÞ is the light source. An estimate for light fluence can be obtained if the optical properties,
i.e., DðrÞ, μaðrÞ, and source term, i.e., qðrÞ is known by solving the DE. In this work the DE is
solved using the NIRFAST software,30–32 which uses FEM. A Robin-type boundary condition
was used while solving the DE. For a known optical absorption coefficient, diffusion coefficient,
and source term, we can compute the optical fluence distribution inside the tissue medium by
solving Eq. (2) using NIRFAST toolbox.

2.4 Optical Simulation Geometry and Optical Properties in Tissue

In this work, a 2D square imaging region of 25 mm is considered, further, 10 sources were placed
at the boundary (i.e., on the top of the square). The sources were illuminating along the y-direc-
tion. The total number of nodes and linear triangular elements in the grids are around 66,166 and
131,386, respectively. The optical properties of 2D model were set as 0.03 to 0.0438 cm−1 (fore-
ground) and 0 to 0.001 cm−1 (background) optical absorption coefficients, optical scattering is
kept constant in the imaging region as 1 cm−1, and refractive index is kept as 1.33.62

For the case of breast phantom, we considered a 3D cubic imaging region of 25 mm with
ten sources placed at the boundary of the phantom. The source is illuminating in all directions
to generate uniform illumination. The total number of nodes and linear tetrahedral elements in
the volume is around 366,808 and 2,205,754, respectively. The optical absorption coefficient
of 3D imaging model was set to be 0.016 mm−1 (for fibro-glandular region), 0.024 mm−1 (for
fat region), 0.032 mm−1 (for skin region), 0.04 mm−1 (for vessels), and 0 mm−1 (for back-
ground).63 The remaining optical properties were considered to be the same as the 2D model.
The optical simulation model was performed using NIRFAST light propagation model on a
system running Ubuntu 20.04 LTS (Intel i9-9900K, 3.60 GHz, 64 GB RAM) in MATLAB
2021a.

2.4.1 Absorbed optical energy computation

Note that the absorption coefficient is considered as an image, and the computed fluence is
represented using nodes as a mesh. To estimate fluence, we need to convert the absorption image
to a mesh format and assign relevant fields for enabling light propagation, which is performed as
shown in Fig. 2. The binary absorption coefficient image is given as the input to im2mesh func-
tion in MATLAB, this function can generate a mesh having small triangular elements mapping
the physical locations onto the image. In this workflow, we have generated the number of nodes
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in the mesh to be greater than or equal to the number of pixels in the image, as we did not want to
miss any image pixel while assigning the optical properties to the corresponding mesh nodes.
Once we have the image pixel location and mesh node location using im2mesh function. We then
find the mesh node, which is nearer to the image pixel and assign the corresponding absorption
value (μa) in the image pixel value to the nearest node; this generates the mesh populated
with relevant μa field. Next other optical properties are assigned to the mesh structure. Once
the mesh structure is generated and appropriate fields are assigned, we run the forward model
using NIRFAST, resulting in the optical fluence map in mesh format. This fluence map is then
element-wise multiplied with μa (along the mesh), which gives the absorbed optical energy
density as mesh image (corresponding to different node positions).

The absorbed optical energy distribution will be in a mesh format, which can be converted
back into an image format by finding the minimum distance between the mesh node and pixel
location. Once we have these distances, appropriate values can be assigned from the mesh to the
image based on the shortest distance similar to nearest neighborhood approach. The computed
absorbed optical energy distribution H ¼ μa ×Φ is also called the initial pressure rise distribu-
tion (by assuming Γ ¼ 1).

2.5 Acoustic Forward Problem

In this study, we assumed the medium to be acoustically homogeneous and lossless, further since
nano-second pulses are used thermal and stress confinement conditions are satisfied. Under these
conditions, the generated acoustic wave propagates through the tissue, which can be mathemati-
cally expressed as64

EQ-TARGET;temp:intralink-;e003;116;102∇2Pðr; tÞ − 1

v2
∂2Pðr; tÞ

∂t2
¼ −

β

Cp
Hðr; tÞ; (3)

Fig. 2 Flow chart indicating the conversion frommesh to image and estimation of absorbed optical
energy distribution.
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where v, β, Cp, Pðr; tÞ, and Hðr; tÞ represent the speed of sound, thermal expansion coefficient,
specific heat capacity at constant pressure, acoustic pressure, heat energy per unit volume, and
per unit time deposited at a location r, respectively. The above equation can be rewritten as an
initial value problem, which can be expressed as64

EQ-TARGET;temp:intralink-;e004;116;687∇2Pðr; tÞ − 1

v2
∂2Pðr; tÞ

∂t2
¼ 0; (4)

where the initial conditions are given as64

EQ-TARGET;temp:intralink-;e005;116;631Pðr; tÞjt¼0 ¼ PoðrÞ ¼ ΓðrÞHðrÞ ∂Pðr; tÞ
∂t

����
t¼0

¼ 0: (5)

If we assume the medium to be infinite by considering a delta heating source, then we can get the
pseudospectral solution to Eq. (4). The propagated OAwaves are then recorded by the transducer
over a time interval 0 to T outside the tissue using k-wave software.65

2.5.1 Acoustic simulation geometry and acoustic properties

The acoustic forward model is used for recording the acoustic sinogram data at the transducer
(sensor) position. Herein, we have considered a 2D computational grid having a size of 801 ×
801 grid points (80.1 mm × 80.1 mm) with a distance of 0.05 mm/grid point for generating the
sinogram data. The sensors were placed on a circle of 19-mm radius, and 256 detectors were
placed equidistantly on this circle. The detector had a center frequency of 5 MHz and 90% frac-
tional bandwidth and the speed of sound was assumed to be 1540 m∕s. A perfectly matched
layer (PML) was used to attenuate the pressure signal thereby avoiding any reflection of pressure
signal into the reconstruction grid. The PML layer was placed over the edge of the domain and
occupied 20 grid points. The time step for data collection was 50 ns, with a total of 2048 steps
(256 × 2048 ¼ 524;288). The acoustic inverse model is used for image reconstruction having a
grid size of 401 × 401 (40.05 mm × 40.05 mm) with a distance of 0.1 mm∕grid point to avoid
inverse crime.

While solving the problem in 3D, we considered a computational grid having a size of
131 × 131 × 131 grid points (25 mm × 25 mm × 25 mm) with a distance of 0.19 mm∕grid
point while generating the sinogram data. For 3D data acquisition, planar detectors were placed
at the edge of the computational grid. The detector had a center frequency of 5 MHz and 90%
fractional bandwidth and the speed of sound was set to be 1540 m∕s. Similar to 2D case a PML
with 20 grid points was used. The time step for data collection was 50 ns, with a total of 2391
steps (n ¼ 4096 × 2391 ¼ 9;793;536).

2.5.2 Acoustic inverse problem

The first step is to obtain the OA images, i.e., the initial pressure distribution, which can be
mathematically expressed as7

EQ-TARGET;temp:intralink-;e006;116;225Poðr; λÞ ¼ ΓðrÞHðr; λÞ; (6)

where Po is the initial pressure distribution, ΓðrÞ is the Grüneisen parameter, Hðr; λÞ is the
absorbed optical energy distribution. The absorbed optical energy inside the tissue medium can
be expressed as7

EQ-TARGET;temp:intralink-;e007;116;158Hðr; λÞ ¼ μaðr; λÞϕðr; λÞ; (7)

where μaðr; λÞ is the optical absorption coefficient of tissue medium, and ϕðr; λÞ is the optical
fluence distribution in the tissue medium. The recorded pressure signal during the forward prob-
lem is then backpropagated in the time-reversed order with the Dirichlet boundary condition
while performing time reversal (TR) reconstruction.64 Our main goal is to recover μa distribution
more accurately from PoðrÞ using the DL fluence compensation method.
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2.6 Deep Learning Formulation and DL Models

Optical fluence correction from the reconstructed OA images is a highly ill-posed problem, lead-
ing to inaccurate recovery of absorption coefficient due to the presence of noise, limited detector
bandwidth, and unknown optical medium properties for fluence estimation. In TR reconstruc-
tion, the images are blurred and noisy due to the fluence corruption, discontinuous boundary
condition, and electronic noise at the detector. The above problem could be tackled by using
image postprocessing methods and thus improve the overall reconstructed image quality. The
OA imaging formula can be rewritten as a DL inverse problem, which can be expressed as66

EQ-TARGET;temp:intralink-;e008;116;633y ¼ Axþ ϵ; (8)

where y ∈ Rm is measured data, A ∈ Rm×m operator indicating the fluence effect, x ∈ Rm is
optical absorption map, ϵ ∈ Rm is the noise. The fluence corrected image can be formulated
as a supervised learning problem. In this context, the main aim is to find the nonlinear mapping
function A∶x ↦ ŷ using paired training dataset fxðiÞ; yðiÞ∶i ¼ 1;2; 3; : : : ; ng. The fluence
corrected images can be obtained by training a neural network to minimize the following loss
function:67

EQ-TARGET;temp:intralink-;e009;116;528min
θ

1

n

Xn
i¼1

LðyðiÞ; ŷðxðiÞ; θÞÞ; (9)

where n, θ, yðiÞ, xðiÞ, ŷ, indicate the number of training datasets, trainable parameters by the
model, reference image, fluence corrupted image, and reconstructed image, respectively.

In our study, we have used different DL models, such as U network (U-Net), fully dense
U network (FD U-Net), Y network (Y-Net), fully dense Y network (FD Y-Net), deep residual
U network (deep ResUnet), and generative adversarial network (GAN). These networks follow
different approaches to understand the feature vector with high-level embeddings inside the net-
work architecture. In this study, we use end-to-end map training to remove the optical fluence
effect from optoacoustic images and evaluated the performance of different types of DL models.
The reason for choosing these models are outlined below:

U-Net: U-Net is designed to learn fluence effect over the entire field of view and correct for
the same.

FD U-Net: In a dense block, earlier convolutional layers are connected to all subsequent
layers via skip connection, which learns additional features from the input image. Since addi-
tional features are learnt via skip connection, it is excepted that FD-UNet would perform better
fluence correction and provide images with improved quality.

Y-Net: Y-Net was designed to have two encoder networks, one of the encoder is used to
extracts physical features from the raw sinogram data, whereas the second encoder network
is used to extract texture features from image data. Since Y-Net architecture is being trained
with both sinogram and image domain data, it is expected to perform accurate fluence correction
than U-Net architecture.

FD Y-Net: A dense block is added upon the Y-Net model similar to FD-UNet, which will
improve the semantics learnt for fluence correction. Note that the parameters are much larger
than the previously explained networks.

Deep Res U-Net: Here, the skip connection between a residual unit and between low and high
levels of the network will facilitate information propagation without degradation. Therefore,
it reduces the number of training parameters (required in scenarios of limited memory), thereby
reducing the training time and also improving the semantic learning.

GAN: All the above networks do not have adversarial training, hence a GAN based archi-
tecture was used to perform adversarial learning in the context of fluence correction. Since a
generator and discriminator competition exists, this network has better learning capacity in
terms of fluence correction in optoacoustic tomography. Specific architecture details used
for U-Net, FD U-Net, Y-Net, FD Y-Net, Deep Res U-Net, and GAN are given in the
Supplementary Material along with the architecture figures. The developed codes have been
given as open-source for enthusiastic users in https://github.com/arumugarajm/Optical-Fluence-
Removal-from-PAT-image.
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2.7 Evaluation Metrics

To evaluate the model performance, all the model results are compared with the most common
metrics such as peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM),
and contrast to noise ratio (CNR).

2.7.1 Peak signal-to-noise ratio (PSNR)

PSNR68 is used for measuring the quality of reconstructed image in dB based on mean squared
error between the reconstructed image ðμ̂aijÞ and the reference image ðμaijÞ68

EQ-TARGET;temp:intralink-;e010;116;621PSNR ¼ 20 log10
MAXIffiffiffiffiffiffiffiffiffiffi
MSE

p ; (10)

where

EQ-TARGET;temp:intralink-;e011;116;571MSE ¼ 1

n2
Xn
i¼1

Xn
j¼1

ðμaij − μ̂aijÞ2; (11)

where MAXI indicates the maximum possible intensity value in the reconstructed image.
The higher the PSNR, the better the reconstructed image quality.

2.7.2 Structural similarity index measure (SSIM)

SSIM69 is used to compute the similarity between the output and the ground truth images. This
value ranges between −1 and 1, a higher value indicates a better quality for output image and
it can be mathematically expressed as69

EQ-TARGET;temp:intralink-;e012;116;433SSIMðμa; μ̂aÞ ¼
ð2μμaμμ̂a þ C1Þ þ ð2σμaμ̂a þ C2Þ
ðμ2μa þ μ2μ̂a þ C1Þðσ2μa þ σ2μ̂a þ C2Þ

; (12)

where μμa and μμ̂a are the average of ground truth and the predicted images, respectively,
σμa and σμ̂a indicate the variance of the ground truth and the predicted images, respectively,
σμaμ̂a indicates the covariance between the ground truth and predicted image, C1 ¼ ðk1LÞ2 and
C2 ¼ ðk2LÞ2, where L is the dynamic range of the pixel values, k1 ¼ 0.01 and k2 ¼ 0.03.

2.7.3 Generalized contrast to noise ratio (GCNR)

The gCNR70 is used to discriminate the target region from the background. Specifically, gCNR
was shown to be a better metric compared with CNR in the context ultrasonography and OAI.70

The gCNR can be mathematically expressed as

EQ-TARGET;temp:intralink-;e013;116;266gCNR ¼ 1 − OVL: (13)

Here, overlapping area (OVL) is given as

EQ-TARGET;temp:intralink-;e014;116;227

Z
minfpiðxÞ; poðxÞgdx; (14)

where piðxÞ, poðxÞ are the probability density function of the signal inside the target area, and
outside the target area, respectively.N bins with centers at fx0; x1; : : : ; xN−1gwere used to obtain
an equivalent histogram-based equation for the gCNR.71,72 For the target and background ROIs,
the corresponding histograms, hi and ho, were generated. Equation (13) was then discretized to
produce the following equation:71,72

EQ-TARGET;temp:intralink-;e015;116;130gCNR ¼ 1 −
XN−1

k¼0

minfhiðxkÞ; hoðxkÞg; (15)

where k is the index of the bin. Equation (15) was used to estimate the gCNR values (the fore-
ground and background regions used are indicated in the corresponding figures).
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2.7.4 Contrast to noise ratio (CNR)

To evaluate the reconstruction performance of the different DL models, the contrast-to-noise
ratio70 was used as a figure of merit, which can be expressed as

EQ-TARGET;temp:intralink-;e016;116;692CNR ¼ jμroi − μbackjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2roi þ σ2back

p ; (16)

where μ and σ represent mean and variance of the region of interest and chosen background in
the reconstructed image. Better image quality means a higher CNR value.

3 Deep Learning Implementation Details

The data-driven approach generally needs a large number of datasets for training the model and
learning the features to generate relevant output from unseen data. Due to clinical constraints, we
were unable to obtain large clinical datasets to train the DL models. Therefore, the DL models
were trained with simulated dataset and we tested the trained model with both in-vivo and
in-silico datasets. Our aim was to check if the DL models are capable of correcting for fluence
effects, hence different DL architectures were trained with fluence corrupted images as input and
ground truth as the reference output. Further, the performance of these different DL models was
compared using the standard figure of metrics.

3.1 2D and 3D Data Generation for Training and Testing

Fundus datasets from different online repositories were accumulated such as: (1) 1000 fundus
images with 39 categories from Kaggle73 and (2) 3200 images from retinal fundus multi-disease
image dataset (RFMID).74 From the above-mentioned images, a few images did not support the
vasculature extraction process (explained in Sec. 2.2), so we consider only those images sup-
porting the vasculature extraction process. Totally, 2323 images were processed and further data
augmentation was performed (one flipping, and two rotation operations were performed) to
increase the total number of training data. After the data augmentation operation 9292 images
were generated, 80% of images were used for training and the remaining images were used for
validating (10%) and testing (10%) the models. For the case of in-vivo dataset: 60 images were
used for testing (the model trained with vasculature dataset was used for testing in-vivo dataset).

3D numerical breast phantom datasets were collected from different online open-access links
such as (1) optical and acoustic breast phantom database75 and (2) 3D acoustic numerical breast
phantoms.76 Totally, we obtained seven 3D phantoms, out of seven, five 3D phantoms were used
for training (having 12,288 slices, which includes data augmentation), one 3D phantom was used
for validation, and one 3D phantom was used for testing. All the datasets were normalized
between 0 and 1 before training and denormalized the data after training to the recover original
μa distribution.

3.2 Deep Learning Implementation Details

All the DL models were implemented, trained, and tested on Python 3.7.9, TensorFlow 2.4.1.
These models were run on Ubuntu 20.04 LTS system (Intel i9-9900K@3.60 GHz, 64 GB RAM,
GeForce RTX 2070 SUPER). To train the DL model, we have used a normalized root mean
square error (NRMSE) as the loss function; mathematically it can be expressed as

EQ-TARGET;temp:intralink-;e017;116;157NRMSEðy; ŷÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
n
i¼1 ðyi − ŷiÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P
n
i¼1 ðyiÞ2

q ; (17)

where yi and ŷi represent reference image, reconstructed image in the DL model, respectively.
The numerator term is used to measure the pixel-wise differences between the reference and
reconstructed image, this pixel-wise difference is averaged over the entire image; square root
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is taken of the resultant to obtain a Euclidean distance measure. The Euclidean distance is then
normalized by dividing it with respect to the L2-norm of the reference image. Note that the
Euclidean distance will be small if the reconstructed images are very close to the reference
images. Further, if the reconstructed and reference images differ substantially the Euclidean dis-
tance will be large. Normalizing will facilitate the comparison between datasets or models at
different scales. We trained the models for 150 epochs, Adam optimizer was used with a learning
rate of 1 × e−4 with a batch size of 6 images. We used early stopping with patience as 12, which
stops the training process when there is no further reduction in the loss function.

4 Results

Initially, we evaluated all the DL models with a 2D BV phantom with nonhomogeneous back-
ground, these numerical experiments were considered at a wavelength of 700 nm has different
data noise levels, i.e., SNRd ¼ 30, 35, and 40 dB SNR. Figure 3(a) shows the reference ground
truth image and Fig. 3(b) shows the TR reconstructed image with data noise level of 30 dB, the
yellow arrow in Fig. 3(b) indicates the reconstruction artifacts, the red arrow highlights the mis-
representation of deep vasculature, and the orange arrow indicates the effect of fluence on small
vasculature at deep tissue region. In all DL models, some undesirable vasculature (indicated by a
purple arrow) appears on the reconstructed images. Figures 3(c)–3(h) show the reconstruction
results corresponding to U-Net, FD U-Net, Y-Net, FD Y-Net, Deep ResUnet, and GAN, respec-
tively. Figures 3(c)–3(h) illustrate that all the DL models have the ability to recover the shape of
the vasculature in the deeper region, but the recovered vasculature seems to have discontinuity
[indicated by red arrows in Figs. 3(c)–3(g)]. This discontinuity seems to be much less using the
GAN model as seen in Fig. 3(h) with 30 dB noise. Further, as the data noise is reduced, i.e.,
SNRd ¼ 35 dB, we observe that the discontinuity in the deep vasculature pattern reduces as
indicated by blue arrows in Figs. 3(k)–3(p). As the data noise is reduced, the fluence correction
using DL models seems to become more accurate as indicated by blue arrow (wherein the vas-
culature is becoming more continuous) and further the artifact seems to be eliminated by DL
models. Figures 3(s)–3(x) indicate the fluence corrected images using different DL models with
all SNRd ¼ 40 dB. As expected the fluence corrected images after DL model seems to more
closely matching the ground truth with increased image quality. Note that for all these cases,
training and testing were performed at 700 nm.

The line plot corresponding to all the results shown in Fig. 3 (close to the source and away
from the laser source) is illustrated in Fig. 4. Line profiles clearly indicates that the efficacy of the
DL models to perform fluence correction is higher in less noise cases, i.e., SNRd ¼ 40 dB than
the high noise case, i.e., SNRd ¼ 30 dB. The line plots at the superficial region show that the DL
model improves the accuracy over the TR reconstruction, and in deeper region DL models like
FD U-Net and GAN seems to outperform other DL models. Quantitative results corresponding to
Figs. 3 and 4 are given in Table 1. In all noise levels, FD U-Net seems to provide the best SSIM
value. Further, the DL models seem to improve over the traditional reconstruction scheme by
>10% in terms of PSNR. In essence, it can be noted that DL models seem to perform accurate
fluence correction when the data noise is lesser.

It is well known that the depth-dependent fluence effect is heavily influenced by wavelength.
Hence, we have analyzed the effect of wavelength on the reconstructed images and fluence cor-
rection approach using DL models. We have considered three different wavelengths (600, 700,
and 800 nm) and checked the performance of the fluence correction using DL models as shown
in Fig. 5. Herein, the first two rows represent the 600-nm case, the next two rows indicate the
results using 700 nm and the last two rows correspond to 800-nm case. In all the cases the DL
model was trained with the images generated at a wavelength of 700 nm. When we used a lower
wavelength, i.e., 600 nm compared to the training set, it can be clearly seen that the deep
vasculature structure is more distorted compared to 700 nm [compare Fig. 5(b) with Fig. 5(j)].
This occurs because of higher optical absorption and scattering effect at a lower wavelength
(600 nm) compared to a higher wavelength (700 nm).15 We wanted to see if the trained DL
model at a particular wavelength for fluence correction could be adapted to other wavelength
regimes.
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Fig. 3 Qualitative comparison of fluence correction using digital vasculature phantom with different
DL models. (a), (i), (q) Reference image. (b), (j), (r) TR reconstruction OA image. (c), (k), (s) U-Net
result. (d), (l), (t) FD U-Net result. (e), (m), (u) Y-Net result. (f), (n), (v) FD Y-Net result. (g), (o), (w)
Deep ResUnet result. (h), (p), (x) GAN result. Panels (a)–(h) correspond to SNRd ¼ 30 dB,
(i)–(p) correspond to SNRd ¼ 35 dB, and (q)–(x) correspond to SNRd ¼ 40 dB. Different colored
arrows are used to indicate the fluence effect and the improvement obtained using DL methods.
The red arrow indicates deep vasculature, which was not visible due to the fluence effect; the
yellow arrow indicates artifacts in the image; the orange arrow shows the inability to recover the
deep vasculature; the purple arrows indicate undesirable reconstruction; the blue arrow shows
slight improvement in the deep vasculature region; and the green arrow shows good improvement
in the deep vasculature. The orange and blue lines in (a) were used to draw line plots at shallow and
deeper region respectively. The green boxes shown in (i) were used to indicate foreground and
background regions to calculate gCNR.
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Figures 5(c)–5(h) indicate the recovery of tissue vasculature at 600 nm, the DL models were
able to perform fluence correction. However vasculature present at larger depths was not recov-
erable due to very limited signal in these regions as indicated by the red arrow in Figs. 5(b)–5(h).
Along the same lines, when fluence correction was performed using DL models at 700 and
800 nm, the fluence correction seems to be very accurate as indicated by blue arrows in
Figs. 5(k)–5(p) and green arrows in Figs. 5(s)–5(x). Overall, it can be concluded that DL models
could be used for fluence correction, wherein the DL model is trained at one of the wavelengths

Table 1 Quantitative comparison for effect of noise on DL based fluence correction. The bold font
in the table denotes the best PSNR and SSIM values.

Network

Set 1 (30 dB SNR) Set 2 (35 dB SNR) Set 3 (40 dB SNR)

PSNR SSIM PSNR SSIM PSNR SSIM

Input/TR 40.340 0.838 40.654 0.854 40.702 0.857

U-Net 42.925 0.920 44.629 0.951 44.909 0.959

FD U-Net 43.479 0.931 44.567 0.951 45.089 0.959

Y-Net 43.118 0.923 44.358 0.948 45.055 0.960

FD Y-Net 43.187 0.922 44.257 0.943 44.835 0.944

Deep residual Net 43.278 0.925 44.556 0.949 45.089 0.959

GAN 43.335 0.928 43.886 0.947 44.330 0.954

Fig. 4 Line profiles along the orange and blue lines are shown in Fig. 3(a). (a) Line plot along the
orange line with SNRd ¼ 30 dB, (b) line plot along the blue line with SNRd ¼ 30 dB, (c) line plot
along the orange line with SNRd ¼ 35 dB, (d) line plot along the blue line with SNRd ¼ 35 dB,
(e) line plot along the orange line with SNRd ¼ 40 dB, and (f) line plot along the blue line with
SNRd ¼ 40 dB.

Madasamy et al.: Deep learning methods hold promise for light fluence compensation. . .

Journal of Biomedical Optics 106004-13 October 2022 • Vol. 27(10)



and testing is performed at another wavelength. However, as was seen the performance at 600 nm
(lower wavelength) was suboptimal due to limited signal reaching the deeper region. In this
study we observed that increasing the wavelength in NIR-I window increased the light penetra-
tion, resulting in higher contrast in the image and better fluence correction using a DL model.

Fig. 5 Qualitative comparison of fluence correction using digital vasculature phantom with different DL
models. (a), (i), (q) Reference image. (b), (j), (r) TR reconstructionOA image. (c), (k), (s) U-net result. (d),
(l), (t) FD U-Net result. (e), (m), (u) Y-Net result. (f), (n), (v) FD Y-Net result. (g), (o), (w) Deep ResUnet
result. (h), (p), (x) GAN result. Panels (a)–(h) correspond to a wavelength of 600 nm, (i)–(p) correspond
to a wavelength of 700 nm, and (q)–(x) correspond to a wavelength of 800 nm. Different colored arrows
are used to indicate the fluence effect and its improvement in the recovered images using DLmethods.
The red arrows show deep vasculature, whichwas not visible due to the fluence effect; the yellow arrow
indicates artifacts in the image; the blue arrow shows improvement in the deep vasculature region; and
the green arrows are used to indicate improvements in the deep vasculature region. The orange and
blue lines in (a) were used to draw line plots at shallow and deeper region respectively. The green
boxes shown in (i) were used to indicate foreground and background regions to calculate gCNR.
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To check the performance of DL-based fluence compensation and accurate recovery of the μa
distribution at different wavelengths, we plotted the two line profiles as shown in Fig. 6 along the
orange and blue lines indicated in Fig. 5. The first, second, and third rows in Fig. 6 correspond to
the 600, 700, and 800 nm cases, respectively. Figures 6(a), 6(c), and 6(e) indicate that fluence
effects could be corrected using the different DL models very accurately, with the accuracy being
higher for 700 and 800 nm cases as opposed to 600 nm case. Figures 6(d) and 6(f) indicate that
accurate recovery of deeper vasculature is possible in both 700 and 800 nm cases with FDY-Net
and FD U-Net performing the best. However as expected, Fig. 6(b) indicates that the fluence
correction for 600 nm case is suboptimal, and the different DL models fail to improve upon the
reconstructed image quality. This is primarily due to lesser signal strength in the reconstructed
TR images. In essence, we can conclude that the fluence correction accuracy across all the wave-
lengths for superficial and intermediate depths is higher compared to the deeper vasculature
region (owing to signal strength at that particular wavelength). Quantitative comparisons using
PSNR, and SSIM are given in Table 2, as can be seen, the FD U-Net outperforms other DL
models in terms of fluence correction.

A quantitative comparison of vascular detectability for different noise and wavelength varia-
tion using gCNR metric is given in Table 3. gCNR indicates that FD U-Net outperforms most of
the other networks for fluence compensation. Further the recovered contrast of deep vasculature
structure seems to be much higher compared to TR reconstruction.

OAI has shown great promise in breast imaging,77 hence we have performed a volumetric 3D
fluence correction using numerical breast phantom. Due to the limited number of available 3D
datasets, we trained and tested all the DL models with 2D slices (X–Y slices) and then the tested
2D slices were stacked together to form a 3D volume. We have reported the results using the

Fig. 6 Line profiles along the orange and blue lines indicated in Fig. 5(a). (a) Line plot along the
orange line with λ ¼ 600 nm, (b) line plot along the blue line with λ ¼ 600 nm, (c) line plot along
the orange line with λ ¼ 700 nm, (d) line plot along the blue line with λ ¼ 700 nm, (e) line plot along
the orange line with λ ¼ 800 nm, and (f) line plot along the blue line with λ ¼ 800 nm.
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different DL models in both 3D and different 2D projection views (X–Y, Y–Z, X–Z). Note that
the fluence effect, i.e., the light propagation model, was run in a fully 3D setting.

For better visualization of 3D fluence correction results, we have sliced the 3D volume data,
and as shown in Fig. 7. Figure 7(a) is the ground truth volume and the arrows with different
color indicate different tissue types that are typically present in the breast. Figure 7(b) shows the
fluence affected 3D volume, the vessel close to the boundary is clearly visible as indicated by
the blue arrow, however, deeper tissue regions have lost contrast as shown by rectangular boxes
in Fig. 7(b). Figure 7(c) indicates the TR reconstructed volume, wherein the different tissue types
are not reconstructed accurately except for the skin lining. Figures 7(d)–7(i) indicate the 3D
fluence corrected volumes obtained using the different DL models. All the different tissue
regions were recovered accurately using DL models, specifically the regions indicated by
rectangular boxes in Fig. 7(b). As shown by red arrows, the DL models were unable to recover
the vessel, because the X − Y slice had smaller vessels, which are difficult to be captured by the
DL models.

The visual comparison of fluence correction for numerical breast phantom with different
slices is shown in Fig. 8. Here, columns indicate different planes, and rows represent the ground
truth, the TR, and the different DL-based fluence correction methods. From Fig. 8(d), the TR
reconstructed images are unable to recover the vessels as indicated by red arrow due to fluence
effect. The destruction of shape (as indicated by white arrow in the second row) was recovered

Table 2 Quantitative comparison of the effect of wavelength on DL based fluence correction.
The bold font in the table denotes the best PSNR and SSIM values.

Network

Set 4 (600 nm) Set 5 (700 nm) Set 6 (800 nm)

PSNR SSIM PSNR SSIM PSNR SSIM

Input/TR 39.969 0.832 40.830 0.860 37.913 0.802

U-Net 42.014 0.888 45.610 0.964 45.708 0.967

FD U-Net 42.081 0.878 45.731 0.965 45.834 0.968

Y-Net 42.255 0.889 44.725 0.958 45.575 0.966

FD Y-Net 41.976 0.867 45.076 0.960 45.459 0.965

Deep residual Net 41.976 0.863 45.143 0.960 45.399 0.965

GAN 42.916 0.921 44.756 0.958 45.685 0.963

Table 3 Quantitative comparison of vascular detectability for different noise and wavelength val-
ues. The bold font in the table denotes the best gCNR values for different sets.

Network

Set 1
(30 dB SNR)

Set 2
(35 dB SNR)

Set 3
(40 dB SNR)

Set 4
(600 nm)

Set 5
(700 nm)

Set 6
(800 nm)

gCNR gCNR gCNR gCNR gCNR gCNR

Input 0.596 0.654 0.735 0.511 0.606 0.703

U-Net 0.829 0.850 0.872 0.783 0.838 0.860

FD U-Net 0.845 0.857 0.881 0.798 0.856 0.871

Y-Net 0.832 0.849 0.880 0.798 0.847 0.864

FD Y-Net 0.835 0.855 0.877 0.770 0.847 0.861

Deep residual Net 0.823 0.847 0.861 0.750 0.839 0.857

GAN 0.841 0.843 0.854 0.810 0.845 0.853
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by all the DL models. Note that the DL-based fluence correction improved the image quality
drastically, however, the networks were unable to recover the small vasculature. From Figs. 8(g)–
8(x), it can be noticed that X–Y slices were accurately corrected as opposed to Y–Z or X–Z
slices, which might be due to training the models using X–Y slices. Few undesirable artifacts
seem to arise in the Y–Z and X–Z slices as indicated by purple and gold arrows. Note that the
severity of these artifacts is lesser while using FD U-Net, Y-Net, and GAN networks compared
with other networks, which are indicated by green arrows. Figure 8 clearly illustrates that
FD U-Net is the best model for fluence correction. In addition, the quantitative evaluation
of breast numerical phantom is shown in Table 4. The quantitative comparison was performed
using the whole 3D volume and different planar views. A 5 to 6 dB improvement was observed
in terms of PSNR values and about 9% improvement was noticed in SSIM values for volumetric
comparison. Along the X–Y, Y–Z, and X–Z planes, the improvements in PSNR value are ∼8 to
10 dB, 4.4 to 4.6 dB, 5.5 to 6 dB, respectively. Similarly, the SSIM values were found to increase
by 17.6% to 18%, 9% to 12.2%, 11% to 12.9% along X–Y, Y–Z, and X–Z planes, respectively.
Line plots along each of planes are given in the Supplementary Material. Overall, it was observed
that DL models have great potential in correcting for fluence in 3D settings.

To evaluate the feasibility of the DL models for fluence correction, we tested all the DL
models with MSOT scanned mice datasets (in-vivo) and the results are shown in Fig. 9, the
data acquisition is explained elsewhere in Ref. 4. Procedures involving animal experiments were
approved by the Animal Care and Handling Office of Helmholtz Zentrum München and the
Government of Upper Bavaria. For the in-vivo dataset, domain translation was used, wherein
the DL models were trained using vasculature datasets and testing was performed using in-vivo
dataset. Similar to in-silico data, the DL models were able to perform fluence correction oper-
ation on the reconstructed images with in-vivo mice data, thereby it can improve the contrast of
the image. The blue arrows in the fluence corrected images indicate that the vasculature is recov-
ered properly with in-vivo data, however, the Deep ResUnet and GAN have destroyed this vas-
culature, which is indicated by the red arrow. The center region of the mice is seen to have higher
contrast with the DL-based fluence correction methods compared to the backprojection recon-
struction, the same is highlighted by green arrows. Note that the CNR value is more, using the
Deep ResUnet; however, visually, the vasculature seems to be destroyed and resolution has
reduced. FD Y-Net is found to generate the best result, visually, and to have higher CNR as
well. The in-vivo results suggest that DL models can perform accurate fluence correction using
end-to-end learning thereby improving the image quality.

Fig. 7 Cross-sectional slice view of 3D numerical breast phantom data. (a) Ground truth, (b) flu-
ence affected volume, (c) TR, (d) U-Net-based fluence correction, (e) FD U-Net-based fluence
correction, (f) Y-Net-based fluence correction, (g) FD Y-Net-based fluence correction, (h) Res
Net-based fluence correction, and (i) GAN-based fluence correction. Yellow, blue, green and
orange arrows represent fat, vessle, fibroglandular, and skin, respectively. The red arrows indicate
the fluence effect in the blood vessel. The red boxes are used to represent the fluence effect in the
breast tissue.

Madasamy et al.: Deep learning methods hold promise for light fluence compensation. . .

Journal of Biomedical Optics 106004-17 October 2022 • Vol. 27(10)

https://doi.org/10.1117/1.JBO.27.10.106004.s01


Fig. 8 Visual comparison along different 2D planes using the various DL-based fluence correction
models. The models were trained and tested with 750-nm wavelength and the data was having
40-dB SNR. Different colored arrows used to indicate the fluence effect and the improvements using
DL methods. The red arrow is used to indicate the fluence effect, the white arrow shows destruc-
tion of boundary, the purple arrow represents undesirable structures in the image, the gold arrow
shows line artifacts, and the green arrow indicates improvement in the reconstruction quality. Solid
orange and blue line lines were used to draw line plots at different locations shown in (a)–(c).
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The different parameters of the DL models like the number of layers/depth, batch size, and
convergence analysis were studied in detail. Initially, we varied the batch size during training and
as reported in Fig. 10(a). Figure 10(a) shows that the batch size indeed has an effect on the
training loss, larger batch size increases the memory requirement and the computational cost
too. On the other hand, lower batch size quickly updates the algorithm and generalizes the model
very well. In all the considered network, we have chosen the batch size to be six to enable
effective computation and memory allocation. The number of layers in DL models has a tradeoff
between the computational cost and accurate fluence correction, as shown in Fig. 10(b). The
number of trainable parameters (training time) is directly proportional to the number of layers.
An accurate model would need more trainable parameters to result in good training. Hence we
varied the number of layers in the DL network and found that having four layers is sufficient to
enable accurate fluence correction (increasing layers further had marginal improvement in the
loss). Therefore, all the DL models were trained with four layers only.

Table 4 Quantitative comparison of 3D volumetric data of different 2D planar slices. The numeric
values are represented as average ± standard deviation. The bold font in the table denotes the
best PSNR and SSIM values.

Network

X–Y slices Y–Z slices X–Z slices

PSNR SSIM PSNR SSIM PSNR SSIM

Input/TR 39.064 ± 0.066 0.799 ± 0.005 39.603 ± 0.091 0.813 ± 0.005 39.445 ± 0.415 0.812 ± 0.015

U-Net 49.475 ± 0.254 0.980 ± 0.002 43.854 ± 0.555 0.922 ± 0.008 45.465 ± 0.345 0.941± 0.002

FD U-Net 49.770 ± 00258 0.980 ± 0.002 44.280 ± 0.262 0.935 ± 0.002 45.495 ± 0.073 0.947 ± 0.001

Res Net 49.099 ± 0.491 0.975 ± 0.001 43.532 ± 0.476 0.913 ± 0.007 45.358 ± 0.096 0.934 ± 0.001

Y-Net 48.777 ± 0.621 0.978 ± 0.002 44.022 ± 0.142 0.926 ± 0.002 45.044 ± 0.140 0.943 ± 0.002

FD Y-Net 48.599 ± 0.697 0.977 ± 0.001 43.271 ± 0.290 0.903 ± 0.007 44.952 ± 0.387 0.929 ± 0.006

GAN 49.006 ± 0.323 0.976 ± 0.002 44.768 ± 0.290 0.933 ± 0.003 45.712 ± 0.154 0.947 ± 0.003

Fig. 9 Testing result for in-vivo mice dataset. (a) Conventional reconstruction image, (b) U-Net
based fluence correction, (c) FD U-Net based fluence correction, (d) Y-Net based fluence
correction, (e) FD Y-Net based fluence correction, (f) deep ResUnet-based fluence correction,
and (g) GAN-based fluence correction. The intensity value is normalized between 0 and 1.
Different colored arrows used to indicate the fluence effect and its improvement using DLmethods.
The green arrows show the contrast variations obtained using different methods, the red arrow
indicates destruction of boundaries, the blue arrows are used to indicate improvements in the
reconstruction.
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We also tested the convergence of the different models considered in this work, and the same
is shown in Fig. 10(c). Figure 10(c) indicates that all the DL models are converging after certain
epochs, and we concluded that about 60 epochs are sufficient for all the models except GAN.
A GAN model generates plausible output after understanding the distribution of input samples,
hence there is a lot of fluctuation while plotting the generator loss function and GAN required
a lot of epochs to converge. We found 165 epoch had very less loss and hence 165 epoch was
used for testing the GAN model. The FD U-Net was found to have lower cost function values.
Hence as expected, FD U-Net was found to generate the best result for both 2D and 3D models in
terms of PSNR and SSIM values among all the considered DL models. The number of trainable
and nontrainable parameters along with training/testing time is shown in Table 5.

5 Discussion

The fluence correction method was tested in the context of 2D and 3D, wherein illumination
geometry was varied; line illumination was achieved by having multiple point sources in the case
of 2D imaging, whereas the point sources were placed on irregular boundary for the 3D imaging
scenario. The model was trained with images reconstructed at 700 nm and 40 dB noise; this
trained model was tested with the image obtained at 600 and 800 nm, having 30 and 35 dB
data noise levels. Specifically for the 2D case, we can see Figs. 3 and 5 highlight the deep vas-
culature, which was not visible due to the fluence effect (indicated by red arrows). Further DL
results were found to report superior image quality measures in terms of PSNR and SSIM. The
3D imaging result is shown in Fig. 8, the TR reconstruction results have been heavily influence
by the fluence effect and are not close to ground truth (indicated by red arrow). On the other
hand, the DL model compensates for the fluence effect and deep tissue can be clearly identified
(as indicated by green arrows). Further, the fluence compensated results are closer to the ground
truth compared with the TR reconstructed images indicating that DL indeed holds promise for
fluence compensation. The 2D (Figs. 3 and 5; Tables 1 and 2), 3D (Fig. 8 and Table 3), and mice

Fig. 10 Ablation studies on DL-based fluence correction; (a) represents the effect of batch size
in DL models, (b) represents the effect of depth in DL models, and (c) represents the loss curve
for the different DL models.

Table 5 Number of network training parameters, training and testing
time for the different DL models for 3D breast phantom data.

Network
Trainable
parameters

Nontrainable
parameters

Training time
(h:min)

Testing
time (s)

U-Net 77,75,681 6,912 05:15 13.48

FD U-Net 3,00,65,601 30,464 07:22 26.08

Y-Net 94,07,275 7,552 09:10 19.50

FD Y-Net 3,64,40,107 37,760 11:52 41.94

Deep Res-Net 47,15,441 7,296 04:01 17.49

GAN 5,65,63,009 13,69,84,129 26:13 24.25
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data (Fig. 9) results clearly indicate the DL models have great ability to perform fluence cor-
rection/improvement (indicated by green arrow), and among the different models being consid-
ered FD U-Net seems to perform well. Note that all the DL models were trained with optimal
parameters (depth, batch size, and epochs) to enable a fair comparison. As opposed to earlier
work wherein optical properties are assumed to correct for fluence,16,20,23–28 in this work the DL
model automatically learns the effect of fluence and corrects for the same. This eliminates the
bias of using optical properties from literature. Earlier works have used machine-learning models
for fluence compensation, however, this was restricted to 2D imaging geometry. Our work has
used DL models to perform fluence compensation in 3D imaging geometries. Further, the DL
models eliminate the need for running computationally complex forward model based on DE or
Monte Carlo. The DL-based fluence correction is about 17 times faster compared to the running
forward model in NIRFAST.

One of the major problems with DL-based methods lies in their inability to generalize unseen
data. Herein, we have trained the model using in-silico data and tested with in-vivo data. We
found that such translation leads to a reduction in accuracy (black spots in the in-vivo results).
Further, when testing the in-vivo data with DL models trained with breast phantom data, we
observed that the in-vivo fluence correction was not realistic in nature. Therefore, the future
work will focus on developing neural networks that can learn directly from in-vivo data using
a model-based approach in an iterative fashion. Also, the DL models seem to be scalable and
work at different noise levels and different wavelengths. Note that this work performed fluence
correction with two different illumination geometry, i.e., a line illumination for 2D vascular
network and along the entire breast (along a circle) for 3D breast data. For both these geometries,
the DL-based fluence correction seems to work accurately.

The future work will focus on evaluating the performance of the developed DL models to
perform accurate spectral unmixing. Further for the 3D case, the DL models were performing
fluence correction slice-by-slice due to unavailability of large 3D datasets. The future work will
focus on developing fully 3D DL models, which are computationally efficient at the same time
develop methodology for generating large 3D datasets for training the DL models. Further
deploying these models with 3D experimental datasets will also be evaluated. The fluence cor-
rection heavily depends on the illumination geometry, number of illumination sources, and the
field of view; the effect of these different parameters on fluence correction will also be taken up
in the future. In this work, we focused on optical heterogeneity and did not consider acoustic
heterogeneity since we specifically wanted to evaluate the performance of DL methods for
fluence compensation (which contributes a lot for multispectral optoacoustic tomography).
Acoustic heterogeneity does play an important role, and it is important to develop a generalized
DL model that will compensate for all the errors, which will be taken up as future work.

6 Conclusion

Different data-driven models were evaluated to perform fluence compensation in quantitative
OAI. As opposed to earlier works, we have evaluated models on a highly optically hetero-
geneous medium having realistic optical properties. Further, the fluence compensation was per-
formed both in 2D and 3D settings. The results indicated that the different DL models were
adaptable/robust to noise in the data. Further, the DL models were able to perform superior
fluence compensation at large wavelengths (compared to the wavelength used for training the
network) as opposed to shorter wavelengths. All the DL models were effective in compensating
for the light fluence effect with FD U-Net showing the best performance. For the 3D volumes, an
10% to 15% improvement was observed with the PSNR and SSIM metric, and for in-vivo data-
set, an improvement by a factor of 10 times was observed in terms of CNR compared to standard
TR reconstruction. Finally, the DL-based fluence correction model was found to be about
17 times faster compared to solving DE-based fluence compensation.
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