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ABSTRACT. Significance: Machine learning (ML)-enabled diffuse reflectance spectroscopy
(DRS) is increasingly used as an alternative to the computation-intensive inverse
Monte Carlo (MCI) simulation to predict tissue’s optical properties, including the
absorption coefficient, μa and reduced scattering coefficient, μ 0

s.

Aim: We aim to develop a use-error-robust ML algorithm for optical property pre-
diction from DRS spectra.

Approach: We developed a wavelength-independent regressor (WIR) to predict
optical properties from DRS data. For validation, we generated 1520 simulated
DRS spectra with the forward Monte Carlo model, where μa ¼ 0.44 to 2.45 cm−1,
and μ 0

s ¼ 6.53 to 9.58 cm−1. We introduced common use-errors, such as wave-
length miscalibrations and intensity fluctuations. Finally, we collected 882 experi-
mental DRS images from 170 tissue-mimicking phantoms and compared
performances of the WIR model, a dense neural network, and the MCI model.

Results: When compounding all use-errors on simulated data, the WIR model best
balanced accuracy and speed, yielding errors of 1.75% for μa and 1.53% for μ 0

s,
compared to the MCI’s 50.9% for μa and 24.6% for μ 0

s. Regarding experimental data,
WIR model had mean errors of 12.5% and 5.77% for μa and μ 0

s, respectively. The
errors for MCI were about eight times higher.

Conclusions: The WIR model presents reliable use-error-robust optical property
predictions from DRS data.
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1 Introduction

1.1 Diffuse Reflectance Spectroscopy for Cancer Detection
There is an unmitigated disparity in timely detection of cancer in high-resource settings versus
low-resource settings. Patients that live in low-resource settings, such as inner cities, rural areas,
or lower-to-middle-income countries, are at a higher risk of facing late-stage cancer diagnoses
and higher mortality rates from this family of diseases.1–3 Cervical cancer especially highlights
this disparity, as ∼90% of cases occur in low-resource settings.4 This is, in part, caused by the fact
that significant patient-to-clinician follow-up is required to obtain a diagnosis. Further, standard
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procedures for diagnosing cancer require rigorous sufficient healthcare resources and infrastruc-
ture. Timely access to clinicians and laboratory resources are often not feasible for those living at
or below the poverty line.1,2 Thus, there is a need to develop a means of cost-efficiently detecting
cancer at the point-of-care, giving special consideration to the logistical challenges in low-
resource clinical settings. To accomplish this, many groups have looked to visible diffuse reflec-
tance spectroscopy (DRS) as a means of capturing “optical biopsies” of suspicious lesions. There
are many advantages to this “optical biopsy” approach. For example, this imaging can be done in
an outpatient point-of-care setting, and equipment to obtain these biopsies, such as a visible
optical spectrometer, is relatively inexpensive. For instance, the DRS system used to collect the
data presented here costs <$2500 USD5 and is sensitive to many changes in the tissue micro-
environment that occur during malignancy. One example of these changes includes increased
angiogenesis, which manifests as abnormally high absorption coefficient, μa. Another example
is breakdown of the extracellular matrix within the tumor microenvironment, which causes an
abnormally low reduced extinction coefficient, μ 0

s.
6

The specific methods for acquiring optical spectroscopy data vary. Generally, the process
involves exposing biological tissue (either in vivo or ex vivo) to specific wavelengths of light.
Then, a spectrometer is used to measure the optical signal that is either transmitted through or
reflected from the tissue. Data analysis can be done using a numerical approach, such as an
inverse Monte Carlo (MCI) model, which is widely considered the “gold standard” of modeling
photon transport in turbid media.7–9 Other approaches include passing data through a lookup
table,10 or through a machine learning model11–24 to predict tissue optical properties. Recently,
sophisticated neural networks (NNs) and traditional machine learning methods have been
favored for DRS analysis. This is because numerical approaches, such as the MCI model, are
computationally intensive. Machine learning methods, on the other hand, can be faster and less
computationally demanding than these numerical techniques.

1.2 Artificial Intelligence for DRS Analysis
The increased speed provided by AI-enabled spectroscopy is compelling in a clinical setting, due
to its ability to provide results at the point-of-care, thus minimizing patient-to-clinician follow-
up. This is done using either an NN approach,11–14,17–24 and/or a traditional machine learning
approach15,16,20,21 (Table 1). When NNs are used, the raw, or minimally pre-processed, spectrum
is the model’s input. The model autonomously determines features to use to predict optical prop-
erties (μa and μ 0

s) from the input spectrum. In the traditional machine learning approach, features,
such as the spectral intensity at a given wavelength, are manually selected by the programmer for
model input. Then the algorithm uses those manually selected features to solve this predictive
modeling problem.

The main advantage of employing an NN for optical property prediction is that the feature
extraction is done automatically. The expense of this is the requirement for more data to train the

Table 1 Previous work towards machine-learning-enabled spectroscopy for optical property
prediction. Groups with a “Y” under “added noise?” introduced Gaussian or similar noise to data.
Abbreviations: multilayer perceptron (MLP), absorption coefficient (μa), reduced extinction coeffi-
cient (μ 0

s), hemoglobin concentration ([Hb]), spatially resolved diffuse reflectance spectra
(SRDRS), and random forest regression (RFR). Gradient boosting regressor (XGboost).

First author
Training
data type

Training
size

Testing
size

Added
noise? Models

Prediction
errors

Yudovsky11 Simulated
DRS data

50,000 10,000 Y Four-layer
MLP

μa: 8.0% to
14.7%

μ 0
s : 3.8% to

4.3%

Hokr12 Simulated
DRS data

295,598 10,000 N Five-layer
MLP

μa: 15%

μ 0
s : 30%
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Table 1 (Continued).

First author
Training
data type

Training
size

Testing
size

Added
noise? Models

Prediction
errors

Fredriksson13 Simulated
DRS data

100,000 100,000 Y Three-layer
MLP

[Hb]: 5.1%

Oxygen sat:
13%

Kienle14 Simulated
DRS data

120 13 N Three-layer
MLP

μa: 14%

Transport
scattering:
2.6%

Panigrahi15 Simulated
DRS data

106 106 N RFR μa: 0.56%

μ 0
s : 0.13%

Wirkert16 Simulated
multispectral
images

15,000 5000 Y RFR VHb: 5.4%
to 5.5%

Chen17 Simulated
DRS data

6100 6100 N Three-layer
MLP

μa: 0.3%

μ 0
s : 0.6%

Jager18 Simulated
SRDRS data

2000 2000 Y Three-layer
MLP

μa: 6.1%

μ 0
s : 2.9%

Jager19 Simulated
SRDRS
curves

100 410 Y Three-layer
MLP

μa: 4.4%
to 8.7%

μ 0
s : 2.1%

to 3.3%

Manojlovic20 Simulated
hyperspectral
images

80,000 20,000 N Three-layer
MLP, CNN,
and RFR

Predicted
spectra
versus actual
spectra
disagreement:
0.003% to
0.009%

Nguyen21 Simulated
DRS data

10,000 30,000 Y Four-layer
MLP, RFR,
and
XGboost

μ 0
s : 6.88%

Zhang22 Simulated +
phantom
SRDRS data

32
simulations

+ 23
phantoms

10
simulations

+ 11
phantoms

N Three-layer
MLP

μa: 6.0% to
9.0%

μ 0
s : 3.0% to

4.5%

Tsui23 Simulated
SRDRS data

21,000 9000 Y Four-layer
MLP

μa: 2.2% to
3.4%

μ 0
s : 2.6% to

25.9%

Farrell24 Simulated
SRDRS data

800 100 Y Three-layer
MLP

μa: <7.0%

μ 0
s : <7.0%
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model. Additionally, the trained model itself is more computationally demanding. This is prob-
lematic in biomedical applications, as accessibility to a large enough training dataset to accu-
rately train such a model without overfitting is scarce. An additional expense to the NN approach
is its “black box” nature. Since the features are automatically selected, the features used to ana-
lyze the dataset may or may not be relevant to the posed scientific problem/question. This phe-
nomenon is described by Tulio-Ribeiro et al.,25 where a deep learning model automatically
selected features from images of wolves and Alaskan Husky dogs for classification. This model
made classification decisions based on the image background (i.e., presence/absence of snow),
rather than features relevant to the classification task. This artifact of models that automate fea-
ture extraction poses challenges to their translatability to high-stakes setting, such as in medical
applications.

As a result, models that use manually selected features to predict a target variable present a
compelling alternative in certain specific applications. Benefits of these models, over NNs,
include that they tend to require less training data to reliably predict their target variables, and
are more computationally lightweight. This comes at the cost of lessened ability to perform com-
plicated classification and regression tasks.

1.3 Current Clinical Translatability of DRS and AI-enabled DRS
While the theoretical benefits of DRS and AI-enabled DRS are compelling, its clinical trans-
latability, especially in low-resource settings, is limited. Previous studies heavily rely on training
their models with simulated data that is either perfect, or noisy, but otherwise perfect.11–24 The
justification for adding noise to these datasets is to simulate the impact of device noise on
data acquisition. These studies fail to acknowledge that device noise is not the only common
artifact present in experimental and clinical datasets. For example, the U.S. Food and Drug
Administration estimates that as many as one in three device failures leading to adverse medical
outcomes are not caused by an issue with the device itself.26 Conversely, they were caused by
improper use of a medical device (defined as “use-error”).26 These errors are not necessarily
caused by a lack of proper training. For example, a 2003 study found that of 1000 hand sur-
geons—expert practitioners with years of specialized medical training—“20% of them admitted
to having operated on the wrong site at least once in their career.”26 Especially in a low-resource
clinical setting, funding and resources to properly train clinicians on the proper use of every
medical device they use may not be guaranteed. Beyond this, in both high and low-resource
clinical settings, clinicians are often forced to make compromises regarding the use of various
medications and medical devices. Specific to AI-enabled DRS analysis, it is important to antici-
pate the artifacts that common use-errors may introduce to DRS spectra and incorporate these
anticipated artifacts in the training process.

Three major types of spectral artifacts that are commonly caused by use-errors are: Gaussian
noise, spectral intensity fluctuations, and wavelength miscalibrations. Gaussian noise can be
caused by noise in the camera, the light source, or the room light. Noise is not technically caused
by use-error but is included in this discussion because it is a universal artifact of experimental
data and often manifests as Gaussian-type noise. Because of its commonality in all experimental
datasets, some groups have incorporated noise into the training and testing process of their algo-
rithms (Table 1).11,13,16,18,19,21,23,24

Intensity fluctuations can be caused by improper probe-to-tissue contact, a light source not
being properly warmed up prior to use, or similar use-errors. These artifacts can manifest as a
spectrum’s intensity being falsely scaled up or down, either systematically (i.e., by the same
amount throughout the entire spectrum), or in a wavelength-dependent manner. This artifact
can be caused by failure to properly warm or charge up a light source or its battery before use.
This error is common among those who do not have specialized training in optics, such as
clinicians.

Wavelength miscalibrations can be caused by rough handling of the system, accidentally
dropping/nudging the system, infrequent wavelength calibration, and similar use-errors. It is usu-
ally recommended that this use-error be avoided by regularly calibrating a spectrometer with a
calibration lamp (i.e., a neon lamp). However, because this process is time consuming and expen-
sive, some clinics, especially resource-limited clinics, may deviate from the required routine
calibration schedule.
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No other groups, to our knowledge, have investigated these three types of use-errors, and
the impact their incorporation/absence in a training dataset has on the accuracy of popular
predictive models for optical property prediction. It is problematic that these use-errors are
not regularly incorporated into the training and testing processes of machine learning algo-
rithms because datasets that are void of these errors are not representative of “real” experi-
mental/clinical data. As a result, any resulting models, which are well documented to be
extremely sensitive to bias in the training dataset,27 will likely produce inaccurate results if
the data does not conform to the biased trends of the training dataset. Some groups partially
mitigate the need for empirical wavelength-by-wavelength calibration through leveraging the
shape and slope of spectra to arrive at optical property predictions.14,18,23 The vast majority of
these groups apply this framework to spatially resolved diffuse reflectance spectra
(SRDRS).14,18,23 This generally involves optimizing detectors to capture spectra at one or two
specific wavelengths, rather than across a broad range, with a fiber optic probe.14 For instance,
Kienle et al. calibrated SRDRS data at 633 and 751 nm18 and Jager et al. used 662 nm instead.23

Groups that use SRDRS to train machine learning models for optical property detection use the
intensity and shape of SRDRS signal at a given wavelength as input into the algorithm. This
approach incompletely solves the wavelength dependency problem because the system must be
regularly calibrated to ensure that the signal detected by the SRDRS device is truly collecting
data from the wavelength(s) of interest.

In addition, previously reported models are either completely trained, tested, and validated
on simulated data, or use a minimal amount of experimental data (<40 datapoints, all collected in
one session) for algorithm training/validation.11–24 This is problematic because experimental data
is not likely to be perfectly aligned with theoretical data,14 and the reason is not always obvious.
This is especially true when collecting data from biological tissue that is largely variable subject-
by-subject and even day-by-day within one subject. Because of this, it is important to incorporate
a significant body of experimental data into training for a given model.

There is an unmet need for a spectral analysis algorithm that anticipates common use-errors
that are involved with humans and/or non-optical experts using optical equipment for data col-
lection. Further, there is an unmet need to incorporate a large body of experimental data for
training and validation to make models more adaptive to a realistic clinical environment.
The research presented here addresses this issue by developing a lightweight machine learning
method of predicting optical properties from DRS data. This is accomplished using wavelength-
independent features in a model called the wavelength-independent regressor (WIR model). This
novel analysis method has been rigorously trained and validated using both simulated spectra and
phantom data collected on a previously described portable DRS system.5 This technique is novel
in that: (1) it designs and extracts a combination of wavelength-independent features that have
not been used by other studies; (2) it is rigorously trained and tested on a simulated dataset that
incorporates spectral artifacts due to realistic use-errors; and (3) it is further rigorously trained
and tested using 882 experimental DRS spectra collected from 170 tissue-mimicking hemoglo-
bin (Hb) phantoms—the largest experimental dataset, to our knowledge, to be incorporated into
DRS-based machine learning techniques thus far.

2 Methods

2.1 Smart Microendoscope
The algorithm presented here analyzes DRS data collected using different versions of a previ-
ously described smart microendoscope (SmartME) imaging system for use in low-resource set-
tings (Fig. 1).5 Briefly, the DRS channel of this system contained a visible white light source
(Thorlabs MCWHF2; λ ¼ 450 to 630 nm), a homemade fiber optic probe for directing the optical
signal to and from the tissue, and collimation/grating optics to produce a diffuse reflectance
spectrum for imaging by a Samsung S7 camera. The resulting raw “spectrum” was an 8-bit
RGB image that resembles that seen in Fig. 1(a). One of two probes was used to collect data
for this study. Probe No. 1 had a source–detector separation (SDS) of 750 μm and Probe #2 had
an SDS of 650 μm. All fiber diameters were 200∕220 μm [Fig. 1(b)].
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2.2 Generation and Analysis of Simulated Data
Simulations were generated using the forward Monte Carlo model described by Palmer.28 This
was done to provide a “blank slate” for evaluating the WIR model’s performance. One can
clearly see how the WIR model performs on each type of use-error in isolation, as the base
dataset contained no experimental errors, other than those manually introduced into it. This also
allowed one to clearly see which features are most affected (or conversely, most robust) to a
given use-error. This also clearly demonstrated whether any given algorithm can learn and correct
these use-errors. Seven total simulated datasets were generated, one dataset that was “perfect”
[Fig. 2(a)], five datasets where one type of error was manually introduced, and one dataset on
which all use-errors were compounded.

Error No. 1 included adding Gaussian noise using MATLAB’s awgn() function29 to the
signal, such that the signal-to-noise ratio (SNR) was 35:1 [Fig. 2(b)] or 45:1 in the case of com-
pounding all errors (Fig. 2(g)] due to issues with MCI convergence when all errors were com-
pounded using the lower SNR. This SNR was decided quasi-arbitrarily, as it appeared
qualitatively similar to the noise seen in other spectral data collected by the SmartME system.

Error No. 2 was a wavelength miscalibration in which spectra were compressed by 1 nm at
each tail [Fig. 2(d)]. Error No. 3 was another wavelength miscalibration by shifting the spectra by
4.8 nm to the left [Fig. 2(c)]. This was determined using the SmartME device to capture a DRS
spectrum from a neon lamp, at steady-state, at three different time points. The second measure-
ment was taken 45 days after the first measurement, and a third measurement was taken 50 days
after the first measurement. It was found that the neon peaks corresponding to the same wave-
length, but taken on a different day, were off by as much as 12 pixels or 3.7 nm. An additional
safety factor of 1.1 nm was added to our analysis, such that our data simulations were miscali-
brated by as much as �4.8 nm [Fig. 2(c)].

Error No. 4 was a wavelength-dependent intensity fluctuation, where the intensity of the
spectrum was shifted up or down by a random amount, as much as 5%, as a function of spectral
wavelength at each tail [i.e., the left tail was scaled up by 5%, the right tail scaled down by 5%,
Fig. 2(e)]. This simulated the fluctuations in light source intensity that come with improper ther-
mal management. Error No. 5 also simulated improper light source thermal management, leading
to a systematic fluctuation in the intensity by as much as 5% [Fig. 2(f)]. Finally, Error No. 6
included compounding all errors on top of each other [Fig. 2(g)]. Each simulated dataset con-
sisted of 1520 spectra, with μa ranging from 0.44 to 2.45 cm−1 (average step size: 0.007 cm−1),
and μ 0

s ranging from 6.53 to 9.58 cm−1 (average step size: 0.008 cm−1).
The presented WIR model uses four spectra to extract features [Fig. 3(c)]. (1) The spectrum

from the (1) red channel, referred to as the “red spectrum;” (2) green channel or the “green
spectrum;” (3) blue channel or the “blue spectrum” of the image; and (4) the spectrum from

Fig. 1 (a) DRS channel of the SmartME imaging system employed for data collection. This DRS
channel worked by exposing the tissue to visible light via fiber optic probe and measuring the
proportion of the illumination light this is reflected towards the probe. (b) Fiber optic probe geometry
at the distal end.
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the grayscale image (the “grayscale spectrum”). Because the output of the forward Monte Carlo
model is what the WIR model sees as the grayscale spectrum, an additional step was necessary
during simulation preprocessing [Fig. 3(a)], that included converting the “grayscale” simulated
spectra to the red, green, and blue (RGB) spectra. This was done by utilizing a modified
version of a Beer–Lambert based, wavelength-to-RGB calculator, available by the Academo
Organization.30 Specifically, the predicted RGB intensity at each wavelength was converted
to a percent. For example, at the wavelength of 500 nm, the RGB coordinates are (0, 255,
146). These were converted to percentages of the overall signal strength attributed to each chan-
nel, or (0, 0.64, 0.36). The spectral intensity of the “grayscale” spectrum at 500 nm was then
divided into three channels, with intensities proportional to these RGB percentages at each wave-
length. Features were extracted from these red, green, and blue spectra for input into the
WIR model.

Once both the simulated DRS “image” and its spectrum had been obtained, if the data was to
be input into the WIR model, the spectrum was multiplied, column-by-column, by the spectrum

Fig. 2 Example simulated spectra entered into the MCI, WIR, and MLP models for analysis. This
includes data that are: (a) “Perfect” data, defined as the direct output of the forward Monte Carlo
model, (b) “noisy,” but otherwise perfect, (c) wavelength miscalibrated, and (d) compressed, to
simulate sensor misalignment. Other use-errors include spectra that have been (e) rotated, sim-
ulating another sensor misalignment error, (f) scaled up to simulate improper LED warm up period,
or fiber bending induced fluctuation, and (f) data with all of the previously mentioned errors com-
pounded on top of each other.
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of a reflectance standard. This was done to account for the general impact of the light source itself
on the spectral values. By including this into the training set of the simulated dataset, the need for
users to calibrate the system with a reflectance puck in the clinic was minimized. Feature extrac-
tion took place from both the RGB images, and the spectral graphs of the phantoms, according to
Table 2. To validate the WIR model’s performance on these simulated datasets, a fivefold cross-
validation technique was used, where the training and testing sets consisted of randomly selected
samples from the corresponding simulated dataset. For example, to evaluate how well the algo-
rithm performed on perfect + Gaussian noise data, randomly selected samples from the 1520
sample-dataset of the perfect + Gaussian noise dataset were used for training/testing.

2.3 Experimental Data Collection
One important consideration to ensure that a supervised model will be clinically translatable is
having a realistic training dataset. To accomplish this, 882 DRS images were captured from 170
tissue-mimicking phantoms. This data were collected from 11 different experiments using the
SmartME system. The exact number of images that were captured at each titration varied, but
generally included taking at least three images at each titration. If multiple camera settings (i.e.,
exposure times and/or ISO speeds) were used within one experiment, generally three images
were captured at each camera setting, for each phantom.

Phantoms included a range of hemoglobin concentrations ranging from 2.57 to 32.7 μm,
resulting in theoretical μa ranging from 0.17 to 3.02 cm−1 and theoretical μ 0

s ranging from
4.98 to 14.69 cm−1, to mimic that of normal to cancerous cervical tissue.6 Phantoms contained
deionized water, polystyrene spheres (Polysciences, Cat No. 0719-15, diameter ¼ 1.0 μm), and
human hemoglobin powder (Sigma Aldrich, SKU H0267, CAS No. 54651-57-9). The protocol
for data collection detailed by Hong et al was followed for data acquisition, using the SmartME
system for data acquisition.5 Eleven of these experiments were conducted, over a span of 2 years.

To extract the theoretical optical properties of each titration, a sample from the stock solution
was measured with a commercial-grade spectrophotometer at the beginning of each experiment
(either Perkin-Elmer Lambda 35 or Thermo-Fisher SPECTRONIC 200). The expected optical
properties for each consequent phantom were calculated by scaling the measured optical proper-
ties to the dilution value of the phantom solution. The theoretical value of μ 0

s for each phantom
was calculated using Mie theory of light scattering.31

Fig. 3 Preprocessing protocol for (a) simulated and (b) experimental data. The moving average
filter for experimental data used a window size of 6. (c) Examples of the raw RGB images (for
experimental data), as well as the red, green, and blue (RGB) spectra for both the experimental
and simulated data, prior to normalization via reflectance standard. Variables are defined as fol-
lows. M: total number of pixel rows in an image and m: pixel row currently being evaluated. N:
number of pixel columns (or wavelengths) in an image. R: red channel of 8-bit RGB image, G:
green channel, and B: blue channel of 8-bit RGB image. Gray: array that sums, element-by-
element the values of the arrays R, G, and B. Inorm: normalized pixel value of each array R,G,
B, and gray. I raw: raw pixel value from the R, G, B, and gray arrays. IN : spectral intensity at pixel
column N .

Scarbrough, Chen, and Yu: Designing a use-error robust machine learning. . .

Journal of Biomedical Optics 015001-8 January 2024 • Vol. 29(1)



2.4 Phantom Data Preprocessing and Feature Extraction
The raw data collected by the SmartME DRS channel were an 8-bit RGB image [Fig. 1(a)]. To
predict phantom optical properties, the preprocessing algorithm summarized in Fig. 3(b) was
used. Specifically, once the data were collected, background noise was removed by passing the
spectra through a thresholding algorithm, where all RGB pixels with an empirical intensity of
<10 for a given channel in the raw image were set to 0 for that channel. For example, if an input
pixel had RGB values of (0 20 9), the threshold algorithm would return (0 20 0) for that pixel. All
images [Figs. 3(b) and 3(c)] were normalized on a pixel-by-pixel basis to account for differences
in camera settings using Eq. (1), where Inorm was the normalized pixel intensity, Iraw was the raw
pixel intensity, Ti was the exposure time in seconds, and ISO is the ISO speed

EQ-TARGET;temp:intralink-;e001;117;274Inorm ¼ Iraw
Ti · ISO

: (1)

After this, the spectra were calculated using Eq. (2), where IN was the intensity at a given
pixel column number andM was the number of pixel rows. Then, a moving average filter with a
window size of six pixels was applied to the spectrum, for further noise reduction

EQ-TARGET;temp:intralink-;e002;117;202IN ¼
XM

m¼1

InormðmÞ: (2)

Once data preprocessing was complete, feature extraction was performed per Table 2. The
resulting feature table then served as input to a gradient boosting regressor from Python’s
“sklearn.ensemble” library.32 This regressor is a tree-based model, with its structure illustrated
in Fig. 4(a). It employed 200 estimators, at a max tree depth of 5, and a minimum of 3 samples
per leaf. For repeatability, the random state was set to 0. Python version 3.9.1 was employed for
all data preprocessing and model development. Data preprocessing, feature extraction, and opti-
cal property prediction were completed on an Intel(R) Core(TM) i5-7300U CPU @ 2.60 GHz
2.71 GHz processor, with 16.0 GB of RAM, running Windows 10.

Table 2 Features extracted and employed to predict optical properties
from DRS data.

Feature Family Feature

Spectral count
values (12 features)

Maximum R, G, B, and grayscale spectral values

Mean R, G, B, and grayscale spectral values

Standard deviation of R, G, B, and grayscale
spectral values

Spectral slope
values (16 features)

Maximum R, G, B, and grayscale spectral slopes

Minimum R, G, B, and grayscale spectral slopes

Mean R, G, B, and grayscale spectral slopes

Standard deviation of R, G, B, and grayscale
spectral slopes

Other spectral
values (6 features)

Spectrum length No. 1: number of pixel columns
with intensity >0.25*maximum intensity value of RGB,
grayscale spectra

Spectrum length No. 2: distance (in pixels) between
absolute maximum and second-highest maximum of
grayscale spectrum

RGB channel
values(12 features)

Skewness of R, G, B, and grayscale spectra

System configuration
(one feature)

Probe geometry (categorical, probe 1 or 2)
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To provide a baseline to how models like previous literature may perform on the proposed
dataset, dense NN with 2 hidden layers was also employed using Python’s Keras library, with 25
nodes/layer [Fig. 4(b)].33 The average prediction of these models was used for calculating the
prediction accuracy. Training of these models were done twice. First, the WIR features were used
as input into the model and then the raw one-dimensional RGB DRS spectra were used as fea-
tures. This included concatenating the grayscale spectrum, red channel spectrum, green channel
spectrum, and blue channel spectrum to form one vector per sample. This was done as previous
literature uses the raw DRS spectra as input to their models, and analyzing the DRS data in this
fashion allows for one to fully compare the performance of the WIR model to models in
literature.

2.5 Regression Training and Validation for Experimental Data
To augment the training process of the WIR model, 21,820 simulated datapoints were used.
These included the perfect data (1520 datapoints, Table 3, dataset 1), datasets containing one
of the previously described spectral artifacts (namely noise, intensity fluctuations, or wavelength
miscalibrations) introduced (7600 datapoints, Table 3, datasets 2 to 5) and the dataset with all
errors compounded on each other (1520 datapoints, dataset 6, Table 3). The remaining 11,180
simulated spectra that were used to augment WIR training for experimental data analysis
included various combinations of errors (Table 3, simulated datasets 7 to 14).

To evaluate the wavelength-independent WIR model’s performance on experimental data,
either a leave-one-titration-out, or a leave-one-experiment-out approach was used. In the leave-
one-titration-out approach, all data for a specified phantom titration was allocated to the testing
set, and the simulation data outlined in Table 3 along with all other experimental data was
assigned to the training set. This process was repeated for each of the 170 independent phantoms.
For the leave-one-experiment-out approach, all data collected on 1 day was allocated to the test-
ing set, and all other data (simulated and experimental) was used for training. This was repeated
for each of the 11 experiment dates.

Fig. 4 Architecture of (a) the WIR model and (b) the sequential dense NN that was used to ana-
lyze the DRS data. The MLP and fully sequential NN were used as baselines to simulate how
models similar to those presented in previous literature may behave under the presented
datasets.
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3 Results
Table 4 depicts the WIR model, the NN, and the MCI model’s performance at predicting μa and
μ 0
s, when various use-errors were introduced into the simulated dataset. Results for both models

are presented as the mean root-mean square error (RMSE) of the prediction. The amount of time
required to predict a test set of 304 samples with each model is also provided.

When a single error was introduced to the dataset, the MCI model was especially sensitive to
shifting, which resulted in a 6.35% error for μa and rotating, which produced 5.97% error for μa.
However, the MCI model was relatively immune to noise, intensity scaling, and spectral com-
pression. When all errors were compound, the MCI model reported RMSE of 50.9% and 26.7%
for μa and μ 0

s, respectively. Conversely, all machine learning models were more robust to various
use-errors than the MCI model. For example, both the WIR and dense NN predicted optical
properties with enough accuracy to be clinically useful (<10% RMSE for both μa and μ 0

s) even
when all use errors were compounded. The WIR model was arguably the most stable model with
respect to use-error. This is seen as the prediction error was <2% for all use-errors. The dense NN
when predicting μa for both the WIR features, and raw spectra as input had a prediction accuracy
that varied by over 10% between the dataset with the lowest errors and the dataset on which the
model performed the best, versus the worst.

Beyond the error-by-error variability seen in each’s model’s performance, the WIR model
was more accurate than the dense NN when using the hand-picked features for all simulated
datasets. While the dense NN, when using the raw DRS spectra as input yielded lower errors
than the WIR model, this came at the expense of prediction time. Namely, the WIR model was
able to render predictions in less than a millisecond for a testing set of 304 samples. The dense
NN, on the other hand, was over 240 times slower, requiring 0.199 s to perform the same cal-
culation. As a result, the WIR model is seen to provide the optimal balance between training time
and model accuracy.

Table 3 Simulated datasets used to enhance the training of the WIR model for analysis of exper-
imental data. In some cases, multiple errors were compounded onto each other. Each simulated
dataset contained 1520 simulated spectra. In total, 21,280 simulated datapoints were used to
enhance training.

Simulated
dataset
No.

Gaussian noise
(SNR = 35:1)

Scaling (spectra
systematically scaled
up by random amount,

up to 5%)

Shifted
(wavelength
axis shifted
left b 4.8 nm)

Compressed
(spectrum moved
inwards by 1 nm

at tails)

Rotated (spectrum
rotated by random
amount, up to
5% at tails)

1

2 ×

3 ×

4 ×

5 ×

6 ×

7 × ×

8 × ×

9 × × ×

10 × × × ×

11 × × × × ×

12 × ×

13 × ×

14 × ×
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The most important features considered by the WIR model when predicting the optical prop-
erties of the simulated input spectrum, which included all of the errors compounded on each
other, were also identified. The length of the grayscale spectrum, the mean slope of the grayscale
spectrum, and the skewness of the green channel were the three most important features to pre-
dicting μa. The three most important features to predict μ 0

s were the mean and standard deviations

Table 4 Prediction accuracies of the MCI, WIR, and dense NN regressor models for optical prop-
erty prediction of 1520 simulated spectra, with various use-errors. Results for the WIR model and
dense NN were generated via fivefold cross-validation. Prediction times are provided for a testing
set size of 304 samples. Bold text is used to indicate the lowest error value in each column.

Model
Prediction
time (s) Target Perfect Noise Shifted

Intensity
scaled

Com-
pressed Rotated All

MCI
(RMSE %)

n/a μa <0.01 2.59 6.35 0.30 1.12 5.97 50.9

μ 0
s <0.01 1.10 1.99 1.56 0.55 2.91 26.7

WIR
(RMSE %)

8.14 × 10−4 μa 0.13 0.79 0.26 0.16 0.19 1.09 1.75

μ 0
s 0.27 0.80 0.18 1.18 0.12 0.70 1.53

μ 0
s 2.51 2.66 2.46 2.41 2.12 3.07 1.66

Dense NN -
WIR
features

0.146 μa 0.86 2.18 1.05 1.98 1.61 10.9 2.24

μ 0
s 2.68 3.95 3.23 3.45 3.23 2.77 5.82

Dense NN -
Raw spectra

0.199 μa 0.17 0.29 0.84 0.95 0.19 0.17 0.39

μs 0 0.02 0.07 0.27 0.08 0.1 0.56 0.12

Table 5 Accuracy of wavelength-independent regression model at predicting optical properties of
tissue-mimicking phantoms, where LOTO represents leave-one-titration out and LOEO represents
leave-one-experiment out.

Date No. Probe No. Box No.

Mean % RMSE μa Mean % RMSE μ 0
s

WIR LOTO WIR LOEO MCI WIR LOTO WIR LOEO MCI

1 1 2 15.8 21.4 99.1a 7.80 10.4 18.4a

2 1 2 10.8 22.4 40.6a 10.5 17.8 11.5a

3 1 2 11.2 17.2 162a 4.35 5.89 74.2a

4 1 1 10.34 26.8 34.6 9.16 43.7 16.4

5 1 1 8.67 11.3 99.9 6.26 13.2 33.2

6 1 1 18.5 23.5 225 10.9 12.2 173

7 1 1 27.4 39.8 262 7.45 11.5 53.1

8 2 2 10.3 29.4 51.6a 4.59 13.6 29.0a

9 2 2 8.93 20.5 96.0 3.55 9.45 68.0

10 2 2 13.6 29.9 58.0a 4.54 10.1 50.6a

11 2 2 8.5 45.1 21.7 5.54 40.9 4.16

Mean — — 12.5 24.2 105 5.77 13.2 48.3

aResults were generated by dividing spectra by the reflectance standard from the 9/17/2021 experiment, due to
unavailability of a reflectance standard measurement from this date.
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in intensity of the spectrum, as seen by the green channel, as well as the mean intensity of the
grayscale spectrum.

Table 5 demonstrates the WIR model’s performance (the model that provided the optimal
balance between accuracy and training time on the simulated data), compared to the MCI model
(the current “gold standard” for optical property prediction of DRS data), on the experimental
dataset. When using the leave-one-experiment-out validation method, the average percent RMSE
for the WIR model was 24.2% and 13.2% for μa and μ 0

s, respectively. For the leave-one-titration-
out validation, the mean percent RMSE for the WIR model was 12.5% and 5.77% for μa and μ 0

s,
respectively. The MCI model produced prediction errors of 105% and 48.3% for μa and μ 0

s,
respectively, on the same dataset.

4 Discussion
Many studies have been conducted that evaluate the capabilities of machine learning to predict
optical properties from DRS data.11–24 There is a gap, however, in validating these machine learn-
ing algorithms are able to produce clinically useful results on realistic datasets that inherently
include use-error. The presented research addresses this gap by including simulations that capture
the spectral artifacts, such as noise, wavelength miscalibrations, and intensity fluctuations, that
come with common use-errors. Further, the presented research includes the largest, most diverse
experimental DRS dataset, of which we are aware, that has been used to train and validate a
predictive model for DRS optical property prediction.

4.1 Model Performances on Simulated Data
As noted in Table 4, the MCI model, under perfect conditions, provided essentially perfect opti-
cal property predictions (as expected, since this data were the untouched output of the forward
model). However, the WIR algorithm outperformed both the MCI model and the NN models, in
terms of accuracy and training time, when various use-errors were introduced into the simulated
dataset.

The reason for the large difference between the performances of models can be understood
by examining the methodology each algorithm uses to render its predictions. The MCI model, for
example, makes its predictions by comparing, wavelength-by-wavelength, the intensity of the
measured spectrum, compared to what is theoretically expected for a given wavelength, at a given
absorption and scattering level. Once there is convergence between the measured and spectra, the
optical properties of the converged theoretical spectrum are returned. Since this method is deeply
rooted in the theory of photon transport in turbid media, when the data input into the inverse
model perfectly complies with theory, the model is essentially errorless, as seen in the leftmost
column of Table 4, when perfect data were entered. However, experimental data rarely, if ever,
perfectly complies with theory. Noisy data due from sources, such as camera noise, is inevitable.
Wavelength shift due to optical misalignments between calibrations is realistic. Spectral intensity
changes due to a failure to properly warm up, charge, or keep cool, a light source can occur, even
to the most diligent technicians on the most well-maintained systems. Because the MCI model
and similar models do not include these use-errors when analyzing spectroscopy data, when these
errors, either individually or in combination, are present in data, the MCI model and similar
algorithms produce large prediction errors, such as those seen in Table 4.

Machine learning models, like the ones presented here and similar models described in pre-
vious literature,11–24 provide an improvement upon the MCI model for optical property predic-
tion. This is likely because machine learning models are naïve to the appearance of theoretical
spectra. In the case of machine learning, these models simply evaluate the input data, and make
correlations between changes in spectral features and changes in the assigned optical properties.
Due to this, if error (especially a systematic one) is present in the data acquisition process, this is
not necessarily seen as an error or an artifact by the model, and as a result, this provides a level of
robustness to error among machine learning models.

The major shortcoming of using NNs is that the models, because they must both extract
features and assign a target variable, take a long time to complete the training process.
Additionally, the computational complexity of NN models are greater than a traditional machine
learning approach, such as the WIR model. Due to this, NNs require more training data than
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traditional machine learning models to avoid overfitting. The end result of this is that the MLP
models tend to be more sensitive to deviations in the appearance of testing data from their train-
ing set, as demonstrated by the NNs being more prone to variable prediction accuracies, depend-
ing on the use-error introduced to the dataset.

The presented WIR algorithm, on the other hand, on top of embracing and anticipating use-
error in analyzing spectroscopy data, can yield lower errors after being trained on a simpler data-
set (i.e., 35 hand-selected features, instead of the raw RGB signals), and produce optical property
predictions after training in less time than NNs. This is accomplished in two major ways, (1) the
method determines which features are extracted from the measured data, and (2) the WIR algo-
rithm defines what “theoretical” data looks like. First, the WIR algorithm, as mentioned in
Table 2, examines the spectrum holistically, rather than on a wavelength-by-wavelength basis.
The most important features the WIR model used to render a prediction for μa were the length (in
pixel columns) of the spectrum, the mean slope of the grayscale spectrum, and the skewness of
the green spectrum. This is likely because the overall signal detected by the DRS system will be
weaker with increased μa. With this, the local minima and maxima of the spectrum will be less
pronounced and will manifest as a smaller mean slope of the spectrum. Further, because the
detected signal will be weaker with increased μa, the difference between the maximum spectral
intensity, and 25% of the spectral intensity (the definition of the most important feature for μa
prediction), will be smaller. While these features will change as the optical properties of the tissue
change, none of these feature values will change significantly if the wavelength axis is mis-
aligned, the spectrum is noisy, or the spectrum is systematically scaled up or down, explaining
the model’s robustness to these use-errors. Errors, such as compressing the spectrum, which
simulate misalignment among the spectrometer camera, the gratings, collimator, and the fiber
optical connector, will impact the shape of the spectrum, but will not significantly impact the
overall intensities of the spectrum, since these features, while not the top three most important
features, are still used by the WIR model, and this can explain why the model was robust to these
artifacts as well (Table 3).

With respect to μ 0
s prediction, the WIR model gave most weight to the mean and standard

deviation in the intensity of the green spectrum, and the mean intensity of the grayscale spectrum.
These, again, are values that will be less likely to change due to miscalibration artifacts, or noise.
Further, alignment error manifesting as compression of the spectra will not seriously change the
values of these features, either. As a result, the WIR model was robust to these errors.

Because there are enough features extracted that will not be severely impacted by any sin-
gular use-error in the WIR algorithm, the algorithm is robust to various errors, even when com-
pounded on each other, as demonstrated in Table 3. By making a specific effort to extract features
that will be consistent, despite the presence of these use-errors, the WIR algorithm is more robust
than the MCI model.

4.2 Model Performances on Experimental Data
It can further be concluded that the presented algorithm is likely to be useful for predicting opti-
cal properties from experimental data, especially when validated with the previously described
leave-one-titration-out validation approach. Under this approach, across 882 experimental data-
points, the WIR algorithm yielded prediction errors of 12.5% for μa and 5.77% for μ 0

s. The MCI
model produced errors an order of magnitude higher, of 105% for μa and 48.3% for μ 0

s. It is
anticipated the reason behind this large difference in each algorithm’s performance is similar
to that seen in the simulated data. All experimental data, including the dataset presented here,
includes random noise. Sometimes, a measurement from calibration standard was not available
on the same day of experimentation, which may have contributed to wavelength-dependent errors
in evaluating the spectral intensity. While a wavelength calibration was performed for each
experiment, the wavelength calibration was not necessarily perfect. Because the WIR model
incorporates these artifacts into its training process, and because the WIR model uses features
that are inherently more robust to these use-errors than the MCI model, the WIR model was able
to outperform the MCI model on this experimental dataset.

A limitation of these results includes that the errors of the phantom data are higher than that
was seen using simulated data for both the WIR and MCI models. This can be attributed to the
hardware and methodology used to collect this data. Specifically, the experimental data were
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collected on an in-house built SmartME system.5 This device was an experimental device that
was continually being destructed and reconstructed throughout the 2-year span in which the
experimental data were collected. As a result, a limitation in the experimental dataset is that
there were some large day-by-day dependences regarding the characteristics of the experimental
spectra, explaining why the algorithm saw higher errors in predicting the optical properties using
the leave-one-experiment-out method, and why the MCI model saw large errors overall. Even
within a single day, the experimental data were collected on an experimental, not commercial-
ized, system, and sometimes data were collected incorrectly (i.e., data were collected on a light
source that was not properly warmed up or charged). There were errors introduced into the data-
set that are related to data collection on an incomplete device, rather than the typical use-errors
that are outlined in this paper.

Nevertheless, the data were included in this manuscript for four reasons: (1) to demonstrate
how sensitive the MCI model is to common use-errors; (2) to demonstrate how the WIR model is
able to be trained faster, and be more robust to various use-errors than a NN; and (3) to present the
first study, to the best of knowledge, to include data collected on multiple days for machine
learning model training of optical property prediction from DRS data. Because this, the first
time data like this have been presented, and it is entirely possible that the algorithms presented
by other groups may be vulnerable to similar day-by-day dependencies in their datasets, however,
these groups did not include enough experimental data to detect this trend. Thus, it is important to
quantify and draw attention to this potential limitation of machine learning models for optical
property prediction, such that this can inform experimental design for research groups in the
future. Future work will be focused on collecting another extensive, experimental dataset that
provides more day-by-day consistency in the quality of the DRS data, to further validate the
previously described algorithm. That said, due to the robustness of WIR model to the experi-
mental data presented thus far, if the algorithm can yield reliable results under these inconsistent
experimental conditions, it is likely to be clinically translatable on clinical/experimental data that
are collected on commercial-grade systems.

5 Conclusion
The presented WIR algorithm presents reliable optical property predictions from DRS data. This
algorithm is robust to various artifacts that come from common use-errors, such as noise, inten-
sity fluctuations, wavelength miscalibrations sensor, calibration, and light source errors. This
algorithm has also been rigorously validated on an extensive experimental dataset, showing
promise for its translatability to a clinical setting.
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