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ABSTRACT. Significance: Azimuth-resolved optical scattering signals obtained from cell nuclei
are sensitive to changes in their internal refractive index profile. These two-dimen-
sional signals can therefore offer significant insights into chromatin organization.

Aim: We aim to determine whether two-dimensional scattering signals can be used
in an inverse scheme to extract the spatial correlation length #, and extent 6n of
subnuclear refractive index fluctuations to provide quantitative information on chro-
matin distribution.

Approach: Since an analytical formulation that links azimuth-resolved signals to #,
and é&n is not feasible, we set out to assess the potential of machine learning to
predict these parameters via a data-driven approach. We carry out a convolutional
neural network (CNN)-based regression analysis on 198 numerically computed
signals for nuclear models constructed with ¢, varying in steps of 0.1 um between
0.4 and 1.0 um, and én varying in steps of 0.005 between 0.005 and 0.035. We
quantify the performance of our analysis using a five-fold cross-validation technique.

Results: The results show agreement between the true and predicted values for
both ¢, and 6n, with mean absolute percent errors of 8.5% and 13.5%, respectively.
These errors are smaller than the minimum percent increment between successive
values for respective parameters characterizing the constructed models and thus
signify an extremely good prediction performance over the range of interest.

Conclusions: Our results reveal that CNN-based regression can be a powerful
approach for exploiting the information content of two-dimensional optical scattering
signals and hence monitoring chromatin organization in a quantitative manner.
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1 Introduction

It is well established that optical scattering signals are sensitive to alterations in the morphology
and internal structure of tissue constituents. This has paved the way for the development of
numerous optical tools that can be employed to monitor cells or cell nuclei, mitochondria,
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lysosomes, and fibrous networks for various diagnostic purposes.'? Cell nuclei serve as reposi-
tories of genetic material and have thus far been a major focus for the diagnosis of diseases. In
particular, changes in chromatin organization within cell nuclei are important indicators of pre-
cancer progression. Previous studies provide strong evidence that such changes can be detected
via scattering-based optical modalities.*"*

Subnuclear chromatin distribution can be modeled as a continuum of refractive index
fluctuations.'> For a quantitative description, one parameter of interest is functional factor D,
which controls the shape of the refractive index correlation function. This parameter is related
to chromatin packing scaling and is a measure of the heterogeneity of chromatin distribution.
Two other parameters of interest are the characteristic length scale of refractive index fluctuations
and the extent of refractive index fluctuations, which together allow for a more intuitive char-
acterization of chromatin organization. The length scale of fluctuations represents the character-
istic size of subnuclear structures and can be defined in terms of the spatial correlation length £,
roughly indicating the distance over which the correlation of refractive index values drops to a
negligible level. The extent of fluctuations, on the other hand, can be defined as the standard
deviation on of refractive index values within the nucleus and is directly related to the inhomo-
geneity of macromolecular density. These two parameters are often lumped into a single quantity
referred to as the disorder strength and expressed as L; = £.0n%, where a is usually set to 1 or
23491416 1t s possible to extract information on D, L, or both using scattering-based optical
techniques along with relevant analytical formulations of light propagation or algorithms to ana-
lyze measurements. In fact, a number of prior studies on low-coherence enhanced backscattering
spectroscopy, inverse spectroscopic optical coherence tomography, partial-wave spectroscopic
microscopy, or quantitative phase imaging show that nuclear D and L, tend to increase with
the progression of cancer.>>*!3!* This most likely corresponds to chromatin compaction that
is expected to manifest as an increase in heterogeneity of subnuclear chromatin organization.
Reporting on #.. and dn separately as in Refs. 6 and 10 can possibly be more informative since
independent assessment of changes in both parameters can lead to a more direct interpretation of
alterations in chromatin distribution.

We recently demonstrated that azimuth-resolved optical scattering signals obtained from cell
nuclei can provide significant insights into their internal refractive index profile.'" Features
calculated based on azimuth-dependent intensity variations in these two-dimensional signals are
sensitive to the length scale and extent of subnuclear refractive index fluctuations; further, these
features are not susceptible to changes in the overall size, shape, and mean refractive index of
nuclei. Therefore, our results indicate that precancer-related changes in chromatin organization
can be selectively monitored via analysis of two-dimensional scattering signals.

An important question that arises is whether we can use two-dimensional scattering signals
in an inverse scheme to extract the spatial correlation length .. and extent on of refractive index
fluctuations to obtain a quantitative measure of subnuclear chromatin distribution. Since an ana-
Iytical formulation that links azimuth-resolved signals to #,. and én is not feasible, it is best to
resort to a data-driven approach. Machine learning and deep learning methods are increasingly
being used in the field of biomedical optics. These methods have also been applied to scattering-
based measurements, yet mainly for classification purposes.'>!*!7-2} In this work, we present a
convolutional neural network (CNN)-based regression analysis aimed at the extraction of £, and
on from two-dimensional scattering signals. Our dataset consists of numerically computed sig-
nals for three-dimensional nuclear models constructed with varying values of £, and én. The
results obtained with this dataset show that CNN-based regression on scattering signals provides
a potential means to extract both parameters and make predictions on subnuclear chromatin
organization.

2 Methods

2.1 Two-Dimensional Optical Scattering Signals

The methodology for obtaining the set of optical scattering signals used in the study presented
here has been previously described.!! Briefly, nuclear models were constructed in voxelated grids
as spheres with a radius of 4.0 ym or ellipsoids with semiaxis lengths of 3.0 ym, 4.0 ym, and
5.0 um. The mean refractive index of the nuclei was set to 1.40, and the refractive index of the
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embedding cytoplasm was assumed to be 1.36. A stochastic approach was adopted to generate
subnuclear refractive index fluctuations; the spatial refractive index profile conformed to a
Gaussian correlation function. The values of the correlation length £, were selected from
{0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} um, and the values of the extent én of refractive index fluctua-
tions were selected from {0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035}. Three different
nuclear models were constructed for each combination of Z,. and dn considered. Overall, there
were a total of 198 models (including 99 spherical and 99 ellipsoidal models) available for our
study. Each constructed nuclear model was fed as input into an in-house finite-difference time-
domain (FDTD) simulation code to numerically compute the resulting optical scattering response
at a wavelength of 800 nm. The simulation output consisted of a two-dimensional array of scat-
tered light intensities 7(6, ¢), where @ € {0, 1, ..., 180} was the polar scattering angle, defined
to be the angle between the incident and scattered light directions, and ¢ € {0, 1, ...,360} was
the azimuthal scattering angle, defined to be the angle between the incident wave polarization
direction and the scattering plane, both in degrees. Note that each simulation output (0, ¢) cov-
ers a dynamic range of ~10'°. The two-dimensional FDTD signals presented henceforth and
employed for analysis correspond to log;([7(6, ¢)] subjected to a full-scale contrast stretch algo-
rithm to produce image-like functions denoted by (6, ¢) with values varying between 0 and 255.

Figure 1 shows sample FDTD signals obtained for spherical or ellipsoidal nuclear models
with different values of Z,. and dn. Depictions of central cross-sections of the constructed models
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Fig. 1 Central cross-sections from sample constructed nuclear models and the corresponding
two-dimensional optical signals obtained via FDTD simulations. The mean refractive index of the
models is 1.40 and the refractive index of the embedding cytoplasm is 1.36 in all cases. Spherical
models have a radius of 4.0 um with refractive index fluctuations characterized by (a) £, = 0.5 um,
én=0.010; (b) ¢, = 0.7 um, 6n = 0.010; and (c) ¢, = 0.5 um, 5n = 0.020. Ellipsoidal models
have semiaxis lengths of 3.0 um, 4.0 um, and 5.0 um with refractive index fluctuations character-
ized by (d) Z,=0.5pum, 6n=0.010; (e) ¢, =0.7 um, 6n=0.010; and (f) ¢, = 0.5 um,
&n = 0.020. The grayscale for depiction of nuclear cross-sections is adjusted so that darker areas
correspond to regions of higher refractive index. The FDTD signals are rescaled to have values
varying between 0 and 255.
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are also included for reference; the grayscale for these cross-sectional depictions is adjusted so
that darker areas correspond to regions of higher refractive index. As discussed in detail in
Ref. 11, the signals for the spherical nuclear models are characterized by vertical background
fringes [Figs. 1(a)-1(c)], whereas the signals for the ellipsoidal nuclear models are characterized
by curved background fringes [Figs. 1(d)-1(f)]. In both cases, however, the signals become more
irregular with significant intensity variations along the ¢ direction when £, decreases or when 6n
increases.

2.2 CNN-Based Regression Analysis

A convolutional neural network (CNN) is a type of deep neural network primarily applied for
image classification and regression tasks. We followed standard CNN frameworks>*® and
designed an architecture for the regression task at hand to be able to predict the correlation length
¢ and extent on of nuclear refractive index fluctuations from two-dimensional optical scattering
signals. We implemented our design in Google Colab using the TensorFlow library.?” The details
regarding our CNN architecture are provided in the block diagram in Fig. 2. As described in
Section 2.1, input signals had dimensions of 181 x 361. We used five convolutional (Conv)
layers with the ReLU activation function; these Conv layers, from the first to the fifth layers,
had 8, 16, 32, 64, and 128 filters of size 3 X 3, respectively. After each Conv operation, we
applied the MaxPooling operation with a pool size of 2 X 2. At the end of the fifth Conv layer,
batch normalization was performed and data was flattened so that it could be input to a Dense
layer with 512 neurons and the ReLU activation function. We also had a dropout operation after
the Dense layer with a rate of 0.5; dropout is a technique to prevent overfitting, and a rate of 0.5 is
typically observed to be effective in improving the generalization performance for a wide range
of networks and tasks.?>?® The final layer had only one neuron with the linear activation function
to give the prediction results. We used the Adam optimizer,”” which is an algorithm for the first-
order gradient-based optimization of stochastic objective functions. This algorithm relies on
adaptive estimates of lower-order moments and combines the advantages of two other common
optimizers, namely AdaGrad and RMSProp; it is one of the most popular methods for training as
it is computationally efficient, has low memory requirements, and needs minimal hyperparameter
tuning. We selected and tuned our hyperparameters as suggested in Ref. 29: the step size or
learning rate a was set to 0.0005; the exponential decay rates f; and f3, for the first- and sec-
ond-moment estimates were set to 0.9 and 0.999, respectively; and €, a small constant to prevent
division by zero, was assigned a value of 10~7. A callback function, which saved the weights that
gave the lowest validation loss value, was also employed. We note that our dataset, consisting of
198 signals, was randomly partitioned into training, validation, and test subsets with split ratios
of 60%, 20%, and 20%, respectively. Five-fold cross-validation was used to assess the prediction
performance of the CNN.
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Fig. 2 Block diagram of our CNN architecture used for regression analysis on two-dimensional
optical scattering signals corresponding to nuclear models with varying internal refractive index
profiles. Prediction results include the correlation length £, and extent 5n of nuclear refractive index
fluctuations.
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Fig. 3 Prediction results for (a) #, and (b) én, both obtained for the same 40 signals in a single test
set. The triangular (A) markers represent the true values, and the circular (e) markers represent
the predicted values.

3 Results and Discussion

Figure 3 shows the prediction results for 40 signals in a single test set. The triangular markers
represent the true values, and the circular markers represent the predicted values. For this set, we
observe a close agreement between the true and predicted values for both .. [Fig. 3(a)] and én
[Fig. 3(b)]. Similar results are observed for the other test sets. To illustrate and quantify the over-
all performance of our CNN-based regression analysis, we combine the results obtained for all
test sets in Fig. 4, and we compute the mean absolute percent errors (MAPEs) for both param-
eters. The central marks in the box plots for #,. [Fig. 4(a)] and én [Fig. 4(b)] show the median
predicted values, and the bottom and top edges of the boxes indicate the 25th and 75th percen-
tiles, respectively. The whiskers extend to the most extreme values that are not considered out-
liers, and the outliers are plotted individually using plus markers. The circular markers in the
plots correspond to the mean values of the predicted values, with error bars indicating 95% con-
fidence intervals of the mean values. Note that the dotted diagonal lines in the background re-
present perfect agreement and are meant to guide the eye. The MAPEs computed for £, and én
are 8.5% and 13.5%, respectively. Since our nuclear models were constructed such that £, varied
in steps of 0.1 ym between 0.4 and 1.0 ym, and én varied in steps of 0.005 between 0.005 and
0.035, these errors are smaller than the minimum percent increment between successive values
for respective parameters and can thus be considered to signify an extremely good prediction
performance over the range of interest. Further, the MAPEs that we obtained here are comparable
to those previously reported in a similar context.'?
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Fig. 4 Overall assessment of prediction results for (a) £, and (b) 6n. The central marks in the box
plots show the median predicted values, the bottom and top edges of the boxes indicate the 25th
and 75th percentiles, the whiskers extend to the most extreme values that are not considered
outliers, and the outliers are plotted individually using plus (+) markers. The circular (0) markers
in the plots correspond to the mean values of the predicted values, with error bars indicating 95%
confidence intervals of the mean values. The dotted diagonal lines in the background represent
perfect agreement. The mean absolute percent errors (MAPEs) for £, and 6n are 8.5% and 13.5%,
respectively.
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It is important to point out that an increase in £, and a decrease in én give rise to similar
changes in two-dimensional scattering signals [Figs. 1(a)-1(f)]. Hence, isolating the effects of
these two parameters is quite challenging. Our results reveal that a CNN-based approach can be
used to tackle this issue; close agreement between the true and predicted values suggests that both
parameters can be independently quantified. This definitely proves advantageous because mutu-
ally exclusive information on the length scale and extent of refractive index fluctuations can
provide more specific details regarding the internal structure of the cell nuclei. It is also worth
reiterating that our dataset included optical scattering signals from both spherical and ellipsoidal
nuclear models. We can thus claim that refractive index fluctuations can be well characterized
despite shape-dependent differences in signals, as observed between Figs. 1(a)-1(c) and
Figs. 1(d)-1(D).

The results presented here, albeit obtained with a limited dataset, offer strong evidence that
CNN-based regression can be a powerful approach to exploit the information content of two-
dimensional optical scattering signals obtained from cell nuclei and to monitor chromatin organi-
zation in a quantitative manner. Analysis on an extended dataset will potentially lead to a broader
perspective on how to refine the CNN architecture for an improved performance. It is apparent
from Figs. 3 and 4 that the most notable deviations between the true and CNN-predicted values
are observed for large £, or large on. We presume that a relatively smaller number of nuclear
models constructed with large £, and large on is the main underlying factor for this trend. As
such, training with an extended dataset that includes more cases with large parameter values is
likely to result in a better prediction performance.

From a practical perspective, experimental setups for the acquisition of two-dimensional
optical scattering signals from cells have already been implemented and described in a series
of studies.'’>!%3! The specific angular ranges for signal acquisition vary depending on the par-
ticular setup employed, but it is common to see a wide range of side scattering covered with an
angular sampling interval of one degree or less. In fact, we previously reported that azimuth-
dependent intensity variations in scattering signals over the angular range of 6 = 40 — 140 deg
are extremely sensitive to subnuclear refractive index fluctuations.'! Hence, limiting the range of
interest in a CNN-based regression analysis to side scattering angles may even aid in improving
the prediction performance, leading to smaller MAPEs. In addition, this will have the added
benefit of reducing the dynamic range of optical scattering signals to be measured to ~10°
or ~10* CNN algorithms can actually be combined with optimization routines to determine
the optimal angular range and angular sampling interval that can be used to minimize MAPEs
so that scanning and detection systems can be designed and fine-tuned accordingly.

On a related matter, we also note that a full assessment of our analysis approach requires a
detailed characterization of any influence of noise that will inevitably be present in real mea-
surements. To offer some preliminary insights into the potential influence of noise on the pre-
diction performance, we added zero-mean white Gaussian noise®*** to the two-dimensional
optical scattering signals in the test sets and applied our CNN algorithm trained with noise-free
signals to noise-degraded signals. Here, the noise level was quantified in terms of the signal-to-
noise ratio given by SNR = 101log,o(S/N), where S = %, ,[1(0, ¢)]*/(181 x 361) represents
the average signal power and N represents the average noise power, which is equal to the
Gaussian noise variance. For an SNR of 25 dB, roughly corresponding to the case in which
the noise standard deviation is 5% of the root-mean-square signal value in line with Ref. 34,
the MAPEs obtained for £, and én are 12.3% and 14.1%, respectively. These results do not
point to a significant decrease in prediction performance for the noise level specified. This can
be regarded as initial evidence that our CNN-based regression algorithm trained with simulated
data can possibly be applied to real measurements; that said, the corroboration of predicted val-
ues via high-resolution imaging techniques will be the ultimate benchmark. A comprehensive
analysis of performance deterioration due to higher noise levels will certainly provide guidelines
for devising noise reduction strategies that should be explored as part of any study involving
an inverse scheme for prediction of relevant parameters from measurements.

In our study, we assumed that the main contribution to cellular scattering comes from the
nucleus. Hence, our nuclear models were constructed in a homogeneous cytoplasm with a fixed
refractive index. We remark that this is a valid assumption for cells that are characterized by a
very low volume fraction of organelles.*!" For cells with a high volume fraction of organelles,
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however, we cannot exclude contributions from the cytoplasm. In that case, we need to assess the
influence of mitochondria or other subcellular structures on two-dimensional scattering signals.
There is also a need to determine whether surface roughness as discussed in Refs. 21 and 35 can
be a compounding factor for the prediction of parameters related to the subnuclear refractive
index profile. A systematic investigation based on numerical studies as presented in this work
will potentially reveal whether a CNN-based analysis can distinctively pick out features linked to
different sources of scattering. We intend to address these issues as part of our future research
efforts.

4 Conclusions

In summary, the research described here highlights the potential of CNN-based regression on
two-dimensional optical scattering signals obtained from cell nuclei to extract the length scale
and extent of internal refractive index fluctuations. Even though our work focuses on the pre-
diction of chromatin organization, which is strongly linked to precancer progression, a similar
methodology can be used to monitor the internal refractive index profiles of other subcellular
organelles or tissue constituents. This can facilitate scattering-based delineation of the
progressive development of a wide spectrum of diseases.
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