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ABSTRACT. Significance: Intraoperative optical imaging is a localization technique for the func-
tional areas of the human brain cortex during neurosurgical procedures. These
areas can be assessed by monitoring cerebral hemodynamics and metabolism.
Robust quantification of these biomarkers is complicated to perform during neuro-
surgery due to the critical context of the operating room. In actual devices, the inho-
mogeneities of the optical properties of the exposed brain cortex are poorly taken
into consideration, which introduce quantification errors of biomarkers of brain func-
tionality. Moreover, the best choice of spectral configuration is still based on an
empirical approach.

Aim: We propose a digital instrument simulator to optimize the development of
hyperspectral systems for intraoperative brain mapping studies. This simulator can
provide realistic modeling of the cerebral cortex and the identification of the optimal
wavelengths to monitor cerebral hemodynamics (oxygenated HbO2 and deoxygen-
ated hemoglobin Hb) and metabolism (oxidized state of cytochromes b and c and
cytochrome-c-oxidase oxCytb, oxCytc, and oxCCO).

Approach: The digital instrument simulator is computed with white Monte Carlo
simulations of a volume created from a real image of exposed cortex. We developed
an optimization procedure based on a genetic algorithm to identify the best wave-
length combinations in the visible and near-infrared range to quantify concentration
changes in HbO2, Hb, oxCCO, and the oxidized state of cytochrome b and c (oxCytb
and oxCytc).

Results: The digital instrument allows the modeling of intensity maps collected by a
camera sensor as well as images of path length to take into account the inhomo-
geneities of the optical properties. The optimization procedure helps to identify the
best wavelength combination of 18 wavelengths that reduces the quantification
errors in HbO2, Hb, and oxCCO by 47%, 57%, and 57%, respectively, compared
with the gold standard of 121 wavelengths between 780 and 900 nm. The optimi-
zation procedure does not help to resolve changes in cytochrome b and c in a sig-
nificant way but helps to better resolve oxCCO changes.

Conclusions: We proposed a digital instrument simulator to optimize the develop-
ment of hyperspectral systems for intraoperative brain mapping studies. This digital
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instrument simulator and this optimization framework could be used to optimize the
design of hyperspectral imaging devices.
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1 Introduction
Non-invasive functional brain mapping is a technique that allows the localization of functional
areas of the patient’s brain. This technique is used during brain tumor resection surgery to indi-
cate to the neurosurgeon the cortical tissues that should not be removed to avoid motor, speech,
and cognitive impairments. Functional magnetic resonance imaging (fMRI)1 is the gold standard
for preoperative identification of the patient’s functional brain areas. However, after the patient’s
craniotomy, neuronavigation is rendered unreliable when brain shift invalidates the patient-to-
image registration and, therefore, does not allow a precise identification of the functional areas.2

To avoid localization errors, intraoperative MRI has been suggested,3 but it is costly and time-
consuming, and above all, intraoperative MRI is available only in a very restricted number of
neurosurgical centers.4 During neurosurgery, electrical brain stimulation (EBS) is the gold stan-
dard for intraoperative functional brain mapping,5 but this technique is mainly limited by its low
spatial resolution (≈5 mm6) and has the potential risk to trigger epileptic seizures. This technique
allows robust and reliable detection of brain functions but could be traumatic for the patient.
Indeed, when testing cognitive functions such as speech, patients are awake, and EBS provokes
transient disturbances in the patient that inhibit the function.5

Optical imaging is an excellent complement to EBS as this technique is contactless, non-
invasive, and non-ionizing and has a low traumatic impact on the patient. Indeed using optical
imaging, the task-based paradigms used to localize the brain functions are similar to those used
for fMRI.7 The analysis of the light absorbance allows to monitor the brain activity (e.g., motor or
sensory tasks) with quantification of chromophores in the brain cortex: the concentration
changes in oxy-(ΔCHbO2

) and deoxygenated hemoglobin (ΔCHb)
7–11 and cytochrome-c-oxidase

(ΔCoxCCO),
12–14 a mitochondrial marker of metabolism. CCO is an enzyme in the mitochondria of

neuronal cells and is the terminal electron acceptor in the electron transport chain.15 Total CCO
concentration changes are slow and not correlated with brain activation. However, during cer-
ebral activity, there are symmetrical variations in its oxidized and reduced states.14 Near-infrared
spectroscopy (NIRS) studies showed that it is possible to resolve changes in the oxidation state of
CCO using broadband spectroscopy procedures.14,16,17 CCO is not the only enzyme that takes
part in the electron transport chain; other chromophores are involved such as cytochrome b and c
(Cytb, Cytc). In in vivo NIRS studies, oxCCO changes are measured with near-infrared light. To
observe and measure other chromophores, visible light is required. However, this spectral range
is difficult to use in vivo due to the poor penetration of the light in the tissue. During neuro-
surgery, the cerebral cortex is exposed, making it possible to measure cerebral hemodynamics
and metabolism at visible and near-infrared wavelengths.

Robust quantification of hemodynamic and metabolism markers is complicated to perform
during neurosurgery due to the critical context of the operating room, which makes the calibra-
tion of optical devices more complex. To overcome this issue, tissue-simulating objects are
required for the development of medical imaging devices. These so-called “phantoms” may
be used to evaluate, optimize, compare, or control imaging systems.18 Some phantom recipes
based on Intralipid and blood19 and cytochrome-contained yeast20,21 have emerged to reach that
goal. The purpose of these devices is to evaluate the capacity of the acquisition system to follow
the variations of oxygenation of the liquid. However, it is not possible to model hemodynamic
responses similar to those that occur in the brain. As these phantoms are based on Intralipid and
blood, it is not possible to create heterogeneous phantoms that mimic the vascular network of the
brain. For this reason, digital brain phantoms may be especially adapted to model hemodynamic
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and metabolic changes similar to those occurring during cerebral activity22,23 as well as 3D
heterogeneous grey matter volumes.24

With wide-field imaging devices implying the use of a camera and homogeneous illumi-
nation of the cerebral cortex, the biomarkers of brain hemodynamics and metabolism are quan-
tified with the modified Beer–Lambert law.7,13 This spectroscopic technique is however subject
to quantification errors such as crosstalks14 and partial volume effect.25 The crosstalk is defined
as a concentration change of a chromophore that induces a change in another chromophore.17

The partial volume effect is wavelength-dependent and refers to the impact of a focal change in
the optical properties of a portion of the tissue on the surrounding tissue. To reduce the impact of
the partial volume effect, the optical mean path length used in the modified Beer–Lambert law
needs to be precisely estimated to consider the inhomogeneities of the optical properties.9,24 In
NIRS applications, the concentration of the chromophores is usually resolved with a fitting pro-
cedure, which requires a great number of wavelengths.26 In in vivo applications, broadband spec-
tra in the near-infrared range between 780 and 900 nm are adapted for monitoring changes in
HbO2, Hb, and oxCCO due to the differences between the molar extinction spectra of HbO2, Hb,
and the strong peak in the molar extinction spectra of oxCCO, as well as the deep penetration of
the light into the tissue and low scattering effects. For acquiring broadband spectra for wide-field
applications, hyperspectral imaging techniques need to be used.27,28 These broadband systems
require complex instrumentation that implies a compromise in the spatial, spectral, and temporal
resolution of the acquisitions. Thus, the number of spectral bands in these systems is often lim-
ited by the experimental devices. Hyperspectral devices reconstruct spatially and spectrally
resolved images. It generates a large amount of data that could be difficult to process in real
time. For these reasons, specific wavelengths have been proposed in the literature to monitor
hemodynamic and metabolic changes. Bouchard et al.29 used a monochrome camera combined
with two-wavelength illumination (470 and 530 nm) to monitor hemodynamic changes in a
mouse model during cerebral activity. In the same way, White et al.30 used two more wavelengths
(470, 530, 590, and 625 nm). Arifler et al.31 proposed an optimization procedure to identify a
reduced number of wavelengths to monitor HbO2, Hb, and oxCCO within the spectral range 780
to 900 nm. Authors showed that a combination of eight wavelengths (i.e., 784, 800, 818, 835,
851, 868, 881, and 894 nm) allows a quantification error of <2% compared with a reference
measurement (broadband spectra between 780 and 900 nm). Leadley et al.32 investigated the
capability of NIRS systems to monitor HbO2, Hb, and oxCCO within the spectral range of
700 to 900 nm. The authors used an analytical model based on the diffusion equation to explore
the effect of wavelength choice, spectral bandwidth, and uncertainties in extinction coefficient
and path length on the quantification of concentration changes. The authors showed that a wrong
evaluation of the extinction coefficients leads to a poor estimation of HbO2, Hb, and oxCCO. In
this specific case, NIRS systems that use fewer than 50 measurement wavelengths may not be
capable of accurately measuring HbO2, Hb, and oxCCO signals.

In this study, we developed a digital instrument simulator to optimize the development of
hyperspectral systems for intraoperative brain mapping studies. This simulator can provide real-
istic modeling of the cerebral cortex and the identification of the optimal wavelengths to monitor
cerebral hemodynamics (oxygenated HbO2 and deoxygenated hemoglobin Hb) and metabolism
(oxidized state of cytochrome b and c and cytochrome-c-oxidase oxCytb, oxCytc, and oxCCO).

2 Material and Methods

2.1 Digital Instrument Simulator
The digital instrument simulator is based on a realistic digital phantom of an exposed cortex
computed with Monte Carlo simulations. The code is publicly available on GitHub. This sim-
ulator aims to model the light propagation in the exposed brain. It can be used to take into account
the inhomogeneities of the optical properties of the exposed brain cortex for functional brain
mapping studies and to reduce the quantification errors of biomarkers of brain functionality.
The Monte Carlo framework is composed of several steps, see Fig. 1. First, a color image
of the exposed cortex was taken during the neurosurgery, see Sec. 2.1.1. This image was seg-
mented into three classes (i.e., grey matter and large and small blood vessels, see Sec. 2.1.2). A
brain volume was then modeled, and a white Monte Carlo approach was used to estimate the
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partial path length, the position, and the angle of exiting packets of photons, see Sec. 2.1.3.
Finally, the information of the exiting packets of photons was converted into images of diffuse
reflectance and mean path length, see Sec. 2.1.4.

2.1.1 Data collection

A color image of a human brain’s exposed cortex was collected during a brain tumor resection
operation at the neurological center of the Pierre Wertheimer Hospital in Bron (France). An 8-bit
image was acquired with a surgical microscope Leica M530 OHX, Leica Microsystems SAS,
Wetzlar, Germany (1280 × 720 pixels with a resolution of 73 μm). The study was conducted
according to the guidelines of the Declaration of Helsinki and approved by the local ethics com-
mittee of Lyon University Hospital (France, Gliospect: 69 HCL14-0270). The participating
patients signed written consent.

2.1.2 Image segmentation and brain volume modeling

The color image was segmented into three classes (i.e., grey matter and large and small blood
vessels) using morphological operations, see Fig. 2.

1. The color image (A) was converted into grayscale (C) using the Python library OpenCV
(v4.8.1).33

2. The grayscale image (C) was converted into a binary image (D) using a Gaussian adaptive
threshold with a block size of 5 × 5 mm. The block size was automatically converted into
an odd number of pixels using the resolution of the image (ceilð5∕0.073Þ ¼ 69 pixels). A
block size of 5 mm corresponded to the optimal size for detecting the blood vessels in the
human brain. A smaller or larger size would impact the detection of the large and small
blood vessels, respectively. The adaptive threshold was only applied to the exposed cortex
by applying the mask (B). The latter is created manually. Saturated pixels due to specular
reflection were removed from the image (D) with a simple thresholding of image (C).

3. The small vessels were removed from the binary image (D) using a morphological opening
with a disk of 0.5-mm diameter (7 pixels) as a structuring element. Using the resulting
image, a morphological closing was computed to get the image (F), the large blood ves-
sel mask.

Fig. 1 Flowchart of digital instrument simulator. (a) Acquisition of a color image during a neuro-
surgical operation. (b) Three-class segmentation of the color image (grey matter and large and
small blood vessels). (c) 3D tissue modeling. (d) White Monte Carlo simulations of light propaga-
tion in the tissue. (e) Reconstruction of diffuse reflectance and mean path length images from white
Monte Carlo simulations. (f) Diffuse reflectance image at 500 nm. (g) Mean path length image at
500 nm.
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4. A binary exclusive disjunction (xor) was computed between images (D) and (F) to get the
small blood vessel mask (E).

5. The mask of grey matter (G) corresponded to the rest of the pixels.

Once the image was segmented into three classes, we modeled the brain volume. First, the
binary segmentation masks were encased in a larger image having the label of grey matter. This
operation is performed to prevent a blood vessel label from appearing at the edges of the image.
The objective is to avoid photon loss due to the boundary effects during the Monte Carlo sim-
ulations, see Sec. 2.1.3. The binary segmentation masks were expanded along the vertical direc-
tion (z axis) on 2 cm to convert the binary images into binary volumes, see Figs. 3(a) and 3(b).
Then, we modeled the 3D blood vasculature with morphological erosion, see Fig. 3(c). The thick-
ness of the blood vessels was calculated on the basis of the vessel’s diameter. The structuring
element used for the erosion was a disk of 0-pixel diameter for z ¼ 0 (in pixels) and was
increased to 1 pixel while increasing z axis. The binary volumes of the three classes were finally
merged together with a final isotropic resolution of 73 μm, see Fig. 1. With this model of the
cerebral vasculature, the blood vessels were only modeled on the surface of the volume. Deep
blood vessels (which are not visible in color imaging) were not included.

2.1.3 White Monte Carlo simulations

Once the brain volume was defined, we computed Monte Carlo simulations of light propagation
in the domain using MCX34 software, see Fig. 4.

A planar light source was placed on the top of the volume to homogeneously illuminate the
brain volume. We set the Fresnel reflection as boundary conditions for the top and bottom faces
of the volume (i.e., an exiting packet of photons is lost). Cyclic boundary conditions were applied
for the sides of the volume to avoid photon loss due to the boundary effects. Each voxel of the
volume included optical properties, see Table 1.

Fig. 2 Segmentation of a color image (a) into masks of large blood vessels (f), small blood vessels
(e), and grey matter (g). 1: Conversion of color (a) into grayscale image (c). 2: Gaussian adaptive
thresholding to obtain the binary image (d). 3: Computation of the large blood vessel mask (f). 4:
Computation of the small blood vessel mask (e). 5: Computation of the grey matter mask (g).
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For these simulations, we implemented a white Monte Carlo approach, and the absorption
coefficient was set to 0 mm−1. With this technique, the packets of photons were not affected by
the absorption. The advantage of the white Monte Carlo approach is that the absorption can be
considered “a posteriori,” using the microscopic Beer–Lambert law.39 Thus, when changing the
absorption parameters of the volume (i.e., to simulate a brain activation for example), the sim-
ulation does not need to be run again, speeding up the processing. In this case, only one sim-
ulation per wavelength is required, considering that the scattering properties of the medium do
not change. A scattering change can be considered, but a new simulation with a new set of μs
would need to be rerun. For each wavelength (from 400 to 1000 nm by steps of 10 nm), three

Fig. 3 Steps for modeling a brain volume with blood vessels. (a) Segmentation mask of the grey
matter and the blood vessels. (b) Replication of the binary segmentation masks along the vertical
direction (z axis) on 2 cm. (c) Morphological erosion to create the blood vessel depth.

Table 1 Optical properties used in the white Monte Carlo simulations. λ denotes the wavelength in
nanometers.

Grey matter Large blood vessels Small blood vessels

Absorption coefficient μa (mm−1) 0 0 0

Scattering coefficient μs (mm−1) 4.08
�

λ

500

�
−3.089

35 2.2
�

λ

500

�
−0.66

35 2.2
�

λ

500

�
−0.66

35

Anisotropy coefficient g 0.8536 0.93537 0.93537

Refractive index n 1.3638 1.437 1.437

Fig. 4 White Monte Carlo simulations. (a) Schematics for the Monte Carlo simulations with Ref. 34.
(b) Flowchart of white Monte Carlo simulations.
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outputs were stored for every packet of photons exiting the top face of the volume: the position of
the exiting packet of photons ðx; yÞ, its exiting angle, and the partial path length (the length that
each photon has spent in each class of the domain).

2.1.4 Image reconstruction

Once the white Monte Carlo simulations were performed (see Sec. 2.1.3), a large amount of data
were generated for each wavelength (position, angle, and partial path lengths of exiting photons),
see Fig. 4. For each wavelength, around 7 Gb of data needs to be processed to reconstruct the
reflectance and mean path length images. With the aim of speeding up image reconstruction, a
multithreaded program C++ code has been developed. To reconstruct the diffuse reflectance and
mean path length images, the absorption coefficients were computed with the chemical compo-
sition of each tissue.35 These values were taken from the literature and corresponded to a nominal
physiological condition,7,40–42 see Table 2. A cerebral activation will be considered later in the
paper, see Sec. 2.2. With our equipment, it is not possible to determine whether the blood vessels
identified by the segmentation method are arteries or veins. For this reason, we considered two
cases: (1) the large and small blood vessels are arteries, and (2) the large and small blood vessels
are veins.

The diffuse reflectance and mean path length images can be reconstructed on a camera sen-
sor that could be located on the tissue surface or outside the volume using a lens system. On the
surface of the volume, the number of pixels is at most equal to that of the modeled surface. A
spatial binning can be performed to increase the signal-to-noise ratio at the expense of spatial
resolution.

To reconstruct the image on the modeled camera sensor using a lens system, we used the
transfer-matrix method.44 With this approach, we can consider key parameters of the optical
system (focal length, working distance, size of the optics, and size of the camera sensor). A
lens with a focal length of f0 (in mm) was placed at a distance d0 (in mm) from the surface
of the tissue (along the axis z), and the sensor was located at a distance s (in mm) from the lens
(along the axis z). The optical system is modeled with a system matrix S

EQ-TARGET;temp:intralink-;e001;117;387S ¼ TsLf0Td0 ¼
�
1 s
0 1

��
1 − 1

f0
0 1

��
1 d0
0 1

�
; (1)

where Td0 and Ts denote the translation matrices for the ray in air before and after the lens. Lf0 is
the lens matrix. To model the acquisition of the photon j by the pixel ðxs; ysÞ of the camera
sensor, we applied the system matrix S on packets of photons exiting the tissue

Table 2 Chemical composition of the modeled tissue.

Grey matter Arteries Veins

FWater (%) 73 55 55

F Fat (%) 10 1 1

CHbT (μM) 76 2324 2324

SatO2 (%) 85 9843 6043

CoxCCO (μM) 6.4 0 0

C redCCO (μM) 1.6 0 0

CoxCytb (μM) 2.37 0 0

C redCytb (μM) 0.89 0 0

CoxCytc (μM) 1.36 0 0

C redCytc (μM) 0.68 0 0

Caredda et al.: Digital instrument simulator to optimize the development. . .

Journal of Biomedical Optics 023513-7 February 2025 • Vol. 30(2)



EQ-TARGET;temp:intralink-;e002;114;736

�
xs
θx;s

�
¼ S

�
x
θx

�
;

�
ys
θy;s

�
¼ S

�
y
θy

�
: (2)

The diffuse reflectance is calculated for each pixel, either on the tissue surface or on the
camera sensor45,46

EQ-TARGET;temp:intralink-;e003;114;680ϕðx; y; λÞ ¼
PNphotons

j¼1 wjðx; y; λÞ
Nphotons:Ap

; (3)

where Nphotons is the number of packets of photons detected at the pixel ðx; yÞ, Ap is the area (in
mm2) of the pixel, and wj is the weight of the detected packet of photons j defined by

EQ-TARGET;temp:intralink-;e004;114;620wjðx; y; λÞ ¼ ΠNregions

i¼1 expð−μa;iðλÞ:ppli;jðx; y; λÞÞ: (4)

Nregions is the number of regions modeled in the tissue (grey matter and large and small blood
vessels), μa;iðλÞ (in mm−1) is the absorption coefficient for the wavelength λ of the region i, and
ppli;jðx; y; λÞ is the partial path length (in mm) of the detected packet of photon j that traveled in
region i for wavelength λ. The mean path length of traveled photons in the tissue is calculated in
Eq. (5)46

EQ-TARGET;temp:intralink-;e005;114;529Lðx; yÞ ¼
PNphotons

j¼1

PNregions

i¼1 ppli;jðx; y; λÞ:wjðx; y; λÞPNphotons

j¼1 wjðx; y; λÞ
: (5)

Finally, we applied an adaptive non-local means filter on reconstructed diffuse reflectance
and mean path length images for each wavelength. This operation aims to improve the signal-to-
noise ratio of the Monte Carlo simulations.47 Finally, we performed a linear interpolation for each
pixel of the diffuse reflectance and mean path length images on the wavelength range 400 to
1000 nm by steps of 1 nm.

2.2 Identification of the Optimal Wavelength for Hemodynamic and Metabolic
Monitoring

Using the digital instrument simulator (see Sec. 2.1), we developed an optimization procedure
based on a genetic algorithm (differential evolution) to identify the best wavelength combination
in the visible and near-infrared range to minimize the quantification error (root mean square error
inM) in HbO2, Hb, oxCCO, oxCytb, and oxCytc compared with ground truth values, see Fig. 6.

2.2.1 Model of cerebral activation

Data used for the optimization procedure were generated with the digital instrument simulator. A
simple model was considered, which includes non-activated and activated grey matter, see
Fig. 5(a). In Fig. 5(b), we modeled a cerebral activity in the activated grey matter by changing
the concentration of chromophores relative to their nominal values. The modeled concentration

Fig. 5 Monte Carlo model used for the optimization procedure. (a) Volume of non-activated grey
matter (green) and activated grey matter (blue). (b) Spatial profile of the modeled concentration
changes ΔCGT indicated by the dotted line in panel (a).
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changes that are the ground truth in the optimization procedure are indicated ΔCGT in the rest of
the paper. A simple temporal perturbation of μa was performed: rest (nominal values, see Table 2)
and activity (nominal value þΔC). The ΔC values were þ 5 and −3.75 μM for HbO2 and
Hb,9,48 respectively, and þ 0.5 μM for oxCCO,49 oxCytb, and oxCytc, mirrored by concentration
changes of −0.5 μM for redCCO, redCytb, and redCytc (the concentration of cytochromes does
not change during the cerebral activity).

2.2.2 Optimization procedure

The most straightforward method to determine k optimal wavelengths for cerebral monitoring is
to test all possible k-element combinations out of 601 wavelengths (from 400 to 1000 nm) and to
identify the combination that produces the smallest estimation errors when compared with the
ground truth ΔCGT. As the investigated spectral range is large, such an exhaustive search results
in a large time complexity. Thus, we proposed to use a genetic algorithm50 to determine the k
optimal wavelengths through an optimization procedure, see Fig. 6. We used the differential
evolution method that optimizes a problem by iteratively trying to improve a candidate solution
with regard to the ground truth. We used the function differential evolution from the Python
library Scipy (v1.10.0).51

The optimization procedure consists of finding the best k-element combinations out of 601
wavelengths that minimize a cost function. This function takes as input a wavelength array, with
values that are limited to the simulated spectral range (between 400 and 1000 nm). The cost
function returns the root mean square error RMSE (inM) computed between noisy concentration
changes measured with the modified Beer–Lambert law and the ground truth ΔCGT

EQ-TARGET;temp:intralink-;e006;117;355RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNNoise

i¼1

ðΔCNoise
mes − ΔCGTÞ2
NNoise

vuut ; (6)

where NNoise ¼ 1000 is the number of iterations for the noise addition. Noise was added to the
simulated intensities to identify the k-wavelengths the most robust to the noise. The intensities
were converted into concentration changesΔCNoise

mes measured with the modified Beer–Lambert law

EQ-TARGET;temp:intralink-;e007;117;275

0
BB@
ΔAðλ1ÞNoise

..

.

ΔAðλ1ÞNoise

1
CCA

¼

0
BB@
Lðλ1Þ:ϵHbO2

ðλ1Þ Lðλ1Þ:ϵHbðλ1Þ Lðλ1Þ:ϵox-redCCOðλ1Þ Lðλ1Þ:ϵox-redCytbðλ1Þ Lðλ1Þ:ϵox-redCytcðλ1Þ
..
. ..

. ..
. ..

. ..
.

LðλkÞ:ϵHbO2
ðλkÞ LðλkÞ:ϵHbðλkÞ LðλkÞ:ϵox-redCCOðλkÞ LðλkÞ:ϵox-redCytbðλkÞ LðλkÞ:ϵox-redCytcðλkÞ

1
CCA

×

0
BBBBBBB@

ΔCNoise
HbO2

ΔCNoise
Hb

ΔCNoise
oxCCO

ΔCNoise
oxCytb

ΔCNoise
oxCytc

1
CCCCCCCA
:

(7)

Fig. 6 Flowchart of the optimization method, including definitions of the variables used in the
procedure.
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In Eq. (7), ϵnðλ1Þ is the molar extinction coefficient of the chromophore n (in M−1:mm−1),
see Fig. S1 in the Supplementary Material. ΔAðλ1ÞNoise is the noisy attenuation change measured
for λ1, such as

EQ-TARGET;temp:intralink-;e008;114;699ΔAðλ1ÞNoise ¼ log10

�
ϕrestðλ1Þþ γ

ϕactivityðλ1Þþ γ

�
; (8)

where γ is a zero-mean Gaussian noise with a standard deviation that was the same for each
wavelength: σ ¼ ϕrest

SNR
. With ϕrest, the diffuse reflectance simulated during rest and SNR ¼ 400

the signal-to-noise ratio of the instrument. This value corresponds to the experimental devices we
used in a previous study,22 but this could be adapted for another experimental device. The con-
centration changes were obtained through matrix inversion in the least square sense.

3 Results

3.1 Digital Instrument Simulator
The digital instrument simulator aimed to simulate hyperspectral images of the exposed brain
cortex for 601 wavelengths (between 400 and 1000 nm). In Fig. 7, we represented the images of
diffuse reflectance and mean path length at 500 and 900 nm reconstructed at the surface of the
tissue considering that large and small blood vessels are arteries. The images were reconstructed
with a 5 × 5 binning, which leads to a resolution of 365 μm. The red, grey, and magenta points
indicate the position of points for a large blood vessel, for grey matter, and for a small blood
vessel, respectively.

In Fig. 8, we represented the diffuse reflectance and mean path length spectra measured for
the three points identified in Fig. 7. Solid and dotted lines indicate that large and small blood
vessels are considered arteries and veins, respectively. For both cases, we can observe the effect
of the blood vessels on the simulated quantities. For wavelengths lower than 600 nm, the diffuse
reflectance was almost 0 μm−2 on the large blood vessels; this means that hardly any photons left
the large blood vessel. Diffuse reflectance values increased when measuring small blood vessels,
indicating a greater contribution from outgoing photons. The higher values can be found for grey

Fig. 7 Images of diffuse reflectance and mean path length reconstructed with a 5 × 5 binning at
500 and 900 nm. (a) Diffuse reflectance image simulated at 500 nm. (b) Mean path image simu-
lated at 500 nm. (c) Diffuse reflectance image simulated at 900 nm. (d) Mean path image simulated
at 900 nm. The large and small blood vessels are considered arteries. The red, grey, and magenta
points indicate the position of points for a large blood vessel, for grey matter, and for a small blood
vessel, respectively.
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matter regions. For wavelengths higher than 600 nm, diffuse reflectance values were almost the
same for grey matter and small blood vessels, and lower values can be found at the level of the
large blood vessels. The mean path length spectra measured for grey matter and the small blood
vessels were almost the same for all wavelengths, but lower values were obtained for the large
blood vessels. We can observe that the values of the mean path length are not impacted if all
vessels are considered either veins or arteries. However, we can observe differences among the
diffuse reflectance spectra measured at the level of the large blood vessels for wavelengths higher
than 600 nm. There is a drop in intensity in the red and near infrared for veins compared with
arteries. This corresponds to the fact that veins appear darker or bluer than arteries.

3.2 Identification of the Optimal Wavelength for Hemodynamic and Metabolic
Monitoring

In Fig. 9, we represented the optimal combination of 2, 4, 6, 8, and 10 wavelengths for mon-
itoring CHbO2

and CHb changes in activated grey matter. These wavelengths are represented in
Fig. 9(a) by dots. We also represented the configuration of two wavelengths used by Bouchard
et al.,29 the four wavelengths used by White et al.30 and the broadband spectral range between
780 and 900 nm used by Bale et al.14,17 and Arifler et al.31 The quantification errors related to

Fig. 8 Diffuse reflectance and mean path length spectra measured on grey matter, a large blood
vessel, and a small blood vessel. (a) Image of the cerebral cortex segmented into three classes
(grey matter and large and small blood vessels). The three black points indicate the position of
points for a large blood vessel, for grey matter, and for a small blood vessel. (b) Diffuse reflectance
spectra collected at the location of the three black points. (c) Mean path length spectra collected at
the location of the three black points. Solid and dotted lines indicate that large and small blood
vessels are considered arteries and veins, respectively.
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these configurations are plotted in Fig. 9(b). The bars represent the RMSE averaged over 1000
noisy measurements, see Eq. (6), and the vertical line represents the standard deviation in the
error. Finally, the concentration changes in ΔCHbO2

and ΔCHb averaged over the 1000 noisy
measurements are plotted in Figs. 9(c) and 9(d), respectively.

Contrary to the configurations proposed by Bouchard et al. and White et al., the wavelengths
identified with the optimization procedure do not include the hemoglobin isobestic point at
530 nm. The wavelengths were located in the visible and near-infrared range. Wavelengths were
identified before 500 nm, where HbO2 absorption predominates, between 590 and 730 nm where
Hb absorption predominates and on either side of the isobestic point at 800 nm. The minimum
errors in ΔCHbO2

and ΔCHb are obtained with the combination of 10 wavelengths calculated with
our optimization procedure. Among the literary configurations, White’s spectral configuration
minimizes errors in ΔCHbO2

and ΔCHb. Errors in ΔCHbO2
and ΔCHb obtained with the optimal

group of 10 wavelengths were 29% and 23% lower than those obtained with White’s spectral
configuration. The mean and standard deviation of the RMSE decrease slightly as more spectral
bands are considered. For all wavelengths, the standard deviation and the mean RMSE are lower
than those obtained with White’s spectral configuration.

In Fig. 10, we represented the optimal combination of 4, 6, 8, and 10 wavelengths for mon-
itoring CHbO2

, CHb, and CoxCCO changes in activated grey matter. These wavelengths are repre-
sented in Fig. 10(a) by dots. We also represented the configuration of four wavelengths proposed
by Arifler et al.31 and the broadband spectral range used by Bale et al.14,17 The quantification
errors are represented in Fig. 10(b) and the measurements of ΔCHbO2

, ΔCHb, and ΔCoxCCO are
plotted in Figs. 10(c), 10(d), and 10(e), respectively.

The minimum errors in ΔCHbO2
, ΔCHb, and ΔCoxCCO are obtained with the combination of

10 wavelengths calculated with our optimization procedure. With this digital instrument simu-
lator, we modeled an exposed cortex. The simulated light is not absorbed by the skin or the skull
of the patient, and the visible light can be collected by the camera. Thus, the optimization pro-
cedure can take profit of the peaks of oxidized and reduced CCO extinction spectra in the visible
and the near-infrared range to monitor the three chromophores. The errors in ΔCHbO2

, ΔCHb, and
ΔCoxCCO obtained with this configuration were 23%, 48%, and 23% lower than those obtained
with broadband spectra between 780 and 900 nm, respectively. For all chromophores, the stan-
dard deviation of the RMSE decreases as more spectral bands are considered. For ΔCHbO2

, the

Fig. 9 (a) Optimal wavelength for monitoring CHbO2
and CHb changes in activated grey matter.

(b) Quantification errors (in μM). (c) and (d) Concentration changes in HbO2 and Hb, respectively.
Several configurations are represented: two wavelengths proposed by Bouchard et al.,29 four
wavelengths proposed by White et al.,30 a broadband spectra proposed by Bale et al.,14,17 and
the combination of 2, 4, 6, 8, and 10 wavelengths identified with our optimization procedure.
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mean RMSE decreases slightly with the number of wavelengths, whereas the mean errors for
ΔCHb and ΔCoxCCO remain constant. For all wavelengths, the mean RMSE is lower than that
computed with Bale’s spectral configuration. For ΔCHb and ΔCoxCCO, the standard deviation is
less than or equal to that obtained with Bale’s configuration. However, for ΔCHbO2

, the standard
deviation is higher than that obtained with Bale’s configuration.

In Fig. 11, we represented the optimal combination of 6, 8, and 10 wavelengths for mon-
itoring CHbO2

, CHb, CoxCCO, CoxCytb, and CoxCytc changes in activated grey matter. These wave-
lengths are represented in Fig. 11(a) by dots. The quantification errors are represented in
Fig. 11(b), and the concentration changes are plotted in Figs. 11(c), 11(d), 11(e), 11(f), and 11(g).

Fig. 11 (a) Optimal wavelength for monitoring CHbO2
, CHb, CoxCCO, CoxCytb, and CoxCytc changes in

activated grey matter. (b) Quantification errors (in μM). (c), (d), (e), (f), and (g) Concentration
changes in HbO2, Hb, oxCCO, oxCytb, and oxCytc, respectively.

Fig. 10 (a) Optimal wavelength for monitoring CHbO2
, CHb, and CoxCCO changes in activated grey

matter. (b) Quantification errors (in μM). (c), (d), and (e) Concentration changes in HbO2, Hb, and
oxCCO, respectively. Several configurations are represented: four wavelengths proposed by
Arifler et al.,31 a broadband spectra proposed by Bale et al.,14,17 and the combination of 4, 6,
8, and 10 wavelengths identified with our optimization procedure.
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The minimum errors to resolve all chromophores are obtained with the combination of 8 and
10 wavelengths. It is interesting to note that the use of a larger number of wavelengths (10) does
not significantly reduce quantification errors. With the use of 6, 8, and 10 optimal wavelengths,
the total quantification errors were 29, 28, and 28 μM, respectively. The errors in ΔCHbO2

and
ΔCHb were higher than those obtained in Fig. 10. However, with the consideration of cyto-
chromes b and c in the modified Beer–Lambert law, the errors in ΔCoxCCO were 19% lower
than those obtained in Fig. 10. The noise in the measurements of ΔCoxCytb and ΔCoxCytc is very
important, making it difficult to differentiate between activated and non-activated grey matter.

As proposed in our previous study,22 we can also identify different combinations of wave-
lengths to independently quantify the concentration changes in HbO2, Hb, oxCCO, oxCytb, and
oxCytc, see Fig. 12. For instance, if we want to identify the optimal wavelength to resolveCoxCytb

changes only, the optimization procedure can be run to minimize ΔCoxCytb values by only con-
sidering three chromophores in the modified Beer–Lambert law [HbO2, Hb, and oxCytb,
see Eq. (7)].

With this approach, we represented in Fig. 12(a) the quantification errors obtained with the
optimal wavelength combination to separately resolve HbO2, Hb, oxCCO, oxCytb, and oxCytc
changes. We also plotted the concentration changes in HbO2, Hb, oxCCO, oxCytb, and oxCytc
in Figs. 12(b), 12(c), 12(d), 12(e), and 12(f). In Fig. S2 in the Supplementary Material, we rep-
resented the optimal combinations of 4, 6, 8, and 10 wavelengths to separately resolveHbO2, Hb,

Fig. 12 Quantification errors (a) and concentration changes obtained with the optimal combination
of 4, 6, 8, and 10 wavelengths for a separate quantification. The concentration changes in CHbO2

,
CHb, CoxCCO, CoxCytb, and CoxCytc are plotted in panels (b), (c), (d), (e), and (f), respectively.

Table 3 Average of the quantification errors (RMSE in μMol) obtained with two Beer–Lambert
systems proposed in the literature and optimal combination of six wavelengths.

Modified Beer–Lambert law system HbO2 Hb oxCCO oxCytb oxCytc

Broadband spectra (780 to 900 nm)14,17 24.1 19.8 5.8 — —

White’s configuration30 15.2 11.2 — —

HbO2, Hb, and oxCCO (6 wavelengths), see Fig. 10 19.1 10.4 4.4 — —

All chromophores at the same time (6 wavelengths), see Fig. 11 25.9 14.4 3.6 64.6 35

All chromophores separately (6 × 5 wavelengths), see Fig. 12 12.7 8.5 2.5 42.1 28.3
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oxCCO, oxCytb, and oxCytc changes. The separate optimization procedure leads to different
spectral configurations for each chromophore.

For all chromophores (expect oxCytb), the mean RMSE decreases with the number of wave-
lengths. We obtained smaller quantification errors when we applied the optimization procedure
on each chromophore separately than when we tried to resolve all the chromophores at the same
time, see Table 3.

4 Discussion
We presented a digital instrument simulator to optimize the development of hyperspectral sys-
tems for intraoperative brain mapping studies. The code is publicly available on GitHub. This
simulator is based on a realistic digital phantom of an exposed cortex computed with white
Monte Carlo simulations. We developed C++ software to reconstruct temporal perturbations
of the absorption coefficient using only one simulation. Using this Monte Carlo framework,
we also proposed an optimization procedure based on the genetic algorithm to identify the best
wavelength combinations in the visible and near-infrared range to quantify changes inHbO2, Hb,
oxCCO, oxCytb, and oxCytc.

This digital instrument simulator has been developed for intraoperative brain mapping stud-
ies. However, the code could be easily adapted for other studies. For an organ other than the
brain, the segmentation step will certainly have to be adapted (segmentation method, number
of classes), as well as the optical properties (see Table 1) and the chemical composition (see
Table 2) for each class of the modeled tissue.

4.1 Digital Instrument Simulator
The digital instrument allows the modeling of intensity maps collected by a camera sensor as
well as the estimation of the mean path length of traveled photons through the tissue. This
framework could be used to improve clinical and preclinical optical devices for brain mapping
applications. In these studies, the modified Beer–Lambert law is used to monitor chromophore
changes in an animal29,30 or a human7,9,11,52 brain. However, measurements are highly subject to
quantification errors if incorrect path lengths are used to resolve chromophore changes. This
could be the case in a lot of applications where the inhomogeneities of the optical properties are
not taken into consideration. Indeed, a single path length is considered for the whole cerebral
cortex, which is usually estimated with a homogeneous volume of grey matter with Monte
Carlo simulations29 or using the analytical solution to the diffusion approximation of the radi-
ative transfer equation in a semi-infinite geometry.30,52 In our study, we proposed to take into
account the inhomogeneities of the optical properties with a pixel-wise estimation of the mean
path length. As we can see on Figs. 7 and 8, the blood vessels have a great impact on the path
length. For large blood vessels having a 2-mm diameter, the path length is almost null in the
visible spectra (below 600 nm) and is lower than the path length estimated for grey matter in the
red and near-infrared range. However, the path length measured at the level of the small blood
vessels (≈0.2 mm) is almost the same as that measured at the level of the grey matter. This
means that the detected packets of photons are mostly propagated in the grey matter under
these small blood vessels. This result is consistent with the results presented by Giannoni
et al.24 and indicates that large blood vessels have a large impact on the path length. We also
observed that there were no significant differences between the mean path length measured on
arteries and veins. Indeed, when comparing the absorption coefficients of the artery and the
vein (μa;Artery − μa;Vein ¼ −15 cm−1), we do not observe as great a difference as that between
the artery and the grey matter (μa;Artery − μa;Grey matter ¼ 172 cm−1) or the vein and the grey
matter (μa;Artery − μa;Grey matter ¼ 188 cm−1, with μa the average absorption coefficient over the
wavelength range 400 to 1000 nm).

The segmentation step in the digital instrument simulator could also be improved, see Fig. 1
and Sec. 2.1.2. Segmentation is based on morphological operations calculated in a mask delim-
iting the surgical window. The latter was created manually. This manual operation has been
chosen because automatic thresholding, using Otsu’s method53 for example, does not allow the
cerebral cortex to be identified repeatedly. In some patients, bleeding around the edges of the
surgical window or bloody compresses prevents the cerebral cortex from being correctly

Caredda et al.: Digital instrument simulator to optimize the development. . .

Journal of Biomedical Optics 023513-15 February 2025 • Vol. 30(2)



identified. To overcome this limitation, segmentation methods based on deep learning (U-Net)54

could be used for segmenting the blood vessels and delineate the contour of the surgical window.
For the moment, this approach has not been implemented because we do not have enough data to
train the neural network. In this study, we modeled a perfect optical device. The real spectral
characteristics of the light source and the sensor could be integrated into the digital simulator by
normalizing the estimated quantities with spectral sensitivity curves of the light sources and the
camera, as proposed in our previous study.22 We modeled a real sensor in terms of resolution and
definition, but this could be improved with the conversion of the diffuse reflectance into sensor
intensities by considering parameters of the optics systems55 (lens magnification, lens transmis-
sion, quantum efficiency). We can also integrate the effect of the lenses on the image creation
such as geometric distortion, vignetting, or chromatic aberrations. A lens design model can be
used for this purpose.56 Using this digital instrument simulator, we modeled a simple cerebral
activation by changing the concentrations of the chromophores in a portion of activated grey
matter (see Fig. 5). However, we do not model the complex physiologic events related to the
neuro-vascular coupling. To answer this limitation, we plan to model the spatio-temporal con-
centration changes in arteriole, capillary, and venous compartments related to blood volume, flow
velocity, and oxygen consumption with the implementation of the dynamic model proposed by
Fantini.23

Although the strength of this digital instrument is to use the white Monte Carlo approach,
this method has also a limitation, which is the size of the generated files. Indeed, for one wave-
length, 5 GB of data is generated, which leads to 305 GB for the 61 wavelengths modeled in our
study. To reduce the memory size, the absorption coefficients need to be fixed in the modeled
tissue to directly estimate the radiative quantities. However, with this approach, we cannot recon-
struct the temporal changes of the absorption coefficient, so a simulation has to be performed per
wavelength and per temporal index, which increases drastically the computation time.

4.2 Identification of the Optimal Wavelength for Hemodynamic and Metabolic
Monitoring

Using the data obtained with the digital instrument simulator, we proposed an optimization pro-
cedure based on the genetic algorithm to identify the best wavelength combinations in the visible
and near-infrared range to quantify changes in HbO2, Hb, oxCCO, oxCytb, and oxCytc. We
added noise to the simulated quantities to identify the wavelength that is the most robust to noise.

For hemodynamic monitoring, see Fig. 9, we can see that the optimal groups of 2, 4, 6, 8, or
10 wavelengths aim to reduce the quantification errors in ΔCHbO2

and ΔCHb compared with that
obtained with the configurations proposed in the literature. Contrary to the spectral configura-
tions proposed by Bouchard et al.29 and White et al.,30 the wavelengths identified with the opti-
mization procedure do not include the hemoglobin isobestic point at 530 nm. The wavelengths
were located in the visible and near-infrared range, where HbO2 or Hb absorption predominates.
This could be explained by the addition of noise in the optimization procedure, which makes it
difficult to interpret the attenuation changes measured at the isobestic points. Moreover, the opti-
mization procedure identifies the best wavelengths but does not take into account the bandwidth
of the light source spectra in hyperspectral devices based on spectral-scanning technology.28

Taking into account a spectral bandwidth could modify the value of the central wavelengths
by a few nanometers but would not introduce changes greater than the spectral bandwidth.

The optimization procedure took profit of the peaks of oxidized and reduced cytochrome
extinction spectra in the visible and the near-infrared range to monitor hemodynamic and meta-
bolic changes. For hemodynamics and oxCCO monitoring, the optimal wavelengths aim to
reduce the quantification errors compared with that obtained with broadband spectra between
780 and 900 nm. In this study, we also proposed to quantify the changes of the cytochrome b and
c. We can see in Fig. 11 that the addition of the cytochromes b and c in the modified Beer–
Lambert system helps to better resolve oxCCO changes compared with the model based on three
chromophores (HbO2, Hb, and oxCCO), see Fig. 10. Indeed, we can see that the quantification
errors in oxCCO are lower when all cytochromes are considered, see Table 3. This result is
interesting as it may help to obtain robust devices to monitor brain metabolism, which could
be a hyperspectral device for intraoperative brain mapping or even a NIRS device for bedside
monitoring. The monitoring of the oxidation state of CCO could help to obtain a more direct
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biomarker of neuronal activity, to detect brain injuries,16,57 and to better understand the neuro-
vascular coupling.58

The optimization procedure does not help to resolve changes in cytochrome b and c in a
significant way. Indeed, we can see in Figs. 11 and 12 that oxCytb and oxCytc measurements are
really noisy. A two-sample T-test tells us that changes measured at the level of the activated grey
matter are not significantly different from those measured on non-activated grey matter (pvalues

are mainly higher than 0.1). This is maybe due to the noise addition, coupled with the fact that the
attenuation changes due to the oxidized cytochrome b and c are rather low compared with those
of hemoglobin and oxCCO.

The optimization procedure helps to obtain smaller quantification errors compared with the
literature configurations. For hemodynamic monitoring, increasing the number of wavelengths
from 2 to 10 helps to reduce linearly the quantification error from 8% to 26%, see Fig. 9.
However for hemodynamic and metabolic monitoring, we do not observe a significant decrease
in the quantification error compared with Bale’s spectral configuration if using 6, 8, or 10 optimal
wavelengths (quantification errors of 32%, 33%, and 33%, respectively, see Fig. 10). Thus, the
number of wavelengths of a hyperspectral camera could be reduced to six to resolve hemo-
dynamic and CCO changes. It could help to optimize several critical parameters for intraoper-
ative functional brain mapping applications such as the signal-to-noise ratio. However, the
availability of light sources or spectral filters at the identified wavelengths may limit the develop-
ment of the hyperspectral camera. To address this limitation, we plan to restrict the optimization
procedure to a number of wavelengths selected from the available light sources or spectral filters.
For each wavelength, the spectral bandwidth can also be incorporated into the procedure. As
proposed by Leadley et al,32 we will also investigate in a future study the influence of extinction
coefficient uncertainties on chromophore quantification.

We also showed that a separate quantification of hemodynamics and oxCCO leads to a better
estimation of the chromophore changes, see Table 3. The optimization procedure helps to iden-
tify the best wavelength combination in the range 400 to 1000 nm, which reduces the quanti-
fication errors in HbO2, Hb, and oxCCO by 47%, 57%, and 57% compared with the gold
standard of 121 wavelengths between 780 and 900 nm. The configuration of six wavelengths
is 468, 482, 610, 753, 814, and 907 nm to monitorHbO2 and Hb changes and 608, 650, 661, 672,
820, and 865 nm to monitor oxCCO changes. The separate quantification method should be
taken with caution because it distorts the link between chromophores. Moreover, this could lead
to incorrect interpretations between the chromophore changes and the physiological status of the
patient. However, this method could be interesting for some clinical applications. For example,
the method can be used to identify a spectral configuration for precise monitoring of Hb changes
with the idea to define a blood oxygen level dependent-like contrast.58 In intraoperative brain
mapping studies, this approach has been proposed by several research groups. The authors used a
single illumination at 60559 or 610 nm60 combined with a monochrome camera to assess Hb
absorption. For these two wavelengths, the authors considered that the signal changes were
mainly due to Hb because the absorption related to HbO2 is negligible compared with that
of Hb (the ratio between Hb molar extinction coefficient to that of HbO2 is ≈6.26).
Although the contribution of HbO2 is small compared with that of Hb, the signal measured with
this type of device cannot accurately measure variations in Hb concentration. Our method solves
this problem.

5 Conclusion
In this paper, we proposed two main contributions. First, we presented a digital instrument sim-
ulator to optimize the development of hyperspectral systems for intraoperative brain mapping
studies. This simulator is based on a realistic digital phantom of an exposed cortex computed
with white Monte Carlo simulations. A C++ software was developed to reconstruct temporal
perturbations of the absorption coefficient using only one simulation. Second, we presented
an optimization procedure based on the genetic algorithm to identify the best wavelength com-
binations in the visible and near-infrared range to quantify changes in HbO2, Hb, oxCCO,
oxCytb, and oxCytc. With the digital instrument simulator, we can improve the accuracy of
actual preclinical and clinical optical devices used in brain mapping applications with the
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consideration of the impact of the large blood vessels on the path length. We also proposed
several spectral configurations to monitor hemodynamic and metabolic changes in grey matter
that aimed to reduce the quantification error of changes inHbO2, Hb, and oxCCO compared with
the configuration proposed in the literature. This digital instrument simulator and this optimi-
zation framework could be used to optimize the design of hyperspectral imaging devices,61,62

with the objective of transforming current practice toward an all-optical, real-time, quantitative,
and accurate imaging approach, which could significantly help neurosurgeons, enhance the effi-
cacy of the treatment, and ultimately improve the quality of life and functional outcomes of the
patients after the brain tumor resection.
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