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Abstract. Visual tracking is a challenging task in computer vision due to various appearance changes of
the target. Although correlation filter-based trackers have achieved competitive results, they may easily lead to
tracking failure because of the high sensitivity of correlation filter to occlusion. Part-based correlation filter track-
ers can deal with partial occlusion to some extent, but they may easily drift to the background in the case of fast
motion or heavy occlusion. To better solve the above-mentioned problems, a kernelized correlation filter-based
tracker that processes both holistic and reliable local parts is proposed. For local parts, reliable parts are iden-
tified by peak-to-sidelobe ratio. When all parts are unreliable, we propose to apply a sliding window on each part
to generate patches, among which a reliable patch is identified, and the part is replaced by the reliable patch.
In holistic level, holistic tracking is performed with the rough position voted by reliable local parts, and then
the holistic tracking result is used to provide feedback for parts to update its scale and filter. Moreover, we
propose to reset unreliable parts when the holistic tracking result is reliable. The experimental results illustrate
that the proposed tracker outperforms those of several state-of-the-art trackers. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JEI.28.1.013039]
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1 Introduction
Visual object tracking has attracted much attention in com-
puter vision and robotics communities, which enjoys a wide
range of applications such as traffic control, medical imag-
ing, surveillance, and auto-control systems. Given the initial
state (e.g., position and extent) of a target object in the first
image, the goal of tracking is to estimate the states of the
target in the subsequent frames.1,2 Despite having achieved
considerable progress over the past decade, effective model-
ing of the appearance of tracked objects remains a challeng-
ing problem due to visual appearance changes,3,4 such as
illumination variation (IV), partial and heavy occlusion,
background clutters (BC), motion blur (MB), deformation,
and low resolution (LR). As a result, it remains a hot area of
research to design a robust visual tracker.

To handle the above-mentioned visual appearance
changes problem, many visual trackers have been proposed,
which can be categorized into two classes according to the
appearance modeling methods, i.e., generative methods and
discriminative methods. Generative methods5,6 mainly con-
centrate on how to minimize the distance between candidates
and the tracked target, whereas discriminative methods7,8

pose a visual tracking problem as a binary classification
one in order to separate the target object from the back-
ground. Generative methods are based on templates or sub-
space models, such as mean shift or sparse coding-based
visual trackers.9,10 These trackers incrementally learn visual
representations for the foreground object region information
while ignoring the influence of the background.10 For dis-
criminative methods, correlation filter-based visual trackers

have become increasingly popular. The correlation filter can
be trained quickly based on the property of the circulant
matrix in the Fourier domain, so these trackers generally
achieve high performance with low-computational load.11,12

In particular, Henriques et al.11 proposed a visual tracking
algorithm with kernelized correlation filters (KCF) by com-
bining multichannel features with kernel trick, and experi-
mental results show that the tracking performance was
improved significantly. Not surprisingly, many recent visual
trackers13,14 are developed based on correlation filter.

Nevertheless, due to the high sensitivity of correlation fil-
ter to occlusion, many correlation filter-based trackers may
easily drift to the background and lead to tracking failure.15,16

In order to solve this occlusion problem, part-based correla-
tion filter visual trackers have been proposed,12,15,17 which
have been shown to have improved performance. However,
there are still some deficiencies in the state-of-the-art part-
based correlation filter trackers. First, these trackers can deal
with partial occlusion and slight deformation to some extent,
but they may easily drift to the background and fail to track
the right target in subsequent frames when the target is
undergoing heavy occlusion or severe deformation. Second,
most of these trackers cannot deal with MB caused by
shaking of the lens or fast motion (FM) well.

In this paper, we propose a KCF-based visual tracker via
both holistic and reliable local parts (HR), abbreviated as
KCF-HR tracker thereafter, which could handle the above-
mentioned heavy occlusion, FM, and other challenging
factors. The confidence metric of peak-to-sidelobe ratio
(PSR) is used to measure how reliably a part can be tracked,
and the estimated part is reliable when the PSR of it is greater
than a given threshold. In the KCF-HR tracker, both holistic
classifier and local reliable parts classifiers are used. The
tracking results of all reliable parts are employed to vote*Address all correspondence to Bo Yang, E-mail: yangbo@uestc.edu.cn
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a rough position of the target, and then the target position and
scale in the current frame are obtained by holistic tracking
with the rough position. After that, the holistic tracking result
is used to provide feedback for each part to update its scale
and filter. In the above process, it can be noted that if a part is
occluded or unreliable, it may lead to tracking failure if
a fixed weight or high weight is assigned to the part. We
propose to assign proper weight to each part by using the
PSR, which is used to measure the signal peak intensity
in response map, and then reliable parts can be identified
as well. To deal with the situation where all parts are unre-
liable, we propose to apply sliding window on each part to
generate several patches and all patches are tracked to find a
reliable patch for each part, and then the part will be replaced
by the reliable patch. When the holistic tracking result is
reliable and the overlap between an unreliable part and the
holistic target is less than a given threshold, the unreliable
part is reset in the proposed tracker.

The main contributions of this work are summarized
as follows. (1) We design a KCF-based collaborative tracker
via holistic and reliable local parts. (2) A resetting unreliable
parts method is proposed to ensure their reliability. (3) The
sliding window method is applied to handle the case where
the target moves outside the tracking window. (4) Experi-
mental results on the OOTB2 and OTB-1004 datasets show
that the KCF-HR tracker could effectively deal with FM,
MB, and occlusion.

The rest of the paper is organized as follows. In Sec. 2, the
related work is briefly reviewed. In Sec. 3, the detailed
description of the KCF-HR tracker is presented. In Sec. 4,
experimental results and comparison with other state-of-the-
art trackers are presented and analyzed. Finally, we conclude
the paper in Sec. 5.

2 Related Work
As one of the most challenging problems in computer vision,
visual tracking has attracted a lot of attention and a number
of visual trackers12,18–22 have been proposed over the decade.
In this section, we briefly review related works, with the
main focus on the correlation filter-based trackers.

Correlation filter-based visual trackers have achieved
promising results in recent years. For example, Bolme et al.22

first proposed a new type of correlation filter that is robust
to several kinds of appearance variations by minimizing the
output sum of squared errors. Henriques et al.11 proposed
the circulant matrices and multiple channels feature-based
KCF tracker to further accelerate the development of corre-
lation filtering. Sui et al.14 tracked the target by imposing
an elastic net constraint on the correlation filter learning to
learn a more discriminative filter. Despite having achieved
considerable progress in accuracy and robustness, these
global-based correlation filter trackers cannot perform well
when the target is undergoing occlusion or deformation.

In order to deal with the above-mentioned problem, many
part-based visual trackers have been proposed. For example,
Liu et al.12 divided the global target into multiple parts and
modeled the object appearance by combining all adaptive
weighted part classifiers. Li et al.15 estimated the target
position and scale by identifying and exploiting reliable
patches that can be tracked effectively through the whole
tracking process. Xu et al.23 proposed an efficient scale
calculation method by dividing the target into four patches

and computing the scale factor with patch-based KCF
trackers. Huang et al.24 proposed to represent the target by
a part space with two online learned probabilities to capture
the structure of the target. Ding et al.16 proposed a quadran-
gle Gaussian training label matrix to incorporate the location
and size estimation problem into one filtering operation and
the location and size of the target is estimated by a weighted
Bayesian inference framework. The main idea of these
trackers is to get the final position and scale of the target
by combining weighted responses of all parts. These trackers
can deal with partial occlusion and slight deformation to
some extent, but they may easily fail to track the right target
in subsequent frames when the target is undergoing heavy
occlusion or severe deformation.

To better solve these problems, coupled-layer-based
trackers are proposed. For example, Chen et al.17 proposed
an enhanced structural correlation filter (ESC)-based visual
tracker. Zhao et al.25 developed a tracker by combining the
proposed discriminative global model and generative local
model into a Bayesian inference framework for visual
tracking. Zhang and Liu26 proposed a coupled-layer-based
tracker based on the work in Ref. 15 by using global tracking
result in local layer to improve the performance of local
patches. Akin et al.27 proposed a deformable part-based
correlation filter (DPCF) tracker that depends on coupled
interactions between a global filter and several part filters,
which is similar to our tracker. The difference between our
method and the DPCF tracker is that the KCF-HR tracker
estimates the scale of the target by using a discriminative
filter on multiple resolutions of the searching area and resets
unreliable parts by using PSR threshold of global tracking
result while the DPCF tracker estimates the scale of the target
by using the average distance between two reliable parts in
successive frames and reinitializes the tracking system when
the scaling occurs.

In recent years, many deep learning-based trackers have
been proposed. For example, Qi et al.28 proposed a hedged
deep tracking (HDT) framework, which uses an adaptive
decision learning algorithm to hedge several weak CNN
trackers into a stronger one. Bertinetto et al.29 proposed
a fully-convolutional Siamese network (SiamFC)-based
tracker and treat object tracking as a similarity learning
problem. Valmadre et al.30 improved the SiamFC tracker
with redesigning the CNN network architecture in which
the correlation filter is interpreted as a differentiable CNN
layer. Furthermore, Danelljan et al.31 proposed an efficient
convolution operator tracking scheme to counter the issues
of computational complexity and overfitting for discrimina-
tive correlation filter-based trackers. The performance of
the deep learning-based trackers has been greatly improved,
but its tracking speed still needs to be improved.

3 KCF-HR Tracker
In this section, we present the KCF-HR tracker that consists
of local part level and holistic level in detail. The overview of
the tracker is shown in Fig. 1. First, the ground truth bound-
ing box is divided into four parts in the initial frame. Then,
in local part level, the part-based KCF tracking algorithm is
used to track each part, and rough position of the target is
voted by weighted reliable parts. In holistic level, holistic-
based KCF tracking is implemented with the rough position.
Finally, according to the reliable holistic tracking result,
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unreliable local parts are reset and holistic correlation filter
and reliable parts correlation filters are updated.

3.1 KCF Tracker
In this section, we briefly reviewed the main idea of the KCF
tracker11 on which our method is built. As a discriminative
method, KCF trains a classifier by taking advantages of the
cyclic property and appropriate padding with a large number
of densely sampled on a single image patch x of size W ×H
centered around the target. Given a set of training samples
and labels, the goal of training is to find the function fðzÞ ¼
wTz that minimizes the squared error over all the circular
shifted image samples xi and their regression targets yi,

EQ-TARGET;temp:intralink-;e001;63;349min
w

X
i

jfðxiÞ − yij2 þ λkwk2; (1)

where i ∈ f0; 1; : : : ;W − 1g × f0; 1; : : : ; H − 1g, and λ is
the regularization parameter used to control overfitting.

Mapping the inputs xi of the linear ridge regression to
a nonlinear feature space ϕðxÞ with kernel trick that is
defined by the kernel κðx; x 0Þ ¼ hϕðxÞ;ϕðx 0Þi gets the non-
linear ridge regression that can be resolved as fðzÞ ¼ wTz ¼P

n
i¼1 αiκðz; xiÞ, where κðz; xiÞ denotes the dot-products of

xi and x, and the coefficient α can be expressed as

EQ-TARGET;temp:intralink-;e002;63;219α ¼ F−1
�

FðyÞ
F ½κðx; xÞ� þ λ

�
; (2)

where F and F−1 denote the Fourier transform and its
inverse, respectively; the vector α contains all the αðiÞ
coefficients. In the KCF tracker, the model consists of
the transformed classifier coefficients F ðαÞ and the target
appearance x̂ that is learned over time.

In the tracking stage, the size of interesting image patch z
is cropped as the same with x, and the confidence score of
new patch z are calculated as

EQ-TARGET;temp:intralink-;e003;63;86yðzÞ ¼ F−1fF ½κðz; xÞ�⊙F ðαÞg; (3)

where ⊙ is the elementwise product. And the target position
is detected by finding the coordinate at which yðzÞ has the
maximum value.

3.2 Local Part Level
In the initial frame, target image x is divided into four parts,
and the spatial layouts of these parts are shown in Fig. 2,
where the size of each part is half of the target size.
Obviously, when the target is partially occluded, the remain-
ing visible parts can still provide reliable cues for tracking.

Then, the KCF tracker for each part is carried out by
searching for the image part in each subsequent frame with
appearance most similar to the part xi. To predict the tracking
quality and estimate the reliability of a patch, we adopt the
PSR as a confidence metric, which is widely used in signal
processing to measure the signal peak strength in a correla-
tion filter response map.15 Given a correlation filter response
map yðxiÞ of an image part xi, the PSR is calculated as

EQ-TARGET;temp:intralink-;e004;326;294PSRðxiÞ ¼
max½yðxiÞ� − μΦ½yðxiÞ�

σΦ½yðxiÞ�
; (4)

where Φ is the sidelobe area around the peak that is 15% of
the response map area. μΦ and σΦ are the mean value and
standard deviation of yðxiÞ excluding the area Φ, respec-
tively. From Eq. (4), we can observe that the PSR becomes

Fig. 1 The overall tracking flowchart of the KCF-HR tracker.

Fig. 2 The ground truth bounding box is divided into four parts.
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large when the response peak value is strong. As shown in
Fig. 3, a high PSR value indicates that the target object is
tracked accurately, the PSR value is lower than 20 indicates
that the target object is under severe occlusion, MB, or other
appearance variations. Therefore, the tracked part is consid-
ered to be unreliable if its PSR is less than the threshold,
which is set to 20 in this paper.

The rough target position can be computed by Hough vot-
ing scheme32 with the normalized weight wi of each reliable
part. For each part xi in the current frame, the normalized
weight wi can be computed as

EQ-TARGET;temp:intralink-;e005;63;338wi ¼
PSRðxiÞP
n
1 PSRðxiÞ

; (5)

where n is the number of reliable parts. Then, the rough
target position posr can be defined as

EQ-TARGET;temp:intralink-;e006;326;459posr ¼
Xn
i¼1

wiposi; (6)

where posi is obtained from the tracking result of each
reliable part xi.

When the target moves outside the tracking window due
to FM, reappearance after occlusion or drifting away, all
parts will be not reliable, a sliding window method is pro-
posed to generate several patches for each part, and then
each patch is tracked with the KCF tracker to find a reliable
patch. The layout of generated patches by sliding window
method is shown in Fig. 4. The size of each window is
equal to its corresponding part, and the step is half width or
height of its corresponding part. For example, a holistic tar-
get image with size of W ×H and position (pl, pc), the size
and position of part 2 is W∕2 ×H and (pl, pc þW∕4),

Fig. 3 The holistic tracking results and its corresponding PSR are shown in (a) and (b). For example, in
(b), the PSR drops to 20.51 at frame 313 when the target is partial occluded, the PSR drops to 11.31 at
frame 352 when the target is severe occluded, and the PSR of frame 372 increases to 21.17 when
the target is redetected.

Fig. 4 The layout of generated patches by sliding window method is shown in (a). The window size
and step of four parts are fW∕2 × H;W∕2 × H;W × H∕2;W × H∕2g and fW∕4;W∕4; H∕4; H∕4g,
respectively, e.g., positions of part 2 and generated patches are pos2, pos21, and pos22, respectively.
The direction of sliding window of each part is indicated by the arrow. (b) and (c) are four local parts and
four local parts that are replaced by generated reliable patches, respectively.
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respectively. The generated m patches share the same size
with its corresponding part 2, and positions of all patches
are fðpl; pc þW∕2Þ; ðpl; pc þW × 3∕4Þ; : : : ; ½pl; pc þW ×
ðmþ 1Þ∕4�g. Then, the local KCF tracker is performed on all
generated patches of part 2. If a generated patch is reliable,
part 2 will be replaced by the generated reliable patch. In the
same way, we can get new reliable local patches. Finally, the
holistic-based KCF tracker is employed on the new position
voted by Hough voting schema, and all replaced parts will be
restored in the case of holistic tracking result is unreliable.
If all local parts are not replaced by generated patch, holistic
tracking will be performed at the position of the previous
frame, and the tracking result with the maximum PSR is
the final holistic result in the current frame.

3.3 Holistic Level
According to the size sg of holistic target image in the last
frame and the rough position voted by reliable parts, the
holistic-based KCF tracker is carried out. Following Li
and Zhu,33 the holistic tracking is applied on multiple reso-
lutions of the searching area to estimate changes in the target
size. The scaling pool is defined as sp ¼ ft1; t2; : : : ; tkg,
k samples ftisgjti ∈ spg are extracted that centered at the
previous target location. The bilinear-interpolation strategy
is employed to resize all samples into the fixed size sg.
The sample with the maximum PSR is used as the holistic
tracking result.

If the holistic tracking result is reliable, a reset unreliable
parts method is employed on local part level. The overlap of
i’th local part with holistic target image is given as

EQ-TARGET;temp:intralink-;e007;63;418opi ¼
Bi ∩ Bg

Bi
; (7)

where Bi is the bounding box of the i’th part, Bg is the
bounding box of the holistic target, and opi indicates the
ratio of the intersection of the i’th part and holistic target
image to the area of i’th part. Each unreliable part of
op < 0.5 will be reset when the holistic tracking result is
reliable. Figure 5 is an example of resetting unreliable parts.

3.4 Adaptive Model Updating
During tracking, it is important to adaptively update parts
and holistic correlation filters, because the target object’s
appearance may undergo significant changes such as MB,

BC, partial or severe occlusion, deformation, and rotation.
So, we update parts and holistic correlation filters properly
to further improve the robustness and decrease the risk of
drifting when the target appearance suffers variations.

For holistic level, using the current observations x̂ and the
estimated coefficients α̂ in frame t, the correlation filter is
updated as

EQ-TARGET;temp:intralink-;e008;326;675α̂t ¼
� ð1 − γÞα̂t−1 þ γα̂ if PSR ≥ ϑ
α̂t−1 otherwise

; (8)

EQ-TARGET;temp:intralink-;e009;326;631x̂t ¼
� ð1 − γÞx̂t−1 þ γx̂ if PSR ≥ ϑ
x̂t−1 otherwise

; (9)

where α̂t and α̂t−1 are the coefficient estimated in frame t and
t − 1, x̂t and x̂t−1 denote the tracked target appearance. γ is
the learning rate and ϑ is a given PSR threshold, which is
used to determine whether the tracking model needs to be
updated. In order to reduce the impact of the surrounding
background, the update is stopped when the PSR is smaller
than ϑ.

Moreover, all reliable parts are updated in each frame to
guarantee the robustness and accuracy of all parts, and the
previous filters are used for the unreliable parts. The scales
of all reliable parts need to be updated according to the scale
change of the holistic target image, when holistic tracking
result is reliable. Using the current observations x̂i and the
estimated coefficients α̂i of part i in frame t, each part can be
updated as

EQ-TARGET;temp:intralink-;e010;326;425α̂t
i ¼

� ð1 − γÞα̂t−1
i þ γα̂i if PSR ≥ ϑ

α̂t−1
i otherwise

; (10)

EQ-TARGET;temp:intralink-;e011;326;381x̂ti ¼
� ð1 − γÞx̂t−1i þ γx̂i if PSR ≥ ϑ

x̂t−1i otherwise
; (11)

where i denotes the i’th reliable part, γ is the learning rate.
Finally, the overall KCF-HR tracking algorithm is summa-
rized into Algorithm 1.

4 Experiments
In this section, experiments are performed on two frequently
used public benchmark datasets OOTB2,11,17 and OTB-
100.27,29,30 For better evaluation and analysis of the strength
and weakness of tracking algorithms, both of these datasets
are classified into 11 attributes,2,4 including BC, deformation
(DEF), FM, IV, LR, MB, occlusion (OCC), in-plane rotation
(IPR), out-of-plane rotation (OPR), out-of-view (OV), and
scale variation (SV). One sequence may be annotated with
many attributes, and some attributes occur more frequently
than others, for example, IPR and OPR.4 The ground truth of
these benchmark datasets gives the position and target size of
the target in each frame.

4.1 Experimental Configuration
4.1.1 Implementation details

The KCF-HR tracker is implemented in MATLAB on
a regular PC with Intel i5-2450M CPU (2.50 GHz) and 4 GB
memory. In the proposed tracker, most of the parameters
are the same as the KCF tracker, the details are as follows.

Fig. 5 An example of resetting unreliable parts. The PSR values of
parts 1, 2, 3, and 4 are 7.67, 15.95, 39.06, and 12.17, respectively.
Unreliable parts 1, 2, and 4 with low overlap are shown in (a) and the
holistic tracking result is reliable with PSR ¼ 22.74. So, parts 1, 2, and
4 should be reset. (b) New parts after reset.
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The Gaussian kernel parameter σ is set to 0.5 and the learn-
ing rate γ is set to 0.01. Eleven-channel color naming and
31-channel HoG features are used in our experiments; the
orientation bin number and the cell size of HoG are 9 and
4 × 4, respectively. Particularly, the cell size 2 × 2 rather
than 4 × 4 for each part is used when the size of a part is
below 40 × 40 pixels. Typically, the searching window used
to train the discriminative correlation filter should be larger
than the given target. Therefore, the sizes of searching
window of the holistic target and four local parts are set
to 2.5 and 2 times that of the target, respectively. For the
holistic level, the scaling pool sp ¼ f0.985; 0.99; 0.995; 1;
1.005; 1.01; 1.015g. The number m of shifted patch is set
to 4. The threshold ϑ is used to determine whether the
part is reliable or the model is updated is set to 20. All
the above-mentioned parameters are fixed throughout the
experiments.

4.1.2 Evaluation methodology

The precision and success rates are two widely used evalu-
ation metrics for quantitative analysis.2–4 The precision plot
refers to the center location error, which is defined as the
average Euclidean distance between the center locations
of the tracked targets and the manually labeled ground truths.
The success plot is defined as the bounding box overlap, and

the overlap score can be computed with S ¼ jBt∩Bgj
jBt∪Bgj, where Bt

denotes the bounding box of the tracked result, Bg denotes
the bounding box of ground truth, j · j is the number of pixels
of the regions, and ∩ and ∪ represent the intersection and
union of two regions. In this paper, the results of one-
pass evaluation (OPE) are shown. OPE means running the
tracking algorithm throughout a test sequence with initializa-
tion from the ground truth position in the first frame and
reporting the average precision and success rate.2 Moreover,
the performance of a tracking algorithm may become much
better or worse when it is initialized with different initializa-
tion or at a different start frame. So the robustness of the
proposed tracker is evaluated in two aspects including tem-
poral robustness evaluation (TRE) and spatial robustness
evaluation (SRE). TRE and SRE are implemented by per-
turbing the initialization temporally (i.e., start at different
frames) and spatially (i.e., start by different bounding boxes),
respectively.2

4.2 Quantitative Comparisons
4.2.1 Comparison with correlation filter-based

trackers

The KCF-HR tracker has been quantitatively compared with
seven representative and competitive correlation filter-based
trackers including DPCF,27 KCF,11 RPT,15 ESC,17 SAMF,33

Staple,34 and DSST.35 Among them, RPT is part-based
tracker; DPCF and ESC are holistic-part based trackers;
Staple and SAMF utilize complementary features such as
HoG feature and color feature; SAMF and DSST pay more
attention to the estimation of the target scale. All the above
correlation filter-based trackers were proposed in recent
years and outperformed other correlation filter-based track-
ers. Figure 6 shows the overall performance of these trackers
using the OPE plots on the OOTB dataset, and the values in
square brackets indicate the precision with a threshold of
20 pixels in precision plot and the area under curve (AUC)
value in success plot. From Fig. 6, we can observe that
the KCF-HR tracker achieves success score of 0.610 and
precision score of 0.824 and outperforms other competitive
correlation filter-based trackers in both measures. The KCF-
HR tracker exhibits improvements in the success and preci-
sion scores by 2.3%/1.0% and 2.3%/3.1%, respectively,
compared to the SAMF and staple trackers. Compared
to the ESC and DPCF trackers, the performance gain is
5.1%/1.4% in terms of success scores. Compared to the
original KCF tracker, the KCF-HR tracker exhibits improve-
ments in the success and precision scores by 7.6% and
11.3%, respectively. The reason why the performance of
the KCF-HR tracker is significantly improved lies in the
effective holistic and reliable local parts KCF-based tracking
schema, which is tracked mainly by identifying reliable parts
and resetting unreliable parts.

Moreover, robustness is another important metric for eval-
uating the performance of visual trackers. So, we compare

Algorithm 1 The proposed KCF-HR tracker.

Input: Previous target position pt−1; holistic model α̂t−1 and x̂t−1;
local parts model α̂t−1

i and x̂t−1i ; frame F t

Output: Estimated target position pt ; updated holistic model α̂t

and x̂t ; local parts model α̂t
i and x̂ti .

1: Divide the target into four parts, as shown in Fig. 2;

2: for all parts do

3: Perform KCF tracking at the last position using Eq. (3);

4: Calculate and identify reliable parts with Eq. (4);

5: end for

6: if number of reliable parts is 0 then

7: Generate patches using sliding window method and track each
patch with KCF using Eq. (3);

8: Calculate and identify reliable parts with Eq. (4);

9: end if

10: Compute each reliable part’ weight wi
t with Eq. (5) and vote

the rough position with Eq. (6);

11: Perform holistic KCF tracking on multiple resolutions of
the target to get target position pt and PSRh ;

12: if PSRh > ϑ then

13: Update holistic model according to Eqs. (8) and (9);

14: for all parts do

15: Calculate each unreliable part overlap with Eq. (7) and reset
the part where the overlap <0.5;

16: Update local part model according to Eqs. (10) and (11);

17: end for

18. end if
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Fig. 6 The (a) precision and (b) success plots using the OPE for the KCF-HR tracker and seven other
correlation filter-based trackers on the OOTB dataset.

Fig. 7 The precision and success plots of the KCF-HR tracker and seven other correlation filter-based
trackers on the OOTB dataset using (a) and (b) the TRE and (c) and (d) the SRE.
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the KCF-HR tracker with the above-mentioned seven corre-
lation filter-based trackers on TRE and SRE, and the exper-
imental results on the OOTB dataset are shown in Fig. 7.
In the precision plots for TRE and SRE, our KCF-HR tracker
performs favorably compared to other trackers with scores of
0.841 and 0.778, respectively. Similarly, in the success plots
for TRE and SRE, the proposed tracker takes the top place
with scores of 0.624 and 0.547, respectively, which are better
than those of the SAMF and DPCF tracker. However, due to
the interference of more background information during ini-
tialization and tracking failure caused by model updating, the
average SRE results drop significantly, as shown in Figs. 7(c)
and 7(d).

4.2.2 Comparison with state-of-the-art trackers

We compared the KCF-HR tracker with the other 16 trackers
on the OOTB and OTB-100 datasets. These state-of-the-
art trackers can be broadly categorized into three classes:

(a) correlation filter-based trackers including the above-
mentioned trackers, CSK18 and CN;36 (b) single or multiple
online classifiers-based trackers, such as MIL,37 TLD,38

SCM,39 and Struck;40 (c) deep convolutional neural networks
(CNNs)-based trackers, including SiamFC,29 CFNet,30 and
HDT.28 Figure 8 shows the experimental results of the top
10 trackers with OPE. The KCF-HR tracker achieves success
scores of 0.610 and 0.572 and precision scores of 0.824 and
0.791 for the two datasets. Evidently, the KCF-HR tracker
outperforms other state-of-the-art trackers except the HDT
tracker in terms of precision scores and provides comparable
performance to the CNNs-based trackers in terms of success
scores. As shown in Table 1, the KCF-HR tracker operates
at an average speed of 6.5 frames per second (fps) on the
OTB-100 dataset, which is significantly faster than the
HDT tracker (1.3 fps) and slightly faster than the CFNet
tracker (5.8 fps). Furthermore, compared to the KCF tracker,
the KCF-HR tracker exhibits improvements in the success

Fig. 8 The precision and success plots using the OPE for the KCF-HR tracker and the other top nine
best performing trackers on [(a) and (b)] the OOTB and [(c) and (d)] OTB-100 datasets.
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and precision scores by 9.5% and 9.5% on the OTB-100
dataset.

4.2.3 Speed analysis

We compared the tracking speed of our KCF-HR tracker and
the other top nine best performing state-of-the-art trackers
on the OTB-100 dataset. All evaluated trackers run on a
PC without the hardware acceleration of GPU computation.
The tracking speeds of other trackers are shown in Table 1.
We can observe that the KCF-HR tracker runs at 6.5 fps
using the nonoptimized single-thread MATLAB code, which
is more than three times that of the reliable patches-based
RPT tracker. Compared to the global-local correlation filters-
based DPCF tracker, the proposed KCF-HR tracker has
achieved encouraging performance, but its tracking speed
still need to be improved. Note that the major computational
cost of the KCF-HR tracker is the tracking of each part and
the estimation of the target scale, which can be easily
extended to a parallel implementation to optimize its
efficiency.

4.2.4 Attribute-based performance

To evaluate the performance of the KCF-HR tracker under
various appearance changes, we analyzed the performance
of the tracker and the other top nine best performing state-
of-the-art trackers on the OTB-100 dataset. Each sequence
in the OTB-100 dataset is annotated with at least one of
11 attributes. Tables 2 and 3 show the precision scores at

the center location error threshold = 20 pixels and the success
scores of AUC, respectively, regarding these challenging
attributes. As shown in these tables, the KCF-HR tracker per-
forms better than other competing trackers (except HDT) in
most scenarios in terms of precision scores, and the KCF-HR
tracker also provides comparable performance to the CFNet
tracker in terms of success scores, which can be attributed
to the use of two-level (holistic level and local part level)
schema. Compared to the global-local-based DPCF tracker,
the KCF-HR tracker performs better than DPCF in most
scenarios including FM, MB, IPR, and OCC. In particular,
the KCF-HR tracker outperforms other state-of-the-art track-
ers in the case of MB or OCC, which can be attributed to
the effective resetting unreliable parts method and model
updating schema.

4.2.5 Component analysis

To better understand the contribution of each component of
our KCF-HR tracker, we performed the experiments by
removing one of the related tracker modules from the tracker.
First, we build a tracker KCF-HR-part by dividing the target
image into four nonoverlapping equal-sized parts and keep-
ing the other components unchanged. Second, the KCF-HR-
without-shift tracker is implemented without generating
patches by sliding window method. Third, in the KCF-HR-
without-reset tracker, unreliable parts are not reset during
tracking. The experimental results of these trackers on the
OTB-100 dataset are shown in Fig. 9. The success score

Table 1 The running speed of the KCF-HR tracker and the other top nine best performing state-of-the-art trackers on the OTB-100 dataset.
The first, second, and third best results are highlighted as bold italics, bold, and italics, respectively, in each column.

KCF-HR HDT SiamFC CFNet Staple DPCF RPT SAMF KCF DSST

Speed (fps) 6.5 1.3 9.2 5.8 22.5 7.9 1.8 9.6 82.5 25.2

Table 2 The precision scores of the KCF-HR tracker and the other top nine best performing state-of-the-art trackers at the center location error
threshold = 20 pixels on the OTB-100 dataset. The column headers indicate the attributes and its number of image sequences. The first, second,
and third best results are highlighted as bold italics, bold, and italics, respectively, in each column.

Tracker BC-31 DEF-44 FM-39 IV-38 LR-9 MB-29 OCC-49 IPR-51 OPR-39 OV-14 SV-64 All

KCF-HR 0.738 0.737 0.746 0.767 0.699 0.748 0.785 0.775 0.766 0.657 0.748 0.791

HDT 0.844 0.821 0.817 0.720 0.887 0.789 0.774 0.844 0.805 0.663 0.808 0.848

SiamFC 0.690 0.690 0.743 0.736 0.900 0.705 0.722 0.742 0.756 0.669 0.735 0.771

CFNet 0.731 0.669 0.757 0.757 0.850 0.745 0.713 0.803 0.761 0.650 0.744 0.777

Staple 0.749 0.751 0.710 0.782 0.695 0.699 0.728 0.768 0.738 0.668 0.727 0.784

DPCF 0.782 0.729 0.707 0.808 0.711 0.753 0.740 0.737 0.754 0.610 0.724 0.772

RPT 0.793 0.670 0.746 0.774 0.712 0.721 0.640 0.762 0.705 0.598 0.714 0.745

SAMF 0.715 0.679 0.702 0.741 0.766 0.683 0.734 0.745 0.747 0.673 0.722 0.764

DSST 0.704 0.542 0.552 0.721 0.649 0.567 0.597 0.691 0.644 0.481 0.638 0.680

KCF 0.713 0.617 0.621 0.719 0.671 0.601 0.630 0.701 0.677 0.501 0.633 0.696
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and precision score of the KCF-HR-part tracker decreased by
1.9% and 2.8%, respectively, compared with the KCF-HR
tracker. This is because too small unreliable parts might
be reset frequently, which causes tracking failure in the
case of BC. In addition, we notice that the KCF-HR-with-
out-reset tracker shows a significant drop in the precision
and success plots while the KCF-HR-without-shift tracker
experiences only a slight decline. The above analysis
means that among the three merged components, resetting
unreliable parts contributes the most to the accurate tracking
yet the sliding window method contributes the least. The
main reason might be that the sliding window method
only helps to accurately track the target when the target
moves outside the tracking window while proper resetting

unreliable parts can increase the number and reliability of
reliable parts and improve the overall tracking accuracy.
Ultimately, the interaction of three components further
enhances the performance of the KCF-HR tracker in chal-
lenging scenarios.

4.3 Qualitative Comparisons
In this section, the KCF-HR tracker is qualitatively compared
with nine state-of-the-art trackers and the tracking results
of eight representative sequences with all 11 attributes are
shown in Fig. 10. It can be observed that the proposed
KCF-HR tracker achieves favorable results compared with
the state-of-the-art trackers on these sequences.

Table 3 The success plot’s AUC scores of the KCF-HR tracker and the other top nine best performing state-of-the-art trackers. The column
headers indicate the attributes of the OTB-100 dataset and its number of image sequences. The first, second, and third best results are highlighted
as bold italics, bold, and italics, respectively, in each column.

Tracker BC-31 DEF-44 FM-39 IV-38 LR-9 MB-29 OCC-49 IPR-51 OPR-39 OV-14 SV-64 All

KCF-HR 0.556 0.529 0.570 0.560 0.383 0.588 0.544 0.554 0.548 0.497 0.518 0.572

HDT 0.578 0.543 0.568 0.535 0.401 0.574 0.528 0.551 0.533 0.472 0.486 0.564

SiamFC 0.523 0.506 0.568 0.568 0.618 0.550 0.543 0.557 0.558 0.506 0.552 0.582

CFNet 0.543 0.492 0.583 0.574 0.582 0.584 0.536 0.590 0.558 0.480 0.552 0.586

Staple 0.581 0.550 0.541 0.593 0.399 0.540 0.542 0.548 0.533 0.476 0.520 0.578

DPCF 0.575 0.523 0.533 0.585 0.409 0.573 0.544 0.525 0.546 0.482 0.517 0.555

RPT 0.571 0.480 0.545 0.526 0.362 0.507 0.469 0.528 0.502 0.464 0.482 0.528

SAMF 0.538 0.500 0.535 0.545 0.426 0.537 0.540 0.533 0.536 0.506 0.502 0.559

DSST 0.523 0.420 0.447 0.558 0.370 0.469 0.453 0.502 0.470 0.386 0.468 0.513

KCF 0.498 0.436 0.459 0.479 0.290 0.459 0.443 0.469 0.453 0.393 0.394 0.477

Fig. 9 The (a) precision and (b) success plots for the KCF-HR tracker with different components on
the OTB-100 dataset.
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4.3.1 Occlusion

Figure 10 shows some sampled results of image sequences
including Girl2, Human3, Tiger2, and Box where the target
objects undergo partial and heavy occlusion. In the Girl2

sequence, a girl is fully occluded by another man at
frame 106 and the girl reappears at frame 129. When the
girl is fully occluded and reappears, only the DPCF tracker
and our KCF-HR tracker are able to track the girl. When the

Fig. 10 A visualization of the tracking results of top 10 trackers on eight challenging sequences.
The main challenges of each sequence are also listed.
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girl turned around at frame 1052, the DPCF tracker also fails
to track her. Only our KCF-HR tracker tracks the target girl
stably throughout the sequence. In the Human3 sequence,
the target man undergoes heavy occlusion, SV, and BC
(e.g., #0043, #0076, and #0127), which makes it challenging
to accurately track the target. Most of the trackers, except
the HDT and KCF-HR trackers, cannot track the target
accurately. Our tracker performs favorably because it com-
bines the holistic-part schema and resetting unreliable parts
method to find more reliable parts.

4.3.2 Motion blur

Another challenge for a tracker is to handle MB caused by
FM of the target or camera. In the sequence of BlurOwl, the
target owl is blurred due to its rapid movement with SV
and IPR at frames 47, 150, and 384, as shown in Fig. 10. All
trackers except the deep learning-based trackers (CFNet,
SiamFC, and HDT) and our KCF-HR tracker failed to track
the target accurately. In Jumping, the man undergoes MB
several times caused by rapid movements up and down
(e.g., #0036, #0037, and #0108). Only HDT, RPT, and
our KCF-HR trackers track the target accurately throughout
the sequence. The reason why our tracker handles MB and
FM well can be attributed to the proposed sliding window
method and resetting unreliable parts method.

4.3.3 Deformation

In Fig. 10, Tiger2 is a typical challenging sequence where
the target object is undergoing severe deformation and other
challenges such as FM, occlusion, and in- and out-of plane
rotation. In the initial, all trackers track the target object
successfully (e.g., #0032). When the target is continuously
deformed at frames 261, 271, and 280, the trackers including
DSST, KCF, and SAMF are suffering drifts or tracking fail-
ure and trackers including RPT, Staple, and CFNet fail to
estimate the scale of the target. In the Couple sequence, the
target woman appears in the screen with rapid appearance
changes due to FM, shape deformation, and shaking of the
lens. In addition, the background of the sequences is com-
plex and changes rapidly, which further increases the diffi-
culty of accurate tracking. All trackers perform well in the
initial few frames, e.g., #0015, whereas only CFNet and our
KCF-HR tracker perform well in the whole sequence.

4.3.4 Background clutter

In the sequence of Liquor, the target bottle is surrounded by
several similar bottles and the background is cluttered, e.g.,
#0910 and #1115. All trackers except KCF, DPCF, and KCF-
HR are failed to track the target bottle accurately. In the
sequence of Box, the target box is moving in a cluttered
background, as shown in Fig. 10. At frame 445, all trackers
except HDT and SiamFC track the box successfully. When
the box is partially occluded and reappears at frame 496,
only the SAMF and our KCF-HR trackers perform well.
When the target box is rotated at frames 501 and 517, only
the KCF-HR tracker is still on the target. The KCF-HR
tracker shows high robustness on sequences including
Human3 and Couple that undergo BC and other challenging
appearance variations. The KCF-HR tracker handles BC and
other challenging appearance variations well because it em-
ploys the holistic and reliable-parts-based schema and the

adaptive updating schema, which can reduce the risk of
drifting and eliminate most of the effects of the background
and appearance variations.

5 Conclusion
In this paper, we propose a KCF-based visual tracker via
holistic and reliable local parts. The proposed KCF-HR
tracker consists of local part level and holistic level. In
the local part level, the target object is divided into four over-
lapping parts and each of these parts is tracked with the KCF
tracker. A sliding window method is employed on each part
to generate several patches when all local parts are unreli-
able. All generated patches of a part are tracked to find reli-
able patch, and the part is replaced by the generated reliable
patch. Then the rough position of the target is voted by
weighted reliable parts. In the holistic level, the KCF tracker
on multiple resolutions of the target image is performed
on the rough position. A reset unreliable parts method is
employed and correlation filters of reliable holistic and parts
are adaptively updated. Experimental results on frequently
used public benchmark datasets OOTB and OTB-100 show
that the KCF-HR tracker outperforms several state-of-the-art
trackers and can effectively deal with FM and MB and ease
the drifting problem caused by rotation and occlusion.

Acknowledgments
This work was supported by Sichuan Science and Technol-
ogy Program (Project Number: 2019YJ0164).

References

1. A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM
Comput. Surv. 38(4), 1–45 (2006).

2. Y. Wu, J. Lim, and M. H. Yang, “Online object tracking: a benchmark,”
in IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR),
pp. 2411–2418 (2013).

3. X. Li et al., “A survey of appearance models in visual object tracking,”
ACM Trans. Intell. Syst. Technol. 4(4), 48 (2013).

4. Y. Wu, J. Lim, and M. H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015).

5. C. Xie et al., “Multi-scale patch-based sparse appearance model for
robust object tracking,” Mach. Vision Appl. 25(7), 1859–1876 (2014).

6. C. Gao et al., “Robust visual tracking using exemplar-based detectors,”
IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 300–312 (2017).

7. X. Li et al., “A multi-view model for visual tracking via correlation
filters,” Knowl.-Based Syst. 113, 88–99 (2016).

8. L. Zhang and P. N. Suganthan, “Robust visual tracking via co-trained
kernelized correlation filters,” Pattern Recognit. 69, 82–93 (2017).

9. L. Wang et al., “Forward-backward mean-shift for visual tracking with
local-background-weighted histogram,” IEEE Trans. Intell. Transp.
Syst. 14(3), 1480–1489 (2013).

10. T. Zhang et al., “Robust visual tracking via consistent low-rank sparse
learning,” Int. J. Comput. Vis. 111(2), 171–190 (2015).

11. J. F. Henriques et al., “High-speed tracking with kernelized correlation
filters,” IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015).

12. T. Liu, G. Wang, and Q. Yang, “Real-time part-based visual tracking via
adaptive correlation filters,” in IEEE Conf. Comput. Vision and Pattern
Recognit. (CVPR), pp. 4902–4912 (2015).

13. B. Zhang et al., “Output constraint transfer for kernelized correla-
tion filter in tracking,” IEEE Trans. Syst. Man Cybern. Syst. 47(4),
693–703 (2017).

14. Y. Sui, G. Wang, and L. Zhang, “Correlation filter learning toward peak
strength for visual tracking,” IEEE Trans. Cybern. 48(4), 1290–1303
(2018).

15. Y. Li, J. Zhu, and S. C. H. Hoi, “Reliable patch trackers: robust visual
tracking by exploiting reliable patches,” in IEEE Conf. Comput. Vision
and Pattern Recognit. (CVPR), pp. 353–361 (2015).

16. G. Ding et al., “Real-time scalable visual tracking via quadrangle
kernelized correlation filters,” IEEE Trans. Intell. Transp. Syst. 19(1),
140–150 (2018).

17. K. Chen, W. Tao, and S. Han, “Visual object tracking via enhanced
structural correlation filter,” Inf. Sci. 394, 232–245 (2017).

18. J. F. Henriques et al., “Exploiting the circulant structure of tracking-by-
detection with kernels,” in Eur. Conf. Comput. Vision (ECCV), pp. 702–
715 (2012).

Journal of Electronic Imaging 013039-12 Jan∕Feb 2019 • Vol. 28(1)

Li and Yang: Correlation filter-based visual tracking via holistic and reliable local parts

https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1145/1177352.1177355
https://doi.org/10.1109/CVPR.2013.312
https://doi.org/10.1145/2508037.2508039
https://doi.org/10.1109/TPAMI.2014.2388226
https://doi.org/10.1109/TPAMI.2014.2388226
https://doi.org/10.1007/s00138-014-0632-3
https://doi.org/10.1109/TCSVT.2015.2513700
https://doi.org/10.1016/j.knosys.2016.09.014
https://doi.org/10.1016/j.patcog.2017.04.004
https://doi.org/10.1109/TITS.2013.2263281
https://doi.org/10.1109/TITS.2013.2263281
https://doi.org/10.1007/s11263-014-0738-0
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/CVPR.2015.7299124
https://doi.org/10.1109/CVPR.2015.7299124
https://doi.org/10.1109/TSMC.2016.2629509
https://doi.org/10.1109/TCYB.2017.2690860
https://doi.org/10.1109/CVPR.2015.7298632
https://doi.org/10.1109/CVPR.2015.7298632
https://doi.org/10.1109/TITS.2017.2774778
https://doi.org/10.1016/j.ins.2017.02.012


19. C. Qian, T. P. Breckon, and H. Li, “Robust visual tracking via speedupmul-
tiple kernel ridge regression,” J. Electron. Imaging 24(5), 053016 (2015).

20. F. Li, S. Zhang, and X. Qiao, “Scene-aware adaptive updating for visual
tracking via correlation filters,” Sensors 17(11), 2626 (2017).

21. F. Liu et al., “Robust visual tracking revisited: from correlation filter
to template matching,” IEEE Trans. Image Process. 27(6), 2777–2790
(2018).

22. D. S. Bolme et al., “Visual object tracking using adaptive correlation
filters,” in IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR),
pp. 2544–2550 (2010).

23. Y. Xu et al., “Patch-based scale calculation for real-time visual
tracking,” IEEE Signal Process Lett. 23(1), 40–44 (2016).

24. L. Huang et al., “Visual tracking by sampling in part space,” IEEE
Trans. Image Process. 26(12), 5800–5810 (2017).

25. L. Zhao et al., “Combined discriminative global and generative local
models for visual tracking,” J. Electron. Imaging 25(2), 023005 (2016).

26. H. Zhang and G. Liu, “Coupled-layer based visual tracking via adaptive
kernelized correlation filters,” Vis. Comput. 34(1), 41–54 (2018).

27. O. Akin et al., “Deformable part-based tracking by coupled global and
local correlation filters,” J. Vis. Commun. Image Represent. 38, 763–774
(2016).

28. Y. Qi et al., “Hedged deep tracking,” in IEEE Conf. Comput. Vision and
Pattern Recognit. (CVPR), pp. 4303–4311 (2016).

29. L. Bertinetto et al., “Fully-convolutional Siamese networks for object
tracking,” in Eur. Conf. Comput. Vision (ECCV), pp. 850–865 (2016).

30. J. Valmadre et al., “End-to-end representation learning for correlation
filter based tracking,” in IEEE Conf. Comput. Vision and Pattern
Recognit. (CVPR), pp. 5000–5008 (2017).

31. M. Danelljan et al., “ECO: efficient convolution operators for tracking,”
in IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR),
pp. 6931–6939 (2017).

32. M. Godec, P. M. Roth, and H. Bischof, “Hough-based tracking of non-
rigid objects,” Comput. Vis. Image Understanding 117(10), 1245–1256
(2013).

33. Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with
feature integration,” in Eur. Conf. Comput. Vision (ECCV), pp. 254–265
(2014).

34. L. Bertinetto et al., “Staple: complementary learners for real-time
tracking,” in IEEE Conf. Comput. Vision and Pattern Recognit.
(CVPR), pp. 1401–1409 (2016).

35. M. Danelljan, G. Häger, and F. S. Khan, “Accurate scale estimation for
robust visual tracking,” in British Machine Vision Conf. (BMVC),
pp. 65.1–65.11 (2014).

36. M. Danelljan et al., “Adaptive color attributes for real-time visual
tracking,” in IEEE Conf. Comput. Vision and Pattern Recognit.
(CVPR), pp. 1090–1097 (2014).

37. B. Babenko, M. H. Yang, and S. Belongie, “Robust object tracking with
online multiple instance learning,” IEEE Trans. Pattern Anal. Mach.
Intell. 33(8), 1619–1632 (2011).

38. Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012).

39. W. Zhong, H. Lu, and M. H. Yang, “Robust object tracking via sparsity-
based collaborative model,” in IEEE Conf. Comput. Vision and Pattern
Recognit. (CVPR), pp. 1838–1845 (2012).

40. S. Hare et al., “Struck: structured output tracking with kernels,” IEEE
Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016).

Chunbao Li is a PhD candidate in the School of Computer Science
and Engineering, University of Electronic Science and Technology
of China (UESTC), Chengdu, China. He received his MS degree from
the School of Automation Engineering from UESTC. His research
interests include visual tracking and machine learning.

Bo Yang has been a full professor since 2008. He received his
PhD from the National University of Singapore in 2002. His re-
search interests include machine learning and data mining, cloud
computing. He has published over 60 papers in information sciences,
etc. He serves as a program chair of IEEE DASC 2009, CSC 2011,
ICCCS 2019; program vice-chair of IEEE HPCC 2010; general
chair of IWKDEWL’10. He has been a senior member of IEEE
since 2013.

Journal of Electronic Imaging 013039-13 Jan∕Feb 2019 • Vol. 28(1)

Li and Yang: Correlation filter-based visual tracking via holistic and reliable local parts

https://doi.org/10.1117/1.JEI.24.5.053016
https://doi.org/10.3390/s17112626
https://doi.org/10.1109/TIP.2018.2813161
https://doi.org/10.1109/CVPR.2010.5539960
https://doi.org/10.1109/LSP.2015.2497460
https://doi.org/10.1109/TIP.2017.2745204
https://doi.org/10.1109/TIP.2017.2745204
https://doi.org/10.1117/1.JEI.25.2.023005
https://doi.org/10.1007/s00371-016-1310-4
https://doi.org/10.1016/j.jvcir.2016.04.018
https://doi.org/10.1109/CVPR.2016.466
https://doi.org/10.1109/CVPR.2016.466
https://doi.org/10.1109/CVPR.2017.531
https://doi.org/10.1109/CVPR.2017.531
https://doi.org/10.1109/CVPR.2017.733
https://doi.org/10.1016/j.cviu.2012.11.005
https://doi.org/10.1109/CVPR.2016.156
https://doi.org/10.1109/CVPR.2016.156
https://doi.org/10.1109/CVPR.2014.143
https://doi.org/10.1109/CVPR.2014.143
https://doi.org/10.1109/TPAMI.2010.226
https://doi.org/10.1109/TPAMI.2010.226
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/CVPR.2012.6247882
https://doi.org/10.1109/CVPR.2012.6247882
https://doi.org/10.1109/TPAMI.2015.2509974
https://doi.org/10.1109/TPAMI.2015.2509974

