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Abstract

Purpose: Reconstruction of patient anatomy is critical to patient-specific instrument (PSI)
design in total joint replacement (TJR). Conventionally, computed tomography (CT) and mag-
netic resonance imaging (MRI) are used to obtain the patient anatomy as they are accurate im-
aging modalities. However, computing anatomical landmarks from the patient anatomy for PSIs
requires either high-resolution CT, increasing time of scan and radiation exposure to the patient,
or longer and more expensive MRI scans. As an alternative, reconstruction from single-plane
fluoroscopic x-ray provides a cost-efficient tool to obtain patient anatomical structures while
allowing capture of the patient’s joint dynamics, important clinical information for TJR.

Approach: We present a three-dimensional (3D) reconstruction scheme that automatically and
accurately reconstructs the 3D knee anatomy from single-plane fluoroscopic x-ray based on
a nonlinear statistical shape model called kernel principal component analysis. To increase
robustness, we designed a hybrid energy function that integrated feature and intensity informa-
tion as a similarity measure for the 3D reconstruction.

Results:We evaluated the proposed method on five subjects during deep knee bending: the root-
mean-square accuracy is 1.19� 0.36 mm for reconstructed femur and 1.15� 0.17 mm for
reconstructed tibia.

Conclusions: The proposed method demonstrates reliable 3D bone model reconstruction accu-
racy with successful elimination of prior 3D imaging and reduction of manual labor and radiation
dose on patient as well as characterizing joints in motion. This method is promising for appli-
cations in medical interventions such as patient-specific arthroplasty design, surgical planning,
surgical navigation, and understanding anatomical and dynamic characteristics of joints.
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1 Introduction

Reconstruction of patient anatomy from medical images is important for designing patient-
specific instruments (PSIs) for total joint replacement (TJR).1–4 Current 3D reconstruction
methods include reconstruction from radiological images using computed tomography (CT),
magnetic resonance imaging (MRI),5,6 x-ray,7–9 and fluoroscopic x-ray sequences.10,11 Three-
dimensional reconstruction from high-resolution CT is expensive and requires prior 3D imaging,
exposing patients to large amounts of radiation (0.01 rem for lower extremities) by revolving the
x-ray source around the patient with a fine “fan” of x-ray beams through the body from all angles
into their associated detectors.12 Three-dimensional reconstruction from MRI requires expensive
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and time-consuming 3D imaging, adding discomfort to the patient in the form of noise and
constraint to the patient’s motion. In addition, reconstruction from CT or MRI requires signifi-
cant manual intervention for 3D segmentation. Although reconstruction from x-ray images is
more cost-efficient than CT or MRI, the x-ray image is static, and therefore, gives limited
dynamic information of the joint for clinical assessment.

In contrast, three-dimensional reconstruction from fluoroscopic x-ray sequences provides a
clear advantage in lower cost and neglectable radiation (0.003 rem for ∼33 s) and involves less
manual intervention compared with reconstruction from CTand MRI.12 In addition, fluoroscopic
x-ray images are sequences of x-ray images that can be captured during dynamic, weight-bearing
activities, whereas x-ray imaging is static. Single-plane fluoroscopic x-ray is a useful tool for
analyzing joint anatomy and joint kinematics in vivo,13,14 because it allows sufficiently uncon-
strained motion of the patients, such as deep knee bending (DKB), which can reveal soft tissue
information of the joint in multiple positions. Biplanar x-ray using two orthogonal units,
although generally more accurate, often unacceptably constrains the motion of the patient.15

In order to capture kinematic information, we reconstruct the 3D anatomy of the knee from
single-plane fluoroscopic x-ray to allow patients to move without impairment.

Three-dimensional knee reconstruction from kinematic sequences was first proposed by
Baker et al.10 However, this requires volumetric image reconstruction by scanning 360 deg
around the patient. Baka et al.7 then reconstructed a distal femur from stereo x-ray images.
The method was not optimized to sequence reconstruction as bone shape is expected to stay
constant throughout the sequence. An improvement was made by the same author11 to estimate
the shape based on all frames of the fluoroscopic x-ray sequence and estimate pose per frame
using biplane fluoroscopic x-ray. We propose to reconstruct patient knee anatomy during kin-
ematic motion from single-plane fluoroscopic x-ray sequences employing a two-stage optimi-
zation scheme. In the first stage, the pose is estimated with the mean model; in the second stage,
optimization alternates between shape and pose. This two-stage optimization is challenging due
to the limited information provided from single-plane images and large motion between frames.
To address this, we employ a statistical shape model (SSM) to have good shape representation
ability and a robust hybrid similarity measure.

Methods for bone shape reconstruction have been proposed in the literature with statistical
shape modeling. The SSM was first introduced by Cootes et al. in 1995 who used “shape priors”
to restrict the bone reconstruction to plausible shapes.16 The linear SSM is “learned” by a prin-
cipal component analysis (PCA) of the training shapes of Gaussian-distributed shapes. Although
this model has been successfully applied to the 3-D reconstruction of various anatomical struc-
tures in medical imaging,7,11,17 there are cases when the set of training shapes exhibits highly
nonlinear shape deformations, such as large shape variations between bones. More recently,
other shape reconstruction methods include Gaussian process morphable models (GPMMs)18

and an articulated SSM.19 Lüthi et al.18 developed GPMMs to represent the shape variations
with a Gaussian process using the leading components of its Karhunen–Loeve expansion.
The method reaches its limitations when very fine deformations need to be modeled over a large
domain, as is sometimes required in image registration. Balestra et al.19 reconstructed 3-D
patient-specific hip joints from x-ray images. In this work, an articulated statistical shape model
was utilized to address the problems associated with hip joint narrowing. An average reconstruc-
tion error of 1.9 mm was achieved for the hip and 1.1 mm was achieved for the proximal femur.

In this paper, we build on our previously developed method for creation of statistical atlases
and establishing correspondence between anatomical models.20–23 In order to accommodate for
the nonlinear variations, we employ kernel PCA (KPCA)24,25 to map the original data from the
input space to a high-dimensional feature space via a nonlinear map and then apply a linear PCA
in the feature space. (The justification analysis of the need for a nonlinear SSM is detailed in the
Appendix.)

The main contributions of this paper are threefold. (1) We propose a 3-D reconstruction
scheme from single-plane fluoroscopic x-ray sequences during kinematic activity. The 3-D
reconstruction is based on kernel PCA as a nonlinear SSM to represent the bone shape variation.
(2) We propose a hybrid energy function as the similarity measure to integrate feature and inten-
sity information in the fluoroscopic x-ray images. (3) We perform a multi-body reconstruction of
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knee bones (e.g., distal femur and proximal tibia) from single-plane fluoroscopic x-ray during
kinematic activity.

From a clinical point of view, the proposed method offers valuable information needed for
accurate assessment of the knee joint in preoperative planning. First, the reconstruction of the
patient anatomy under load-bearing conditions provides more accurate representation of the joint
alignment compared to the nonload-bearing supine position in CT and MRI. Second, collecting
patient kinematic information under load-bearing conditions offers critical information about
behavior of soft tissue during unconstrained patient motion. This overcomes the current limi-
tation of kinematic data collection in knee replacement candidates, which is currently obtained
using surgical navigation systems intraoperatively and using passive motion of the patient joint
under anesthesia. In summary, the reconstructed models, joint alignment, and kinematic infor-
mation that are obtained can lead to more accurate preoperative planning and execution using
either patient-specific instrumentation or computer/robotic guided surgery.

2 Approach

The goal of this paper is to reconstruct the 3-D knee anatomy from a single-plane fluoroscopic
x-ray sequence. The outline of the general framework is shown in Fig. 1. First, digital video
fluoroscopic x-ray [two-dimensional (2-D)] images are acquired, allowing capture of dynamic
data during kinematic activities. Each frame is calibrated using a known rectangular grid of metal
beads.13 The pose of the 3-D model is initialized with a template matching method26 and the
shape is initialized as a mean model. The 3-D model is reconstructed from a nonlinear SSM
using KPCA. This requires a training process and preimage approximation as described in
Sec. 2.1. The reconstruction employs a two-stage optimization scheme for the pose and shape
of the -3-D model as discussed in Sec. 2.2. A hybrid energy function as discussed in Sec. 2.3 is
used as a similarity measure. The output is the patient-specific knee 3-D model with poses
corresponding to each frame in the fluoroscopic x-ray sequence.

Fig. 1 Framework of the proposed method.
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2.1 Nonlinear Statistical Shape Model

The creation of statistical atlases and establishing correspondence between anatomical models
previously developed by our group is a verified method utilized in multiple medical imaging
applications.20–23 The addition described in this paper is the use of kernel PCA to capture nonlinear
variations in anatomical structures (Sec. 2.1.1) and then performing a preimage approximation
(Sec. 2.1.2) to get the reconstructed 3-D model from shape parameters. A set of 300 mixed gender
knee bones of Caucasian and black American individuals were used to build this SSM.

2.1.1 SSM training by kernel principal component analysis

The SSM represents the dominant shape variation of the training set. The training data X ∈ R3

are 3-D surface mesh models defined as X ¼ fxiji ∈ f1; : : : ; Ngg, where N is the number of
training data. Each training shape xi ⊂ X has a set of vertices, where xi ¼ fxki jk ∈ f1; : : : ;Mgg,
M denotes the number of vertices in the 3-D surface mesh model, and xki ¼ ðx; y; zÞ denotes the
coordinates of the k’th vertex of xi. Corresponding points are found between each training shape
before building the SSM with a statistical shape atlas.20–23

The input data are mapped onto a high-dimensional feature space H via the nonlinear map
Φ∶R3 → H. This map does not need to be explicitly known. Alternatively, one can introduce
the kernel matrix K, which is defined to be a function as follows:

EQ-TARGET;temp:intralink-;e001;116;496Kðxi; xjÞ ¼ hΦðxiÞ;ΦðxjÞi; (1)

such that for all data points xi

EQ-TARGET;temp:intralink-;sec2.1.1;116;452K ¼

0
B@

kðx1; x1Þ · · · kðx1; xNÞ
..
. . .

. ..
.

kðxN; x1Þ : : : kðxN; xNÞ

1
CA

is symmetric and positive semidefinite. For a Gaussian kernel

EQ-TARGET;temp:intralink-;sec2.1.1;116;378Kðxi; xjÞ ¼ e−
kxi−xjk2

2σ2 :

Center ΦðxiÞ by ΦðxiÞ ≔ ΦðxiÞ − 1
N

P
N
i¼1 ΦðxiÞ. The corresponding kernel matrix is

modified as follows:

EQ-TARGET;temp:intralink-;e002;116;312Kij ¼ K −
1

N

X
j

Kij −
1

N

X
i

Kij þ
1

N2

X
i

X
j

Kij: (2)

Conduct PCA by solving the eigenvalue problem

EQ-TARGET;temp:intralink-;e003;116;253CV ¼ λV; (3)

where C ¼ 1
N

P
N
i¼1 ΦðxiÞΦðxiÞT, V are the eigenvectors, and λ are the eigenvalues. Since the

eigenvectors V lie in the span of ΦðxiÞ; : : : ;ΦðxNÞ, Eq. (3) is equivalent to

EQ-TARGET;temp:intralink-;e004;116;197ΦðxiÞ · CV ¼ λ½ΦðxiÞ · V� for all i ¼ 1; : : : ; N: (4)

Since Kðxi; xjÞ ¼ hΦðxiÞ;ΦðxjÞi is symmetric and it has a set of eigenvectors that spans the
whole space, this is equivalent to solving the dual eigenvalue problem

EQ-TARGET;temp:intralink-;e005;116;139Kα ¼ Nλα; (5)

where α are the eigenvectors and λ is the eigenvalue for both problems. Then standard PCA is
conducted to get the first m eigenvectors to constitute the eigenmatrix A.

Normalize the eigenvectors α1; : : : ; αN by requiring that the corresponding vectors in H be
normalized, i.e., hVk; Vki ¼ 1 for all k ¼ 1; : : : ; N. This is equivalent to
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EQ-TARGET;temp:intralink-;e006;116;7351 ¼
XN
i;j¼1

αki α
k
jΦðxiÞ · ΦðxjÞ ¼ λkðαk · αkÞ: (6)

Project the input data X ∈ R3 onto the feature space spanned by the firstm eigenvectors of C.
The projected input data are given by

EQ-TARGET;temp:intralink-;e007;116;668PmΦðXÞ ¼ hVT;ΦðXÞi ¼
Xm
i¼1

αiΦðXiÞΦðXÞ ¼
Xm
i¼1

αiKðXi; XÞ: (7)

2.1.2 Preimage approximation

We need to reconstruct the preimages X̂ from the shape parameter θ ¼ fθ1; : : : ; θmg in this sec-
tion. In standard PCA, the preimage X̂ can simply be approximated by the linear relationship
between the shape parameters and the preimage.16 However, this simple linear relationship does
not exist for KPCA because the nonlinear map Φ is not necessarily known.27 For kernel PCA,
we reconstruct the preimage X̂ of the corresponding test point X ∈ R3 based on the relationship
between input-space and feature-space distances.25

For any two points xi and xj in the input space, the Euclidean distance is given by dðxi; xjÞ.
Accordingly, their feature-space distance d̃½ΦðxiÞ;ΦðxjÞ� is obtained using the mapped images.

The relationship between dðxi; xjÞ and d̃½ΦðxiÞ;ΦðxjÞ� can be derived as follows:

EQ-TARGET;temp:intralink-;e008;116;472d̃2½ΦðxiÞ;ΦðxjÞ� ¼ 1 − α1Kα1 − 2Kα1; (8)

where α1 ¼ αðθ − bÞ. For the Gaussian kernel of the form kðΦi;ΦjÞ ¼ e−
kxi−xjk2

2σ2 , which is invert-

ible, the relationship between dðxi; xjÞ and d̃½ΦðxiÞ;ΦðxjÞ� can be described by

EQ-TARGET;temp:intralink-;e009;116;405d2ij ¼ −2σ2 log

�
1

2
ðKii þ Kjj − d̃2ijÞ

�
: (9)

The distance to neighboring points has an exponential impact on the estimation of the current
point according to the iterative scheme defined by Schölkopf et al.28 The contribution of neigh-
boring points drops rapidly with increasing distance from the preimage, and only n neighbors
fx1; : : : ; xng ∈ RM are obtained, where n ≤ N.

An M × n matrix is constructed, X ¼ ½x1; : : : ; xn�. Assuming that the training patterns span
an m-dimensional space, we can obtain the singular value decomposition of the centered M × n
matrix XH as

EQ-TARGET;temp:intralink-;e010;116;275XH ¼ UΛV 0 ¼ UZ; (10)

where the left singular vector U ¼ ½e1; : : : em� is an M ×m matrix with orthonormal columns ei
andΛ is the right singular vector,Λ are singular values, and Z is anm × nmatrix with columns zi
containing the projection of xi onto e 0

j s. The squared distance of xi to the origin is equal to kzik2
such that d20 ¼ ½kz1k2; : : : ; kznk2� 0.

According to the assumption that the preimage x̂ is in the span of n neighbors, its location can
be estimated by its n nearest neighbors. Hence the least squares solution ẑ is yielded by

EQ-TARGET;temp:intralink-;e011;116;170ẑ ¼ −
1

2
Λ−1V 0ðd2 − d20Þ: (11)

The least squares solution ẑ is expressed by the basis ej that defined a different coordinate
system from the input space. Transforming it back to the original coordinate system x̂

EQ-TARGET;temp:intralink-;e012;116;103x̂ ¼ Uẑþ x̄: (12)

This preimage approximation algorithm is summarized in Fig. 2.
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2.2 Optimization

To cope with the fitting of multiple parameters, we divided the optimization into two stages. The
first stage provides an initialization for the reconstruction by fixing the shape parameters and
optimizing pose parameters only. The initial fixed shape is the mean shape, which is rigidly
registered to the 2-D image to yield a close-to-optimal pose. The second stage is shape estimation
with the estimated pose from the first stage. These two stages run in turn, resulting in the optimal
shape and pose estimation. The optimization scheme is shown in Fig. 3.

The shape and pose of the 3-D model are optimized in each frame Ii of the fluoroscopic x-ray
sequence. Let S ∈ R3 be the smooth surface of the object of interest and denote X ¼ ½x; y; z�,
X ∈ S to be the spatial coordinates that are measured with respect to the referential frame of the
imaging camera as shown in Fig. 4. Let X0 ∈ R3 and S0 ∈ R3 be the initial coordinates and
surface in the camera reference frame, respectively. We assume a camera realization π∶R3 → Ω
such that X 0 ¼ ½xz ; yz� and Ω ∈ R2 denotes the domain of the image Ii. Similarly, we can form the

edge image of the object of interest in the image Ii as Ci ¼ ∂Ii, where Ci ∈ R2.
We can locate the surface of the object of interest S in the camera reference frame via a

transformation T such that S ¼ TðS0Þ and the corresponding pointwise expression is

EQ-TARGET;temp:intralink-;e013;116;366X ¼ TðX0Þ ¼ RX0 þ t; (13)

where R is a rotation matrix. R ¼ RγRβRα where

EQ-TARGET;temp:intralink-;sec2.2;116;322

Rγ ¼

2
64
cos γ − sin γ 0

sin γ cos γ 0

0 0 1

3
75; Rβ ¼

2
64

cos β 0 sin β

0 1 0

− sin β 0 cos β

3
75; Rα ¼

2
64
1 0 0

0 cos α − sin α

0 sin α cos α

3
75

and t is a translation vector, t ¼
2
4 tx
ty
tz

3
5.

X0 ¼ x̂ is reconstructed from the shape parameters θ ¼ fθ1; : : : ; θmg via X0 ¼ fðθÞ using
kernel PCA, which is described in Sec. 2.1.2.

Two sets of parameters are determined to align the 3-D model to the 2-D x-ray image: one is
the shape parameter set θ ¼ fθ1; : : : ; θmg; the other set contains the pose parameters,
p ¼ fα; β; γ; tx; ty; tzg. The optimal shape and pose parameters are determined by minimizing
the hybrid energy function defined in Sec. 2.3 with a global optimization algorithm called pattern
search (PS). PS attempts to minimize an objective function by comparing its value in a finite set
of trial points at each iteration. As a direct search method, PS can be applied to functions that are
not continuous or differentiable. Convergence for stationary points can be proved from arbitrary
starting points.29

[

[ ]

]

Fig. 2 Preimage approximation algorithm.
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Fig. 4 Camera coordinate system definition. In the sagittal view, x axis is around the AP axis,
y axis is around the around the proximal-distal axis, and z axis is around the medial-lateral axis.

Fig. 3 Two-stage optimization. Top: stage 1: the estimated shape is rigidly aligned to each frame
of fluoroscopic x-ray image. Mean shape is used as initial shape parameter. Center: stage 2:
shape is optimized with the fixed pose from stage 1. Stage 1 (pose) and stage 2 (shape) alternate
optimization until convergence occurs. Bottom: The hybrid energy function is minimized to get the
final estimation of the 3D model’s shape and pose.
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2.3 Hybrid Energy Function

An energy function E, as a similarity measure, quantifies how closely the 3-D model with the
current pose and shape fits the corresponding object in the fluoroscopic x-ray image. A hybrid
energy function that integrates both feature and intensity information is proposed, which is less
time consuming than the intensity-based method and less prone to segmentation error than
the feature-based method. A collision detection score is used to avoid a collision between neigh-
boring bones for multi-body registration. Specifically, the hybrid energy function is defined as
a linear combination of an edge score Ee, a region score Er, a homogeneity score Eh, and
a collision detection score Ec

EQ-TARGET;temp:intralink-;e014;116;621E ¼ −½c1uðxÞEe þ c2uðxÞEr − c3Eh − c4Ec�; (14)

where ci are the weighting parameters that set the contribution of each term to the overall energy
function and uðxÞ is a mask. The value of uðxÞ ¼ 0 for pixels whose projection falls in the area of
neighboring bones; uðxÞ ¼ 1 otherwise. The weighting scores are selected with the edge match-
ing value weighted more heavily than the intensity matching values. By weighting the edge score
more heavily than the intensity value, the edge value dominates when the 3-D models are close to
the true contours. The weight of the homogeneity score is a penalty that matches the value of
intensity and edge score, whereas the collision detection weight is a large constant to avoid such
behavior.

Two input data are involved in the hybrid energy function: one is a 2-D x-ray image defined
as I1∶Ω1 ∈ R2; the other is the projected 3-D model image defined as I2 ¼ πðx̂Þ, I2∶Ω2 ∈ R2.
The generation of edge images is through a bilateral filter followed by a Canny edge detector.
The corresponding edge images can be defined by C1 ¼ ∂I1 and C2 ¼ ∂I2, where C1 is the edge
image of the 2-D fluoroscopic x-ray image, C2 is the projected 3-D model edge image, and
C1, C2 ∈ R2.

The intensity information is integrated into the hybrid energy function by matching the x-ray
image against the projected 3-D model image. Unlike intensity-based methods, which require a
time-consuming digitally reconstructed radiograph (DRR) as the simulated x-ray projection
image, the projected model image is generated by rendering the 3-D surface model on the
2-D image plane by software developed by the authors using a 3-D graphics library.13

The region score Er is thus defined as a modified local cross correlation30 as follows:

EQ-TARGET;temp:intralink-;e015;116;348ErðI1; I2Þ ¼
1

N

X
j∈Ω1

P
i∈nðjÞGpðjÞ½I1ðiÞ − I1ðjÞ�2½I2ðiÞ − I2ðjÞ�2P
i∈nðjÞ

½I1ðiÞ − I1ðjÞ�2
P

i∈nðjÞ
½I2ðiÞ − I2ðjÞ�2

; (15)

where I1 is the 2-D fluoroscopic x-ray image, I2 is the projected 3-D model image, I1 and I2 are
the corresponding mean values, i represents a pixel in the neighborhood nðjÞ around pixel j in I1,
and Gp is a Gaussian window function centered around each pixel in the region image.

The feature information is integrated into the hybrid energy function by a direct image-to-
image similarity measure in our previous work on rigid 2D–3D registration of knee implants13 as
the edge score Ee defined as follows:

EQ-TARGET;temp:intralink-;e016;116;217EeðC1; C2Þ ¼
P

i∈Ω1;j∈Ω2
C1ðiÞC2ðjÞP

j∈Ω2
C2ðjÞ

: (16)

The edge score is maximized when the projected 3-D model edge image coincides with the
corresponding object edges in the 2-D x-ray image.

The homogeneity score Eh is defined as

EQ-TARGET;temp:intralink-;e017;116;133EhðI1; I2Þ ¼
X
i∈Cin

P
j∈nðiÞjI1ðjÞ − IinðiÞj

nin
þ

X
i∈Cout

P
j∈nðiÞjI1ðjÞ − IoutðiÞj

nout
; (17)

where the first term designates the variance of the set of gray levels located on the internal of the
projected 3-D model image, and the second term designates the variance located on the external
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of the projected 3-D model. The parameter j represents a pixel in the neighborhood nðiÞ around
pixel i in the 2-D x-ray image, IinðiÞ is the mean intensity in the neighborhood of nðiÞ inside the
3-D model, nin is the number of pixels inside the 3-D model, IoutðiÞ is the mean intensity in the
neighborhood of nðiÞ outside the 3-D model, and nout is the number of pixels outside the 3-D
model. Eh is minimal when the external contour of the projected 3-D model delineates two
homogeneous regions separated by an edge.

Neighboring bones may overlap each other during registration. Therefore, we include a col-
lision detection score Ec as a penalty to prevent collision of neighboring bones in the same frame

EQ-TARGET;temp:intralink-;e018;116;638Ecðs1; s2Þ ¼ CH1ðs1; s2Þ; (18)

where C is a large constant, s1 and s2 are the surface mesh of the two involved bones, and H1 is
the Heaviside function used to penalize any overlapping between two surface models

EQ-TARGET;temp:intralink-;sec2.3;116;583H1ðs1; s2Þ ¼
�
1; if collision occurs

0; else
:

Thus, if no collision is present, H1ðs1; s2Þ will be equal to zero.
It is time-consuming to use a standard collision detection library. An effective solution is

achieved using part of the meshes so that only adjacent surface patches of neighboring meshes
are involved by the prior knowledge that collision between femur and tibia occurs only in the
femur condyle and tibial plateau. Therefore, computational complexity is significantly reduced
by searching only in the surface meshes that potentially show an intersection with the surface of a
neighboring mesh. We detect a collision by comparing the distance of each tibial plateau vertex
to tibial bottom plane h1 with the distance of the corresponding femur condyle vertex to tibial
bottom plane h2 as shown in Fig. 5. Therefore, this algorithm is independent on the flexion of the
femur or tibia. The proposed collision detection algorithm is summarized in Fig. 6. Note that
Ec does not generally prohibit collisions, but makes points that lie inside other meshes less
attractive. A plot of each term and the overall energy function with respect to deviation from
the correct pose is shown in Fig. 7.

Figure 7(a) illustrates that there are many local minima for the edge score. This is due to the
multiple matched poses of the 3-D model and the edge image. The region score in Fig. 7(b) is
smoother; however, it has a relatively shallow global minimum. The homogeneity score in
Fig. 7(c) has a sharp global maximum, which corresponds to the match between the 3-D model
projection and the 2-D x-ray image. Figure 7(d) depicts the overall hybrid energy function.

Fig. 5 Collision detection by comparing the distances to tibia bottom plane.
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The inclusion of an edge score, region score, homogeneity score, and collision detection score
results in a hybrid energy function that is relatively smooth and has an obvious global minimum.

3 Experiments

The training data came from the same database as our previous studies.21 Computed tomography
(CT) scans of the knees were performed in the range from 120-mm proximal to the joint to
120-mm distal to the joint. The bones were scanned at 1- to 2-mm intervals and the volumetric
data were interpolated at each 0.5 mm in the transverse plane. Automatic segmentation of the CT
image was performed according to our previous study.31 The bone atlas was created using a
method previously developed by our research group.20–23 Segmented three-dimensional surface
mesh models were added to the atlas by adaptation of a template mesh to accurately match an
input training model. This adaptation generates accurate correspondence of surface vertices.

The fluoroscopic x-ray system is shown in Fig. 8. Single-plane fluoroscopic x-ray sequences
of DKB were acquired for five healthy subjects using a high-frequency pulsated video

Fig. 6 Collision detection algorithm.

Fig. 7 Energy function versus x axis and y axis translation from the true pose: (a) edge score, Ee;
(b) region score, Er ; (c) homogeneity score, Eh ; and (d) overall hybrid energy function.
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fluoroscopy unit with an image resolution of 640 × 480 pixels at 60 Hz. Because the largest knee
motion occurs in the flexion and antero-posterior translation, the fluoroscopic x-ray imaging was
performed in the sagittal plane as shown in Fig. 8. A perspective projection model is used for the
fluoroscope by modeling the fluoroscope machine as an x-ray point source and a planar image
receptor where the image is formed. The calibration procedure to remove the “pincushion” or
“barrel” effect visible in the raw fluoroscopic image is described in our previous work.13

All subjects underwent a CT scan of the knee and triangulated CT segmentations (extracted
with Avizo 8.1.0, FEI Visualization Sciences Group, Hillsboro, Oregon), segmentation was per-
formed by thresholding the volume using a bone threshold. Slices were then examined to correct
the segmentation by matching the bone contour to the boundary of the cortical bone. Output
models were used as ground truth shapes. The ground truth pose was derived by 2-D–3-D regis-
tration of the ground truth shape to the fluoroscopic x-ray images with manual fitting as the
initial pose using the software developed in our previous work.13 The training data in the atlas
did not include any of the testing bones related to the five subjects of the fluoroscopic x-ray
images.

Two evaluation measures were used for reconstruction and rigid registration, respectively.
The reconstruction accuracy was evaluated by the root mean square (rms) error between the
reconstructed shape and the ground truth one. Let A be the set of estimated shape and estimated
pose points and B be the set of ground truth shape and reference pose points. Supposing they are
represented as point sets A ¼ fa0; a1; : : : ; an−1g and B ¼ fb0; b1; : : : ; bn−1g, we define rms
distance as follows:

EQ-TARGET;temp:intralink-;e019;116;328RMSðA; BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n−1
i¼0 ðai − biÞ2

n

r
: (19)

To evaluate the best achievable accuracy of the proposed KPCA-based SSM, we calculated
the rms error for 3-D–3-D reconstruction of the SSM to the ground truth shape for the femur.
The best achievable accuracy for the femur would be ∼0.6 to 0.7 mm.

The registration accuracy was evaluated by the motion difference with respect to the refer-
ence standard in the camera reference frame as defined in Fig. 4. Absolute mean and standard
deviation of the motion differences (rotation and translation) between the tracked model and
the reference standard were reported. The translation parameters relate the translation of the
registered model relative to its starting position in mm, and the rotation parameters relate the
angles along the defined coordinate system in degrees from the starting pose.

4 Results

4.1 Experiment 1

To demonstrate the ability of the proposed KPCA-based SSM reconstruction of femur and tibia
in single-plane fluoroscopic x-ray frames, non-rigid 2-D–3-D registration was conducted on a
sequence of closely spaced 2-D fluoroscopic x-ray images (around 600 fluoroscopic x-ray
images) for five subjects during DKB. Both shape and pose parameters were initialized before

Fig. 8 Monoplane fluoroscopic x-ray system for DKB.
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reconstruction to prevent falling into local minima in optimization.26,32,33 The initial shape of the
3-D model was the mean model in the nonlinear SSM. The initial pose of the 3-D model was
determined by a template-matching method.26

The reconstruction accuracy, listed in Table 1, was calculated by comparing the reconstructed
model to the ground truth model segmented from CT.

The rigid registration accuracy of the reconstructed models to the fluoroscopic x-ray images
is summarized in Table 2, where Tx, Ty, and Tz are the mean absolute errors of translations in
ðx; y; zÞ axes and Rx, Ry, and Rz are the mean absolute errors of rotations in ðx; y; zÞ axes as
defined in Fig. 4.

The surface distance maps for the reconstructed femur and tibia of subject 4 compared with
the ground truth shape are shown in Figs. 9 and 10, respectively.

The overlays of the projected 3-D model edges on the fluoroscopic x-ray images of the same
subject are shown in Fig. 11 and its motion curve is shown in Fig. 12. The solid line represents
the SSM fitting results, and the dots are ground truth pose in eight selected frames. The rotation
error is very small during the whole sequence of DKB with the exception of early stage of DKB.
The wide spread of the z axis rotation (around the medial–lateral axis) during DKB leads to large
variation in that axis for both femur and tibia. In contrast, the rotation around the x axis [anterior–
posterior (AP) axis] and y axis (proximal–distal axis) is relatively steady.

4.2 Experiment 2

To compare single-plane reconstruction with biplane reconstruction, an additional AP view
image was added to the fluoroscopic x-ray sequence. The AP view image was DRR using
CT of the corresponding patient with known poses using the framework developed in our

Table 1 Reconstruction accuracy using single-place fluo-
roscopy of femur and tibia for five subjects

Subject Femur rms error (mm) Tibia rms error (mm)

1 1.14 1.33

2 1.81 1.25

3 1.12 1.01

4 0.92 0.92

5 0.96 1.23

Average 1.19� 0.36 1.15� 0.17

Table 2 Pose estimation accuracy of femur and tibia.

Translation/rotation
Femur mean
absolute error

Limits of
agreement

Femur mean
absolute error

Limits of
agreement

Tx (mm) 0.78� 0.62 0.45� 1.90 1.10� 0.71 0.07� 2.37

T y (mm) 0.74� 0.72 −0.27� 1.96 1.25� 1.05 −0.40� 1.59

T z (mm) 1.41� 0.47 0.07� 3.84 1.30� 1.61 0.68� 3.72

Rx (deg) 0.97� 0.68 0.59� 2.17 0.97� 0.82 −0.31� 2.39

Ry (deg) 1.05� 1.06 0.68� 2.74 0.90� 0.81 −0.05� 2.25

Rz (deg) 0.81� 0.64 0.56� 1.72 0.84� 0.88 −0.12� 2.35
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Fig. 10 Tibial surface distance map between 3-D reconstruction and the CT model.

Fig. 9 Femoral surface distance map between 3-D reconstruction and the CT model.

Fig. 11 3-D model edge overlay on the x-ray images in key poses for femur and tibia during DKB
(subject 4).
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previous work.13 We tested all five patients, reducing the femoral average reconstruction error
from 1.19 to 1.04 mm and the tibial average reconstruction error from 1.15 to 1.03 mm, as shown
in Table 3.

The surface distance maps for the reconstructed femur and tibia of subject 4 compared with
the ground truth shape are shown in Figs. 13 and 14, respectively.

4.3 Experiment 3

We performed leave-one-out experiments on the proposed method to compare reconstruction
results between KPCA and linear PCA with different numbers of principal components (PC)

Fig. 12 Femur and tibia kinematics of subject 4. (a) Femur and tibia rotation; (b) femur and tibia
translation. Solid lines represent KPCA-based SSM fitting results and solid circles represent
ground truth pose from manual fitting.

Table 3 Reconstruction accuracy using biplane reconstruc-
tion of femur and tibia for five subjects

Subject Femur rms error (mm) Tibia rms error (mm)

1 1.09 1.22

2 1.58 1.24

3 0.96 0.89

4 0.72 0.78

5 0.87 1.04

Average 1.04� 0.33 1.03� 0.19

Wu and Mahfouz: Reconstruction of knee anatomy from single-plane fluoroscopic x-ray. . .

Journal of Medical Imaging 016001-14 Jan∕Feb 2021 • Vol. 8(1)



σ. The reconstruction accuracy is calculated by rms error for the reconstructed surface shape
compared with the ground truth. As shown in Fig. 15, the rms error decreases more quickly
with the increase of σ at small numbers of principal components (pc ¼ 1 to 10), except bounding
cases with large or small σ values. The rms error of σ ¼ 200 fluctuates greatly due to the
decreased numerical stability for large σ value. As the number of principal components exceeds
10, the rms error stays relatively constant with increasing number of principal components.
For a constant number of principal components between 5 and 10, the reconstruction error of

Fig. 13 Femoral surface distance map between 3-D reconstruction and the CT model with an
additional simulated AP view image (subject 4).

Fig. 14 Tibial surface distance map between 3-D reconstruction and the CT model with an
additional simulated AP view image (subject 4).
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KPCA (σ ¼ 30, 50, and 70) is smaller than that of PCA and the rms error of PCA approaches
the rms error of KPCA with more than 10 principal components.

The compactness of the model is examined by mapping the cumulative shape variance versus
the number of principal components used in PCA and KPCA, as shown in Fig. 16. The cumu-
lative variance of KPCAwith different kernel parameters (σ ¼ 1, 10, 30, 50, 70, 100, and 200) is
compared with that of PCA. As expected, the compactness of KPCA increases as the kernel
parameter σ increases, and it approaches a straight line as σ approaches 1. Given a fixed number
of principal components, a higher value of σ corresponds to a higher cumulative variance. This is
because the Gaussian distribution is wider for a higher value of σ, resulting in more information
remaining in the kernel mapping. The trade-off, however, is that a higher value of σ decreases
the difference between different data points, decreasing the numerical stability of the KPCA
reconstruction.

5 Discussion

We introduced an automatic method for reconstructing both femur and tibia in single-plane
fluoroscopic x-ray sequences without the acquisition of prior 3-D imaging. A nonlinear
SSM, KPCA, was used for 3-D reconstruction. To validate the proposed method, we report

Fig. 15 Reconstruction error of KPCA and PCA models. The KPCA curve is shown for seven
different values of kernel parameter σ.

Fig. 16 Compactness of the statistical models. Percentage of total shape variance versus the
number of principal components for SSMs using PCA and KPCA.
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reconstruction results for five subjects conducting DKB sequences. To compare with biplane
reconstruction, we added a simulated AP view image for the reconstruction, which significantly
reduced the reconstruction error.

The proposed nonlinear SSM-based tracking and reconstruction method has an accuracy of
1.19� 0.36 mm for femur and 1.15� 0.17 mm for tibia as reported in Table 1. The surface
distance map in Fig. 9 illustrates that large errors in femoral 3-D reconstruction occur in the
areas that are not visible in 2-D images, such as intercondyle fossa, medial condyle, and the
popliteal surface. Error in these areas is not clinically important to overall sizing and PSIs.9

Similarly, large errors in tibial 3-D reconstruction occur in the medial epicondyle and tibial
plateau (illustrated in Fig. 10). To prove this assertion, experiment 2 was conducted by adding
an AP view image to the single-plane sequence with DRR image to mimic biplanar fluoroscopic
x-ray, reducing the average reconstruction error for the femur from 1.19 to 1.04 mm and for
the tibia from 1.15 to 1.03 mm.

In rigid registration, the largest errors in femur poses occur in the y axis rotation (around the
proximal–distal axis), as reported in Table 2. Because the bone surface has a relatively short
distance to this axis, rotations around this axis cause only small changes in the contour shapes.
In addition, the shape variation from the SSM may also compensate for this change in y axis
rotation. The largest translation error occurs in the out-of-plane translation, because translations
in this axis only cause small changes in the contour scale instead of shape changes.

Our reconstruction accuracy is comparable to single-plane or biplane reconstruction results in
the literature, despite the fact that our study used the lower resolution fluoroscopic x-ray images.
Of the few single-plane reconstruction studies in the literature, Baka et al.11 reported a biplane
reconstruction rms error of 1.48 mm on 10 in vivo reconstructions of the distal femur from fluo-
roscopic x-ray sequences. Whitmarsh et al.34 reported an accuracy of 1.22 mm mean error of
30 femoral reconstructions from single-plane simulated dual-energy x-ray absorptiometry
(DXA) images. Zheng35 reported an average error of 1.6 mm on a pelvic reconstruction from
a single standard AP x-ray radiograph. More studies are conducted on biplane reconstruction in
the literature. Laporte et al.36 reported a biplane reconstruction mean error of 1 mm on eight
distal femurs of dry cadavers. An average mean reconstruction error of 1.2 mm was reported
by Zheng et al.37 using two views for cadaveric femurs.

Although in this work we present a method to reconstruct the 3-D knee anatomy from single-
plane fluoroscopic x-ray sequences, the method can be applied to a multi-view reconstruction as
well. A multi-view reconstruction usually achieves higher reconstruction accuracy; however,
multi-view fluoroscopic x-ray machines are more expensive and less used in clinics than
single-view devices. Additionally, multi-view fluoroscopic x-ray machines may constrain the
patient’s motion.

Reconstruction was implemented in C++ on a 3.07 GHz desktop computer with 12.0 GB of
RAM. It took about 20 min to reconstruct one bone in the unoptimized implementation. Since
the most time-consuming part is the shape optimization on all the frames, computation time may
be greatly decreased by conducting this in parallel.

One limitation in this study is the use of a healthy population for model reconstruction. As a
result, emphasis is put on the reconstruction accuracy rather than pathology analysis. Osteoporosis
might result in a more varied bone shape and impact the reconstruction accuracy, thus making the
reconstruction more challenging. In addition, DKB and many other activities may not be feasible in
pathological patients. In the future work, we will perform reconstructions on both healthy and
osteoporotic patients and on a significantly larger patient population. Collision detection on osteo-
porotic patients will be conducted in the future study as well. This paper is also more focused on
algorithm development rather than clinical study, and we will perform clinical study and kinemat-
ics analysis with the fluoroscopic x-ray images in the future.

6 Conclusion

In conclusion, we present an automatic 3-D reconstruction scheme for reconstruction of knee
anatomy from single-plane fluoroscopic x-ray sequences based on a nonlinear SSM. Both distal
femur and proximal tibia were reconstructed from the single-plane fluoroscopic x-ray sequence
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during kinematic activity (e.g., DKB). The proposed method demonstrates great utility in suc-
cessful elimination of prior 3-D imaging and reduction of manual labor and radiation dose on
patient. It also provides more accurate information of the patients in motion than static imaging
methods such as static x-ray imaging. The validation results demonstrate the reliability of the
proposed method for 3-D bone model reconstruction during DKB with the average reconstruc-
tion accuracy of 1.19� 0.36 mm for femur and 1.15� 0.17 mm for tibia. The proposed method
is promising for applications in medical interventions such as patient-specific arthroplasty
design, surgical planning, surgical navigation, understanding anatomical and dynamic character-
istics of joints, and characterizing joints in motion.

7 Appendix: Justification for Nonlinear SSM

The linear SSMs using PCA are limited in their applicability to more complicated shape defor-
mations, such as the knee. If the training data form distinct clusters in shape space or if the shapes
are not Gaussian-distributed, the linear shape prior tends to mix classes and blur details of the
shape information; consequently, the resulting shape prior no longer effectively models the
shapes in the training data. We thus analyze the distribution of the training data with linear
PCA. The training data are projected onto the first and second principal components of PCA.
The distribution of the second principal component projection versus the first principal
component projection in Fig. 17 clearly shows distinct clusters in left and right quadrants.

Fig. 17 First and second principal components in the shape. Each point represents the value of
the first and second principal component of PCA in the training dataset.

Fig. 18 Distribution of the training dataset. Fit of various parametric probability distributions to
(a) the first principal component and (b) second principal component of a training dataset for
a PCA (linear) SSM.
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Note that if the training set were Gaussian-distributed, then all projections should be Gaussian-
distributed as well. Therefore, the training dataset is not represented by a Gaussian distribution.

To validate this assumption, multiple parametric probability distributions to the first and
second principal component projections of the training data were performed. Results show
a large gap in the probability density function (PDF) to a Gaussian distribution (Fig. 18).
The assumption of Gaussian distribution has some limitation to represent the distribution of the
training dataset. Therefore, kernel PCA (KPCA) is used as a nonlinear shape prior to model
the knee bone shapes.
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