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Abstract

Purpose: Deep learning (DL) applications strongly depend on the training dataset and convolu-
tional neural network architecture; however, it is unclear how to objectively select such param-
eters. We investigate the classification performance of different DL models and training schemes
for the anatomic classification of cone-beam computed tomography (CBCT) projections.

Approach: CBCT scans from 1055 patients were collected and manually classified into five
anatomic classes and used to develop DL models to predict the anatomic class from single
x-ray projections. VGG-16, Xception, and Inception v3 architectures were trained with 75%
of the data, and the remaining 25% was used for testing and evaluation. To study the dependence
of the classification performance on dataset size, training data was downsampled to various
dataset sizes. Gradient-weighted class activation maps (grad-CAM) were generated using the
model with highest classification performance, to identify regions with strong influence on
CNN decisions.

Results: The highest precision and recall values were achieved with VGG-16. One of the best
performing combinations was the VGG-16 trained with 90 deg projections (mean class precision
= 0.87). The training dataset size could be reduced to ∼50% of its initial size, without compro-
mising the classification performance. For correctly classified cases, Grad-CAM were more
heavily weighted for anatomically relevant regions.

Conclusions: It was possible to determine those dependencies with a higher influence on the
classification performance of DL models for the studied task. Grad-CAM enabled the identi-
fication of possible sources of class confusion.
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1 Introduction

Cone beam-computed tomography (CBCT) is the most commonly used three-dimensional
image-guided radiotherapy (IGRT) modality.1 Because it enables imaging of the patient on the
treatment table, it is used on a daily or weekly basis to ensure accurate positioning of the target
and sufficient avoidance of the nearby organs-at-risk prior to delivering radiation.1 The scanning
protocol used for a CBCTacquisition is selected manually at the time of the scan and is typically
determined by the general anatomic location of the scan. Automatically identifying the anatomic
location of a CBCT scan from a single x-ray projection image using deep learning (DL) methods
could be the first step in developing a framework to guide CBCT protocol selection to ensure
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consistent image quality and proper patient exposure. It could also be used to alert the treatment
team to image quality degradations prior to the completion of the scan. Additional considera-
tions, such as patient size and presence of implants (e.g., hip prothesis, pacemakers), could be
added to the framework to increase robustness; for example, an average-sized prostate cancer
patient with a hip prothesis may benefit from a more penetrating CBCT protocol.

The implementation of DL methods to CBCT data introduces methodological questions
that have not been addressed to the best of our knowledge. For general image classification tasks,
the performance has been shown to depend in a complex manner on the CNN architecture2 and
dataset size.3 Many standard classifier architectures, including VGG-16,4 are developed for and
trained with ImageNet data,5 which contains some 14 million 224 × 224 RGB color photographs
of objects belonging to 1000 classes. In comparison, the CBCT images are 1024 × 768, grayscale
radiographs of a 20-cm section of patients in standard treatment positions. The visual informa-
tion, content, and similarity between images may be substantially different between CBCT and
ImageNet datasets. Furthermore, each CBCT scan contains hundreds of projections acquired
approximately every 0.4 deg as the imaging system rotates around the patient. For the task
of utilizing anatomic classification to guide acquisition protocols or to identify potential expo-
sure errors, the classification should utilize the first projection images regardless of the orienta-
tion of the imaging system. Experience suggests that human observers find classifying images
from arbitrary, oblique angles more challenging than standard AP or lateral projections.6,7

Alternatively, DL models are often a subject of epistemological criticism due to lack of
interpretability of the CNN performance.8,9 The interpretability of CNNs is especially important
in medical applications, due to the impact of medical tasks on patient health. To address these
concerns, several techniques have been developed to explain or visualize key elements involved
in the CNN decision process;10,11 however, such techniques are not always integrated to DL
model development.

Therefore, the objective of this work is to study the impact of (1) CNN architecture, (2) train-
ing dataset size, and (3) projection angle on the development of DL solutions for anatomic
classification of CBCT projection images, and (4) to investigate the CNN performance with
aid of interpretability tools. By investigating each of these matters on the straightforward task
of classifying CBCT projection images, we hope to gain insight into the strengths and limitations
of the DL models for medical imaging applications.

2 Methods

2.1 CBCT Data Acquisition and Preprocessing

All anonymized projection images from routine clinical radiotherapy CBCT scans from 1055
patients were collected over 24 nonconsecutive months. Because each patient can contribute
scans from multiple treatment fractions, this resulted in a total of 6850 scans. The retrospective
use of the data for this study was reviewed and approved by the institutional review board.
All scans were acquired on TrueBeam linear accelerators (Varian Medical Systems, Palo Alto,
California) using routine clinical protocols named for the anatomic class for which they are
intended (see Appendix A). While some institutions manually alter protocol parameters for each
patient, this is not our institutional practice.

Raw projections from 0 deg to 360 deg, at 45 deg intervals, were log normalized, then trun-
cated to a given pixel value range (from 0.5 to 7.5) and mapped to 8-bit PNG images, using a
MATLAB routine. The dynamic range was selected to include the majority of pixel values across
the anatomic sites while excluding those outside the patient (i.e., <0.5). PNG images were used
for labeling (Sec. 2.2) and for CNN training (Sec. 2.4). As others have done for medical image
applications,12,13 PNG images were rebinned to match the CNN architecture input size.14

2.2 Image Labeling

CBCT scans were manually classified into five anatomic classes by a medical physicist with
20 years of experience in the practice of radiotherapy. A MATLAB interface was used to review
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all available projection images from 0 deg to 360 deg at 90 deg intervals, providing up to five
projections per scan. Orthogonal views were used since they are more intuitive for a human
observer and are thus standard in IGRT clinical workflow. Examples of projection images in
each of the five classes with the midplane marked by a cyan line are shown in Fig. 1. The class
selection was based on the mid-plane location relative to anatomical boundary lines. Upper and
lower boundaries for each class are also listed in Fig. 1.

2.3 Data Curation

There can be significant variability in the number of CBCT scans each patient receives based on
the fractionation schedule and/or image frequency determined by their treatment protocol, e.g., a
patient treated with hypofractionated stereotactic body radiotherapy may have only a few scans,
whereas a prostate patient may have 10 times as many.6 This poses several challenges: (a) the
similarity of the images from fraction to fraction may result in data that is highly redundant and
(b) an imbalance in the proportion of data between classes may result. To mitigate this issue, a
maximum number of scans per patient were included in the dataset used for model development:
from 2 to 10 depending on the anatomic class. Ideally, 10 scans per patient would have been
included for all classes but this was not possible for hypofractionated or single-fraction (i.e.,
stereotactic brain radiosurgery) treatments.

From each CBCT scan, projection images at every 45 deg (from 0 deg to 360 deg) were gath-
ered. Projection data were grouped by view angle, resulting in eight different subsets. Each subset
was divided as follows: 75% to train the model and 25% for testing and evaluation (equally par-
titioned), with no overlap of patients across training, testing, and evaluation datasets. Table 1 shows
the resulting number of images per angular subset for each anatomic class as well as the total
number of patients contributing to each class. Note that a range of images is given for head and
neck classes because such scans were typically acquired with a head protocol, which utilizes a
short scan (i.e., scan range ≈ 200 deg) resulting in an angularly asymmetric dataset size.

2.4 DL Model Development

Three CNNs were built using the Keras Deep Learning15 library with a TensorFlow16 backend
engine (version 2.1.0, TensorFlow) to predict the anatomic class from a single projection image,

Fig. 1 Examples of projection images in each of the five classes with the mid-plane marked by a
cyan line. Magenta lines indicate the boundaries between classes. Upper and lower anatomic
landmarks used to determine the boundaries for each of the classes are indicated.
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given a fixed projection angle. These architectures, VGG-16,4 Xception,17 and Inception v3,18

were selected because they have been proven to be effective in the classification of natural19–21

and medical images.12,20,22,23 The classification layer of each network was adjusted to the number
of classes in our classification task. All convolutional layers used rectified linear unit (ReLU)
activation functions. CNNs were trained using the stochastic gradient descent optimizer, with a
learning rate of 0.001, and transfer learning; that is, using the weights of a pretrained CNN (with
the ImageNet dataset) as initial weights. Training was performed in two stages: (1) a warm-up
stage (50 epochs), where all the weights of the networks were kept fixed, except for those of the
last layer (classification layer), and (2) the training stage (100 epochs), where all weights were
updated. Keras built-in data augmentation tools were used to prevent overfitting, allowing shifts
(up to 10%) and zoom (up to 20%).

To study the dependence of the classification performance on dataset size, the training subset
was downsampled to 5%, 10%, 15%, 20%, 30%, 50%, and 70% of its original size. For each
training scheme, CNN training and evaluation was repeated 10 times to obtain the performance
statistics. CNN training was performed with an NVIDIA GeForce RTX 2070 GPU and required
about 1 h per repetition.

2.5 Quantification of Classification Performance

The classification performance of the DL model was quantified in terms of precision (i.e., pos-
itive predictive value) and recall (i.e., sensitivity). A precision score of 1.0 means every item
labeled as belonging to a class C does indeed belong to class C, whereas a recall of 1.0 means
every item from class C was labeled as belonging to class C.

2.6 Visualization of Features Identified by CNNs

Gradient-weighted class activation maps (grad-CAM)24 were used to identify key features
involved in the CNN classification process. A number of methods have been developed for visu-
alizing pixel attribution (saliency maps), i.e., the regions of an image that are relevant for a CNN
classification.10,11,25 Grad-CAMwas used here as it has been previously shown to be useful in the
interpretation of medical image classification models.10,11,25 Grad-CAM of images in the evalu-
ation dataset were generated using the DL model with the highest precision and recall values. In
brief, Grad-CAM illustrates the relative spatial activation of the final CNN layer (before clas-
sification) with respect to the network output. Grad-CAMwere computed as ReLU activations of
a weighted sum of feature maps obtained from the final CNN layer, where sum weights were
given by gradients of the class score with respect to each feature map.24 The generated Grad-
CAM (evaluation dataset) were visually inspected by a human observer, to identify regions of the
image (if any) with a strong influence in the CNN decision.

Table 1 Total number of patients and images in the training, testing,
and evaluation datasets for each anatomic class, given a projection
angle. A range is reported for classes imaged with a shortened
CBCT scan rotation (<360 deg).

Class
Number

of patients

Number of projections

Training Testing Evaluation

Head 117 [90, 280] [20, 50] [20, 50]

Neck 268 [100, 370] [20, 70] [20, 70]

Thorax 213 300 50 50

Abdomen 169 340 60 60

Pelvis 288 410 70 70
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3 Results

3.1 Dependence of the Classification Performance on CNN Architecture

Table 2 shows the precision and recall mean values obtained from 10 repetitions for the three
CNN architectures. In this case, the models were trained using 90 deg projections [i.e., antero-
posterior (AP) orientation for a typical head-first supine patient positioning], with a 75%/25%
split between training and testing/evaluation datasets. These results show that the highest pre-
cision and recall averaged over all classes were achieved with VGG-16. Results from other view
angles similarly showed VGG-16 had the highest performance. Therefore, only VGG-16 is con-
sidered hereafter. The head and neck classes showed high precision values regardless of the CNN
architecture.

3.2 Dependence of the Classification Performance on X-Ray Projection
Angle

Next, the ability of VGG16 to classify the projections from different projection angles at 45 deg
intervals was evaluated by independently retraining and testing the network as described in the
preceding section. Figure 2 shows precision (magenta) and recall (cyan) mean values obtained
from 10 repetitions as polar plots at various projection angles. The dataset size, normalized to the
maximum number of images per anatomic class, is also displayed in yellow to demonstrate the
angular symmetry of the data. The highest precision ranged from 1.00 to 0.76 across classes,
whereas the lowest precision ranged from 0.93 to 0.66. As for recall, the highest and lowest
values ranged from 0.98 to 0.81 and 0.87 to 0.66, respectively. In most cases, the highest pre-
cision/recall values were obtained for 90 deg or 135 deg. Even though the head and neck dataset
sizes were angularly asymmetric due to the short-scan CBCT acquisition, the classification per-
formance for these classes does not reflect this asymmetry, which suggests that the performance
of the model was not data limited.

3.3 Dependence of the Classification Performance on Training Dataset Size

The final factor considered in this study was the size of the training dataset. The VGG-16 CNN
architecture was used with 90 deg projection images and the training data set size was down-
sampled as described in Sec. 2.4. Figure 3 shows precision and recall mean values obtained from
10 repetitions for different training dataset sizes and demonstrates that the classification perfor-
mance plateaus around 750 images (∼150 images per class), which corresponds to 50% of the

Table 2 Classification precision and recall for 90 deg projection images averaged over 10 rep-
etitions per anatomic class for three CNN architectures using a 75%/25% split between training
and testing/evaluation data. Error estimates correspond to standard deviation values, except for
the class-mean, for which error estimates correspond to the square sum of standard deviation
values from all classes.

Xception Inception v3 VGG-16

Precision Recall Precision Recall Precision Recall

Head 0.97 ± 0.03 0.76 ± 0.08 0.99 ± 0.03 0.76 ± 0.27 0.96 ± 0.03 0.97 ± 0.00

Neck 0.91 ± 0.04 0.94 ± 0.02 0.98 ± 0.00 0.48 ± 0.19 1.00 ± 0.01 0.98 ± 0.01

Thorax 0.71 ± 0.07 0.16 ± 0.04 0.49 ± 0.29 0.09 ± 0.03 0.73 ± 0.06 0.78 ± 0.08

Abdomen 0.55 ± 0.03 0.92 ± 0.04 0.36 ± 0.04 0.96 ± 0.11 0.76 ± 0.07 0.73 ± 0.09

Pelvis 0.83 ± 0.06 0.80 ± 0.04 0.93 ± 0.14 0.59 ± 0.36 0.89 ± 0.03 0.87 ± 0.07

Mean 0.80 ± 0.11 0.72 ± 0.11 0.75 ± 0.33 0.58 ± 0.50 0.87 ± 0.10 0.86 ± 0.14
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original size of the training dataset. These results suggest that, for this classification task and DL
model, the dataset size was sufficient for the analysis described in the preceding sections and that
this architecture could be used with a smaller dataset without compromising the overall clas-
sification performance. Also, note that for head and neck classes, the plateau was reached even
faster and with a higher precision, which is consistent with the robustness reported for these
classes in the previous subsections.

3.4 Overall Classification Performance

From Secs. 3.1 to 3.3, it was observed that one of the best performing combinations was the
VGG-16 architecture trained with 90 deg projection images. In addition, it was shown that the
training dataset size could be reduced to about 50% of the size of the initial training dataset,
without compromising the classification performance. Table 3 shows the confusion matrix for
this model implementation, assessed only on the evaluation datasets, using a 50%/50% split
between training and testing/evaluation data. However, as discussed in Sec. 3.2, other projection
angles achieve similar classification performance, which means that high precision/recall values
were not limited to 90 deg projection images.

From Table 3, it can be observed that the classifier has high sensitivity (≥91%) for head,
neck, and thorax but was lower for abdomen and pelvis classes. Note that, misclassified images
were most frequently confounded with a neighboring class, e.g., abdomen was misclassified
most frequently as thorax and pelvis as abdomen.

Fig. 2 Mean classification precision (magenta) and recall (cyan) per anatomic class as a function
of projection angle calculated using the VGG-16 CNN architecture and a 75%/25% split between
training and testing/evaluation. Mean precision and recall ranges are provided below each class
subplot. The training dataset size (yellow) was normalized to the maximum number of images per
anatomic class. Standard deviation values are between 0.01 and 0.06 for precision and between
0.04 and 0.12 for recall.
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Fig. 3 Mean classification precision (blue) and recall (orange) per anatomic class at 90 deg using
VGG-16 as the training dataset size was reduced from the original 75%, and the evaluation and
testing datasets sizes were kept constant. Error bars correspond to standard deviation values,
except for the class-mean plot, for which error bars correspond to the square sum of standard
deviation values from all classes.

Table 3 Confusion matrix for VGG-16 CNN architecture trained with 90 deg (AP projection). Each
cell contains the number of images categorized into each class and its corresponding percentage,
relative to the number of images of a given class (zero values omitted for clarity). In this case, 50% of
the data were used for training, while the remaining 50%were equally split into evaluation and testing.

Class

Prediction

TotalHead Neck Thorax Abdomen Pelvis

Head 70 — — — — 70

100% — — — — 100%

Neck 1 106 7 — — 114

1% 93% 6% — — 100%

Thorax — 3 81 3 2 89

— 3% 91% 3% 2% 100%

Abdomen — — 13 94 8 115

— — 11% 82% 7% 100%

Pelvis — — 4 11 109 124

— — 3% 9% 88% 100%

Note: Those events where the prediction matches the nominal class (correctly classified) are highlighted in bold.
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3.5 Visualization of Features Identified by CNNs

Figure 4 shows representative Grad-CAMs overlayed on their corresponding 90 deg projections.
Two examples are shown for each anatomic class: one correctly classified and the other incor-
rectly classified by the DL model summarized in Sec. 3.4, with an exception in the head class
for which all cases in the evaluation dataset were correctly classified. For each image, the two
most probable classes predicted by the DL model are indicated on the image along with numeri-
cal probability values output by the CNN. These images demonstrate that the activation for cor-
rectly classified cases was more heavily weighted for anatomically relevant regions, except for
abdomen, where the object of focus was not entirely clear. In the case of head, we identified a
higher emphasis on the cranial bones. For neck class, high weights were located close to the
mandible and clavicle. For thorax, the highest weights were in the lung. For abdomen, the high
weights do not seem to have a correlated landmark in the patient but were located at the borders
of the body habitus. This was also true for pelvis, but in this case a high emphasis was addi-
tionally identified close to the hip joint. These trends were consistent for most of the reviewed
cases (other examples are provided as supplementary material) and suggest that the CNN was
learning anatomic features to perform the classification correctly. In general, the CNN did not
fixate on image artifacts, metal implants (e.g., hip prostheses), or medical devices (e.g., pace-
makers). In some projections, high weights were located at the inferior border of the images as
shown by the red bands in some of the images in Fig. 4.

Another interesting feature of Grad-CAM was the weight distribution for misclassified cases.
Even though anatomic structures, such as cranial bones or lungs, were also emphasized in mis-
classified cases, such emphasis does not match with that of correctly classified cases. In other
words, while the CNN was still successful in identifying key structures, the network’s attention
was shifted to a nearby anatomic landmark (i.e., lung identified in an abdomen projection).

4 Discussion

A DL model was developed for the anatomic classification of single x-ray projection images. In
summary, the classification performance was evaluated for different CNN architectures, dataset
sizes, and projection angles. The results were interpreted with aid of Grad-CAM. The results
indicate that a VGG16 architecture can determine the anatomic class of a 90 deg x-ray projection
image with sensitivity ≥91% for head, neck, and thorax classes, and ≥82% for abdomen and
pelvis classes. In general, misclassified images were “near misses”; that is, the image was clas-
sified into the neighboring classes. In terms of dataset size, the classification performance
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Fig. 4 Representative cases of correctly classified and misclassified 90 deg projection images
for each anatomic class; all head projections were correctly classified. The Grad-CAM is displayed
in a normalized “jet” color scale, and the projection image is displayed in an 8-bit grayscale.
Reference boney structures for abdomen and pelvis images are indicated with dashed lines,
for ease for visualization. The two most probable classes predicted by the CNN are indicated
with corresponding numerical probability values, in the upper left-hand corner of each image.
For this model, VGG-16 was used along with a 50%/50% split of the data for training and
testing/evaluation.
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plateaued around 750 images (∼150 images per class), which corresponds to 50% of the original
size of the training dataset. The classifier performed marginally better for 90 deg and 135 deg
projection angles; however, there was not a substantial nor a systematic change in performance
versus angle across classes. Grad-CAMwere used to visualize those image features with a higher
influence in the CNN performance. Visual inspection of Grad-CAM suggests that the CNN was
learning to identify anatomic structures (i.e., cranial bones, lungs, etc.) and patient borders to
perform a correct classification.

It is worth emphasizing that the CNN performance metrics reported in this work correspond
to mean values of multiple training/evaluation realizations. While this is time consuming, it
allowed us to make stronger conclusions about our results, as CNN training is subject to random
variations introduced by most error function optimizers.26 To the best of our knowledge, this is
not a common practice and should be adopted when feasible.

It is not clear why VGG16 outperforms the other CNN architectures (Xception and Inception
v3), especially since these other architectures are considerably deeper, which is often believed to
be beneficial, and show a better classification performance for natural images.14 A possible
explanation could be the number of trainable parameters (determined by both the CNN depth
and the size of the convolutional kernels), which is much larger for VGG16 (∼138 M) than for
Xception and Inception v3 (∼22 and 23 M, respectively).14 If so, it would suggest that the inter-
play between depth and kernel design is more important than CNN depth itself for this type of
classification task and needs to be explicitly investigated.

The number of training images per class for a given view angle was less than 500 (see
Table 1), which is relatively small compared with reference datasets used to train models from
scratch.5,13 Therefore, transfer learning was utilized in this work. CNN hyperparameters, such as
the optimizer, number of epochs, etc., were arbitrarily selected and kept fixed in this study. Given
that CCN weights were initialized with pretrained values, it is unlikely that hyperparametric
optimization would lead to major performance improvements27 but this would need to be explic-
itly validated in future work.

Even though the training dataset contained less head and neck images than from any other
class, overall, the classification performance for head and neck was the highest in all cases. Also,
a faster convergence was observed for these two classes when varying the training dataset size.
A possible explanation could be that head and neck have smaller variations in size and shape
across the population, compared with other classes. If this is the case, it would mean that
adequate class balancing, for applications where settings can be controlled, should be weighted
by intraclass variability. This will be subject of future work.

The Grad-CAM proved to be useful to interpret CNN performance and to identify potential
sources of class confusion. Based on our results, most of the misclassified cases occurred when
the mid-plane of a given image was close to class boundaries, in which case, the attention of
the CNN seemed to arbitrarily shift to anatomic features with a higher importance for neigh-
boring classes. While undesirable, this error is understandable as it also observed for human
readers. This type of analysis made it easier to understand the limitations of a DL model and to
make decisions; for example, to improve the accuracy of our model, it would be reasonable
to expand the training data set with cases (correctly labeled) where the mid-plane was close to
anatomic boundaries. Such a hypothesis would not be immediately obvious by training the
model as a “black box.”

In several cases, Grad-CAM showed bands of higher weights at the inferior borders of the
images (see Fig. 4). While these features do not have an obvious interpretation, they could be due
to subtle correlations in the training data, which may not be indicative of the class globally.13,28,29

For example, it could be possible that image edges contain fingerprints of the hardware where
the patient was scanned, which may correlate with the anatomic class since patients of the same
treatment site are often grouped on the same treatment machine. Retrospective inspection of the
projection headers ruled out the presence of imaging blades at the border of the projection
images. While there may not be an obvious landmark at the inferior image borders, the CNN
could be identifying spurious features that were common to the images in our data sets. Others
have shown similar findings noting that this may make translation to other data sets less
effective.13,28 Thus, to increase generalizability, the model development would, ideally, include
multi-institutional data to reduce the impact of hardware or site-specific factors.
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Limitations of our study were identified and are discussed as follows. The transformation of
raw projections to 8-bit PNG images (see Sec. 2.1) and subsequent data rebinning reduced the
image quality of projection data, which could have restrained the classification performance of the
developed models.30,31 Although utilizing alternate dynamic range settings (e.g., bone window)
when transforming projection images to PNGs had a small effect on CNN performance (∼3%),
the effect of dynamic range selection on performance should be further investigated. Training the
CNN with multiple views, instead of a single projection view as we chose to do in this work,
should also be further investigated. The manual classification of projection images was performed
by a single individual and errors in classification did occur, although infrequently, which affected
the definition of ground truth. Each of the studied parameters was evaluated independently,
regarding the impact on model performance, future work will evaluate the interdependence of
these parameters, as well as additional characteristics that may impact the classification perfor-
mance; for example, those associated with data augmentation and error function optimization.
Another limitation is the number of CNN architectures tested. The use of a single method
(Grad-CAM) to explain the CNN performance is also a limiting factor; future work will focus
in corroborating the consistency of Grad-CAM with other visualization techniques.10

Even though our motivation and final goal is to use DL techniques to automate the selection
of CBCT acquisition and reconstruction parameters for IGRT applications, our conclusions are
not limited to CBCT or IGRT. Automatic anatomic classification could be a relevant task for
other imaging techniques based on two-dimensional x-ray projections, such as conventional
radiography.32

5 Conclusion

DL applications strongly depend on the characteristics of the training dataset and CNN model;
however, quite often, it is unclear how to objectively select such parameters. This work thor-
oughly investigates the classification performance of different DL models and training schemes,
given an anatomic classification task. From the results, it was possible to determine and better
understand those dependencies with a higher influence on the classification performance for this
type of task. The use of Grad-CAM enabled identification of possible sources of class confusion,
which could help to improve future developments.

6 Appendix A: CBCT Acquisition Protocols

Depending on the anatomic class, different routine clinical protocols were used for CBCT
acquisition. These protocols are summarized in Table 4. Further details on acquisition protocols
and hardware can be consulted elsewhere.33
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University of Chicago.

Table 4 Routine clinical protocols to acquire CBCT data (for IGRT
purposes) with TrueBeam systems at our institution.

Mode Voltage (kV) Current (mA)

Head 100 20

Thorax 125 20

Pelvis 125 80

Pelvis obese 140 99
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