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Abstract. Algal blooms are pervasive in many freshwater environments and can pose risks
to the health and safety of humans and other organisms. However, monitoring and tracking of
potentially harmful blooms often relies on in-person observations by the public. Remote sensing
has proven useful in augmenting in situ observations of algal concentration, but many hurdles
hinder efficient application by end users. First, numerous approaches to estimate aquatic chloro-
phyll-a are available and can produce inconsistent results. Second, lack of quantitative in situ
observations limits opportunities to train models for specific waterbodies, such that models
developed for other systems must be used instead. We (1) implement univariate and multivariate
logistic regression models to estimate the probability that aquatic chlorophyll-a concentrations
exceed an accepted threshold beyond which harmful effects become likely and (2) evaluate the
use of visually classified bloom/no-bloom satellite imagery to augment in situ training data.
Using a binary classification of aquatic chlorophyll-a exceeding 10 μg∕L, we found that
(1) logistic regression models were ∼80% accurate, (2) univariate models trained with visually
classified data produce nearly the same accuracy (79%) as models trained with in situ obser-
vations (80%), and (3) augmenting in situ chlorophyll-a observations with visual classifications
outperformed (82% accuracy) models trained on in situ observations alone (80% accuracy).
These results provide a framework for evaluating multiple spectral indices in retrieving algal
bloom presence or absence and illustrate that training data derived directly from satellite imagery
can be useful in augmenting in situ observations.© The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.16
.044522]
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1 Introduction

Freshwater algal blooms are a global concern,1–4 and there is evidence that they are becoming
more common in response to climate change.1,5–7 Because algal blooms can adversely affect
public health, economies, and ecosystem services by degrading water quality,8,9 early identifi-
cation of algal blooms can improve public safety and mitigate economic concerns.

Algal blooms are often identified via visual inspection of a waterbody,10 with reports from
both waterbody managers and the public playing a fundamental role in algal bloom monitoring
for state environmental monitoring agencies.11–16 Although visual inspection by water quality
agencies and public health departments is a relatively accurate way to identify the presence of
algal blooms,10 the number of waterbodies that can be monitored this way is limited. Further,
visual inspection results can be subjective and conclusions might differ between individuals,
even when optical recording devices are used.17 As a result, some public health agencies main-
tain reactionary stances to algal bloom monitoring, waiting for a bloom to be reported before
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investigating, analyzing, and providing public health guidance.18,19 This stance can result in
incomplete monitoring coverage (e.g., omission of algal bloom events unless reported), and
delays in public health notices that can have real-world implications on human health and
socioeconomics.19

Remote sensing has the potential to augment in situ visual inspection while increasing the
spatial scale of coverage. In the past 50 years, considerable research attention has been devoted
to developing remote sensing techniques for identifying and tracking algal blooms.20,21 Remote
sensing of water quality for inland, freshwater systems has lagged marine applications partially
due to the optical complexity of inland waters.22 Despite this lag, nearly 30 years of studies have
focused on the development of methods to derive water quality metrics from spectral
signatures.22 In the past 20 years, a shift toward operationalizing freshwater water quality remote
sensing has occurred.22,23

Identifying cyanobacterial blooms has been the focus of significant investment in remote
sensing, with particular focus on the ocean and land color instrument (OLCI) on board the
Sentinel-3A and Sentinel-3B satellites.24–27 By focusing on spectral features at 665 and
681 nm, this body of work relies on a well characterized two-step approach to identify the pres-
ence of phycocyanin and to then quantify the strength of the signal.24,28,29 OLCI collects imagery
with a nominal 300-m ground sampling distance, allowing for the monitoring of larger water-
bodies and the production of operational cyanobacterial index products at a large spatial scale.
However, these products do not have sufficient spatial resolution to monitor the near-shore envi-
ronment nor narrow waterbodies that are common in the intermountain west, where deep river
valleys have been dammed to create reservoirs that produce hydropower and supply irrigation
and drinking water.

Satellite-based sensors with spatial resolution sufficient to resolve narrow waterbodies
[e.g., the operational land imager (OLI) on Landsat-8 and Landsat-9, and the multispectral instru-
ment (MSI) on Sentinel-2A and Sentinel-2B] do not have the spectral resolution required to
implement the cyanobacteria index approach listed above.29,30 Instead, work with these images
to identify algal conditions has focused on retrieving chlorophyll-a,31,32 which has been dem-
onstrated to serve as a robust surrogate for cyanobacterial concentrations in conditions dominated
by cyanobacteria.33 Focusing on chlorophyll-a precludes differentiation between harmful algal
blooms dominated by cyanobacteria and other aquatic photosynthetic growth.28,34,35 This lack of
specificity leads to a bias toward public health protection when noncyanobacterial blooms are
identified. Further, the 10-m spatial resolution delivered by Sentinel-2 imagery used in this study
allows waterbody managers and public health officials to monitor relatively small waterbodies,
narrow portions of larger waterbodies (e.g., bays), and near-shore environments where blooms
can accumulate due to wind driven transport.36,37 In this work, we evaluate the ability to classify
chlorophyll concentrations using higher spatial- but lower spectral- and temporal-resolution
imagery from the MSI on board the Sentinel-2A and Sentinel-2B satellites.

Multiple spectral indices have been developed to retrieve chlorophyll-a conditions from a
range of passive optical sensors and are presented in the literature.30,38–46 However, none of these
approaches have been shown to consistently outperform the others in retrieving chlorophyll-a
concentrations. Additionally, we typically lack water quality observations for any given water-
body that are coincident with satellite imagery despite large-scale projects to compile such
matchups.47 As such, two distinct challenges must be addressed when using satellite imagery
to estimate water quality: (1) identifying spectral indices that describe water quality metrics of
interest and (2) relating these spectral indices to water quality metrics in the absence of in situ
observations. First, we hypothesize that incorporating multiple spectral indices will describe
water quality more robustly than selecting a single spectral index. We test this hypothesis
by evaluating the accuracy of single variate logistic regression models for each spectral index
against multivariate logistic regression models that incorporate multiple spectral indices. Second,
we hypothesize that algal blooms can be identified directly from true color composite satellite
imagery, obviating the need for in situ observations. We test this hypothesis by training univari-
ate and multivariate logistic regression models of algal bloom presence with bloom observations
identified via visual interpretation of satellite imagery. We evaluate the performance of the logis-
tic regression model calibrated with the visual interpretation calibration dataset relative to those
calibrated with in situ samples to determine the efficacy of generating training data from satellite
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imagery. The work presented here differs from previous efforts by combining bloom presence
and absence data with logistic regression models to produce bloom presence probabilities from
multivariate models.

2 Methods

2.1 Study Site

This work was conducted in Brownlee Reservoir, located on the Idaho-Oregon border (Fig. 1). It
is the largest reservoir in the Hells Canyon Complex of hydroelectric reservoirs at 61 km2 in
surface area, 93 km in length, and 1.8 km3 in volume, with a maximum depth of nearly 100 m
near the dam.50 The reservoir is ∼650 m wide, on average, and is surrounded by hills with 20%
to 30% slopes. Brownlee Reservoir has designated beneficial uses of cold-water aquatic life,
primary contact recreation, domestic water supply, industrial water supply, irrigation water, live-
stock watering, salmonid rearing and spawning, resident fish and aquatic life, wildlife and hunt-
ing, fishing, boating, aesthetics, and hydropower.51 Brownlee Reservoir is listed as impaired for
excess nutrients associated with nuisance algae growth and has a history of cyanobacteria
blooms.51 The reservoir is an active recreation destination with ∼20;000 nights of camping along
the shore of the reservoir in 2013.11 Additionally, discharge from Brownlee Reservoir flows into
the Hells Canyon National Recreational Area, which has been estimated to have more than
50,000 boaters visit per year making it a significant economic resource where the populace can
be impacted by water quality.50

Fig. 1 Study area map: (a) overview of Brownlee Reservoir (blue polygon) with a Sentinel 2 true
color background (red, band 4; green, band 3; and blue, band 2) from July 5, 2019.48 (b) Locations
where in situ samples were collected. Red “+” symbols and blue “x” symbols indicate sites where
chlorophyll-a concentrations were above or below 10 μg∕L, respectively. (c) Locations of manual
digitization of bloom presence and absence. Red “+” symbols and blue “x” symbols represent
“bloom” and “no-bloom” classifications, respectively.49
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2.2 Field Data Collection

Water samples were collected by Idaho Power Company personnel from Brownlee Reservoir.
Samples were collected from predetermined locations within the reservoir with known coordi-
nates to match sample collection locations with pixels in the associated satellite imagery.
Samples were collected within 2 m of the surface, immediately placed on ice, and delivered
to the analysis laboratory within 24 h. Samples were spectrophotometrically analyzed for total
chlorophyll-a, corrected for pheophytin following standard method 10200H.2.52 Only results
from samples collected on the same date as Sentinel-2 satellite imagery were included in this
analysis.

The World Health Organization has identified chlorophyll-a concentrations exceeding
10 μg∕L to be associated with a transition from slight to moderate risk of adverse health effects
from primary contact in cases where Microcystis dominates the chlorophyll-a concentration.53

Although the dominant taxa are not identified in this work, “bloom” and “bloom conditions” are
defined in this work to represent chlorophyll-a concentrations greater than or equal to 10 μg∕L.

2.3 Visual Bloom Identification

To evaluate the efficacy of developing training datasets directly from satellite imagery, points
representing the distinct presence or absence of an algal bloom were visually interpreted and
digitized (Fig. 2) from a series of 26 Sentinel-2 satellite images obtained from the Copernicus
Application Programming Interface.48,49 Digitization was conducted in the Geographic Infor-
mation System ArcMAP 10.8.1 from Environmental Systems Research Institute, Inc. (Redlands,
California) where true-color (red, band 4; green, band 3; and blue, band 2) Sentinel-2 images
were displayed. Minimum and maximum values in the visualization were set to the equivalent to
0% and 100% reflectance, respectively. Locations associated with algal blooms were visually

Fig. 2 Example Sentinel-2 imagery48 of (a) Brownlee Reservoir visualized in true color (red,
band 4; green, band 3; and blue, band 2) with manually digitized points representing (b), (d) bloom
and (c), (e) no-bloom conditions. The northern red boxes in (a) correspond with the extent of
(b) and (c). The southern red box in (a) corresponds with the extent of (d) and (e).
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identified as pixels with elevated reflectance in the green band arranged in continuous shapes
associated with algal blooms [Figs. 2(b) and 2(d)]. Points representing no-bloom conditions
were identified based on low reflectance in the red, green, and blue bands to provide class bal-
ance in training data [Figs. 2(c) and 2(e)]. Bloom and no-bloom conditions were assigned with-
out knowledge of in situ observations to reduce identification bias. Incorporating these data in
the evaluation of spectral indices leverages the information that is readily available within his-
toric satellite imagery via conventional image interpretation and is similar to approaches used to
develop training data for pixel-based supervised image classification of land cover.54,55

2.4 Satellite Imagery

Level 1C top of atmosphere imagery collected with the multispectral instrument (MSI) sensors
on the Sentinel-2A and Sentinel-2B satellites for tile 11TMK was obtained from the European
Space Agency through the Copernicus Application Programming Interface.48 Top of atmos-
phere imagery was atmospherically corrected using the dark spectrum fitting algorithm
approach implemented in the Atmospheric Correction for OLI ‘lite’ generic processor version
(v20190326.0) to produce aquatic reflectance products.56 See Ref. 57 for a full description of the
dark spectrum fitting approach. Default settings were used in the atmospheric correction with
the exception that waterbody elevation was set to 610 m above sea level to account for atmos-
pheric path length.

At each location where an in situ or visually identified observation was made, aquatic reflec-
tance values for each band were extracted from all pixels with centers within 50 m of the obser-
vation’s location.49 A 50-m buffer was used to spatially smooth reflectance values and to account
for potential positional error in sample collection location. The median reflectance values within
the 50-m buffer were used to represent each band’s value at the specified location. The median
statistic was used rather than the mean to reduce the impact of outliers on the resulting aquatic
reflectance values.

2.5 Spectral Index Evaluation

Seventeen spectral indices that were expected to be sensitive to chlorophyll-a concentrations
were selected from the literature and evaluated30,38–46 (Table 1). Spectral indices developed for
sensors other than the MSI sensor used in this work were selected if the central wavelengths of all
bands used in index development [i.e., bands from OLI or the medium resolution imaging spec-
trometer (MERIS)] fell within unique MSI bands. MSI bands were defined for this work by their
central wavelengths and full-width half-maximums.60

2.6 Binary Logistic Regression

The probability that an algal bloom was present for each pixel in a Sentinel-2 image was
determined by relating the presence (chlorophyll-a concentration >10 μg∕L) or absence
(chlorophyll-a concentration <10 μg∕L) of an algal bloom to the value for one or more spectral
indices using a binary logistic regression approach. Binary logistic regression was implemented
as follows:

EQ-TARGET;temp:intralink-;e001;116;205p ¼ eβ0þβ1�X1þ: : : βn�Xn

1þ eβ0þβ1�X1þ: : : βn�Xn
; (1)

where p is the probability that chlorophyll-a concentration exceeded 10 μg∕L, β0 is an intercept
calibration term, and β1 through βn are the parameter effects for spectral indices X1 through Xn.
To address class imbalances in calibration data (i.e., more observations of bloom versus non-
bloom conditions), weights were applied to the observations as

EQ-TARGET;temp:intralink-;e002;116;113Wp ¼ 1; (2)

EQ-TARGET;temp:intralink-;e003;116;69WN ¼ #N∕#P; (3)
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whereWp and #P are the weights for and number of bloom condition observations, respectively,
and WN and #N are the weights for and number of nonbloom condition observations,
respectively.

Univariate and multivariate logistic regression models were developed to assess performance
of individual spectral indices and combinations of spectral indices to identify algal blooms.
Additionally, logistic regression models were trained and tested with different combinations
of in situ and visually identified observations to evaluate the impact of different training data
sources on model performance (Table 2).

The “gaged” calibration scenario reflects a widely used approach to model calibration using
in situ observations.30 The “ungaged” scenario evaluates the efficacy of training a model based
on visually identified bloom occurrences when in situ observations are too sparse or not avail-
able. The “augmented” scenario evaluates the utility of augmenting in situ observations with
visually identified blooms.

Each modeling scenario and the associated training and testing data are described in the
following sections. Performance between and among univariate and multivariate models was

Table 1 Sentienl-2 spectral indices evaluated.

Index ID Index name Equations using Sentinel-2 bands Citation
Sensor used
in citation

S01 Be162Bsub b5 − b4 Beck et al.39 MSI

S02 BR23 2
b3

O’Reilly et al.44 OLI and MSI

S03 BR54 b5
b4

Gons et al.40 MSI

S04 BR8a4 b8a
b4

Tebb et al.45 OLI

S05 Go04MCI b5 − b6 Gower et al.58 MERIS

S06 KIVU b2 − b4
b3

Beck et al.30 OLI

S07 L83BDA
�

1
b2

−
1
b4

�
� b3 Beck et al.30 OLI

S08 FLHviolet b3 − ðb4þ ðb1 − b4ÞÞ Beck et al.30 OLI

S09 MCI
b5 − b4 − ðb6 − b4Þ �

�
704.1 − 664.6
740.5 − 664.6

�
Le et al.41 MERIS

S10 Moses3b
�

1
b4

−
1
b5

�
� b6 Moses et al.43 MSI

S11 NDCI54
�
b5 − b4
b5þ b4

�
Mishra et al.42 MSI

S12 NDCI8a4
�
b8a − b4
b8aþ b4

�
Beck et al.30 OLI

S13 S23BDA
�

1
b4

−
1
b5

�
� 8 Beck et al.30 MSI

S14 FLHblue b3 − ðb4þ ðb2 − b4Þ) Beck et al.30 MSI

S15 SABI
�
b8a − b4
b2þ b3

�
Alawadi38 OLI

S16 Toming
b5 −

�
b4þ b6

2

�
Toming et al.46 MSI

S17 ZhFLH b8a − ðb5þ ðb4 − b5ÞÞ Zhao et al.59 MERIS
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evaluated using the accuracy metrics described at the end of this section. All analyses were
conducted in version 3.6.0 of the R statistical programming language 61 using RStudio
v1.2.1335.62

2.6.1 Univariate logistic regression models

Logistic regression models were developed for each of the 17 spectral indices listed in Table 1
and each of the calibration scenarios listed in Table 2. Performance of the resulting univariate
models was quantified by assessing the accuracy of each individual index in identifying algal
blooms; these results provided benchmarks to compare multivariate models.

2.6.2 Multivariate logistic regression models

Multivariate logistic regressions were produced to test the hypothesis that classifications based
on multiple spectral indices are more robust than classifications from single spectral indices.
Three multivariate logistic regression models were developed, one for each of the gaged,
ungaged, and augmented scenarios in Table 2, to assess how in situ and visually identified train-
ing data affect accuracy of algal bloom identification from Sentinel-2 imagery.

Multivariate logistic regressions were produced from the spectral indices listed in Table 1
using a three-step approach. First, highly correlated spectral indices were identified based on
their variance inflation factor (VIF) values and removed one at a time to achieve a subset of
spectral indices where the VIF for each index was <10.63,64 This was done by removing the
index with the highest VIF, recomputing VIF for all remaining indices and removing the sub-
sequent index with the highest VIF. This process was repeated until no indices had VIF values
above ten. Second, the scenario-specific training dataset identified in Table 2 was selected. Third,
multivariate logistic regressions were calibrated using all spectral indices identified through the
VIF-based variable selection process. During the calibration procedure, parsimonious multivari-
ate models were identified using stepwise variate selection with the objective of minimizing the
Akaike information criterion (AIC).65 This procedure was repeated for all three calibration
scenarios in Table 2.

2.7 Accuracy Assessment

The accuracy of the logistic regression models was evaluated using a 10-fold cross validation
approach with an 80% calibration, 20% validation split (Table 2). For each iteration, 80% of the
in situ data were randomly selected as the training dataset, and the remaining 20% were used to
test model accuracy. Performance was evaluated using four metrics: precision, recall, F1 score,
and overall accuracy. Precision is a measure of how many of a model’s positive predictions
(e.g., above threshold) were correct [Eq. (4)], whereas recall measures how many of the positive
observations were identified as such in the model [Eq. (5)]. These are given as

EQ-TARGET;temp:intralink-;e004;116;138precision ¼ #TP∕ð#TPþ #FPÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;95recall ¼ #TP∕ð#TPþ #FNÞ; (5)

where #TP is the number of true positives, #FP is the number of false positives, and #FN is the
number of false negatives. The F1 statistic was used as a multiple-criterion metric to evaluate the

Table 2 Logistic model regression scenarios for the univariate and multivariate models.

Calibration scenario Training data Testing data

Gaged 80% in situ observations 20% in situ observations

Ungaged 100% manually classified points 20% in situ observations

Augmented 80% in situ observations +
100% manually classified points

20% in situ observations
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performance of logistic regressions that accounts for the trade-off between precision and recall.66

The F1 statistic was computed as

EQ-TARGET;temp:intralink-;e006;116;405F1 ¼ 2 � precision
precisionþ recall

: (6)

Accuracy, defined here as the percent of observations that were correctly classified, was cal-
culated to provide a more intuitive and familiar evaluation of model performance. Accuracy was
calculated as the number of true positive and true negative results divided by total number of
observations in the validation dataset.67

An exceedance probability of 50% (0.5) was used to classify model output as exceeding
10 μg∕L. Figure 3 provides a graphical example of the four possible outcomes, true positive,
true negetive, false positive, and false negative, for each validation data point relative to the 50%
and 10 μg∕L thresholds.

3 Results

3.1 Field Observations

Twenty-four in situ observations from 15 sites along Brownlee Reservoir were used in the analy-
sis (Fig. 1). Chlorophyll-a concentrations in these samples ranged from 1.2 to 241 μg∕L with a
median value of 7 μg∕L. There were 10 observations (42%) with concentrations of 10 μg∕L or
higher, indicating relative parity in observations above and below the 10 μg∕L threshold. An
additional 195 points were manually digitized from 26 Sentinel-2 images (Fig. 1). Of the man-
ually digitized points, 109 (56%) were classified as blooming conditions. Data are available
in Ref. 49.

Reflectance spectra from extract from imagery at bloom locations showed elevated reflec-
tance in bands three (∼559 nm) and five (∼704 nm) for both in situ and visually identified bloom
locations (Fig. 4). The reflectance values were similar between visually identified and in situ
observations for the nonbloom conditions while reflectance values were higher for bands 3

Fig. 3 Schematic of result quadrant to illustrate the four possible outcomes for each validation
data point. Observed data are classified as those that fall above or below 10 μg∕L of chloro-
phyll-a. Model results are divided between those predicting more or less than 50% probability
of exceeding 10 μg∕L.
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Fig. 4 Reflectance profiles for (a) visually identified points that were manually digitized and
(b) in situ monitoring locations (bottom) separated into bloom (black) and no-bloom (white)
conditions.

Table 3 Univariate model performance using the gaged calibration approach.

Index β0 β1 β1 p-value Accuracy Precision Recall F1

S01a 0.05 22.2 0.79 0.52 0.00 0.00 0

S02a 9.61 −16.1 0.02 0.74 0.50 0.85 0.63

S03a −20.13 20.5 0.06 0.76 0.55 0.86 0.67

S04 2.00 −3.0 0.20 0.62 0.36 0.62 0.46

S05 −2.22 648.1 0.10 0.74 0.45 0.91 0.61

S06 0.05 −2.70 0.64 0.40 0.05 0.10 0.06

S07 0.03 0.7 0.70 0.44 0.05 0.13 0.07

S08 −3.72 201.8 0.04 0.72 0.50 0.79 0.61

S09 −4.87 4642.1 0.07 0.84 0.68 0.94 0.79

S10a 0.61 29.7 0.04 0.80 0.64 0.88 0.74

S11a 0.42 39.3 0.06 0.76 0.55 0.86 0.67

S12 −1.07 −4.9 0.16 0.64 0.41 0.64 0.50

S13a 0.68 35.6 0.03 0.80 0.64 0.88 0.74

S14a −3.57 364.4 0.06 0.70 0.41 0.82 0.55

S15 −0.67 −5.8 0.36 0.56 0.23 0.50 0.31

S16a −5.30 5577.5 0.09 0.84 0.68 0.94 0.79

S17 −0.76 −166.0 0.19 0.66 0.36 0.73 0.48

aIndex developed for MSI (Table 1).
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(∼560 nm), 5 (∼704 nm), 6 (∼740 nm), 7 (∼783 nm), 8 (∼833 nm), and 8a (∼865 nm) for the
visually identified data under bloom conditions than for the in situ data.

3.2 Univariate Model Performance

With the gaged calibration approach, the relationship between four spectral indices (S02, S08,
S10, and S13) and chlorophyll concentration exceeding 10 μg∕L were statistically significant
(p < 0.05). Of these four models, the univariate models based on S10 and S13 had the highest
classification accuracies of 80% and F1 scores of 0.74 (Table 3). The univariate models estab-
lished with the gaged calibration approach that used indices S09 and S16 were the highest per-
forming with clear separation in exceedance probability between concentrations above and
below the 10 μg∕L threshold (Fig. 5) but were not found to be statistically significant (i.e., the
model β1 term had p > 0.05). Misclassified observations for models based on S10 and S13 had
concentrations within 2.5 μg∕L of the 10 μg∕L threshold on average illustrating that for the best
performing models, cases of misclassification were limited to conditions near the 10 μg∕L
threshold (Fig. 5).

When training with the visually identified dataset and testing on the in situ observations in the
ungaged approach, all spectral indices, except those based on S06 and S17, had statistically
significant relationships (p < 0.05) with the probability of bloom occurrence. Of these models,
those based on S08 and S14 were the highest performers with accuracy rates of 79% and F1
scores of 0.67 (Table 4). However, separation in exceedance probabilities across concentrations

Fig. 5 Modeled probability of exceeding 10 μg∕L (y axis) for each observed chlorophyll-a con-
centration (x axis) from the 10-fold cross validation for models calibrated with the gaged approach.
The vertical black line at 10 μg∕L represented the classification threshold of bloom versus no-
bloom in the observed data. The dashed horizontal line at 0.5 exceedance probability represents
the threshold of bloom versus no-bloom in the remotely sensed data. Points in the upper right are
true positives (TPs), upper left are false positives (FPs), bottom left are true negatives (TNs), and
bottom right are false negatives (FNs).
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was less clear (Fig. 6) when compared to the gaged calibration approach (Fig. 5). Misclassified
observations for models based on S08 and S14 had concentrations within 4 μg∕L of the 10 μg∕L
threshold on average, suggesting that cases of misclassification were limited to conditions near
the 10 μg∕L threshold for the best-performing models (Fig. 6).

When in situ observations are augmented with visually identified observations in the aug-
mented calibration approach, all models except those based on S06 and S17 had statistically
significant relationships with the probability of bloom occurrence (p < 0.05). Models based
on S05, S08, and S14 had the highest F1 scores (0.58) and the highest accuracy (74%,
Table 5). Accuracy and F1 values for these highly correlated indices were lower than for the
top performing models under the gaged and ungaged calibration approaches because of
decreases in precision driven by an increase in false negatives (Fig. 7). Misclassified observa-
tions for models based on S05, S08, and S14 had concentrations within 3 μg∕L of the 10 μg∕L
threshold on average, indicating that for the best performing models in the augmented calibration
approach the cases of misclassification are limited to conditions near the 10 μg∕L thresh-
old (Fig. 7).

3.3 Multivariate Model Performance

Of the 17 spectral indices examined for Sentinel-2 (Table 1), S01, S03, S04, S05, S09, S10, S11,
S12, S14, S16, and S17 were found to be the most highly correlated with other indices (Fig. 8)
and were removed in the stepwise, VIF-based variable selection process. The remaining six
indices, S02, S06, S07, S08, S11, and S15, had VIF values <10 at the end of the stepwise
removal process and were selected for evaluation in the multivariate regression approach.

The best performing multivariate models for the gaged (MG), ungaged (MU), and augmented
(MA) model calibration approaches had accuracies of 0.80, 0.79, and 0.82, respectively (Table 6).

Table 4 Univariate model performance using the Ungaged Calibration Approach.

Index Model ID β0 β1 β1 p-value Accuracy Precision Recall F1

S01a UU1 0.26 153.6 <0.01* 0.58 0.20 0.50 0.29

S02a UU2 −8.84 −18.7 <0.01* 0.75 0.51 0.84 0.63

S03a UU3 −23.15 18.4 <0.01* 0.75 0.40 1.00 0.57

S04 UU4 1.57 2.0 0.01 0.47 0.10 0.21 0.14

S05 UU5 −17.82 1659.6 0.01 0.72 0.33 1.00 0.50

S06 UU6 0.25 −15.67 0.08 0.49 0.07 0.19 0.10

S07 UU7 −1.20 4.8 <0.01 0.54 0.10 0.33 0.15

S08 UU8 −26.69 1005.3 0.01 0.79 0.50 1.00 0.67

S09 UU9 −11.53 1347.3 <0.01 0.71 0.30 1.00 0.46

S10a UU10 −5.99 37.6 <0.01 0.74 0.38 1.00 0.55

S11a UU11 −5.12 45.5 <0.01 0.75 0.40 1.00 0.57

S12 UU12 0.64 3.1 0.01 0.49 0.19 0.31 0.24

S13a UU13 −6.76 50.7 <0.01 0.67 0.20 1.00 0.33

S14a UU14 −16.91 933.5 0.002 0.79 0.50 1.00 0.67

S15 UU15 0.71 6.0 <0.01 0.54 0.20 0.40 0.27

S16a UU16 −11.34 1341.0 <0.01 0.71 0.30 1.00 0.46

S17 UU17 0.21 −7.8 0.74 0.71 0.82 0.61 0.70

aIndex developed for MSI (Table 1).
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For the multivariate models, the augmented calibration approach also had the highest F1 statistic
(0.73), although it is rather similar to the F1 score of 0.72 for the gaged calibration approach.
Misclassified observations for the gaged, ungaged, and augmented multivariate models had con-
centrations within 3 μg∕L of the 10 μg∕L threshold, on average, suggesting that for all multi-
variate models the cases of misclassification are limited to conditions near the 10 μg∕L
threshold (Fig. 9).

The spectral indices included in the best performing multivariate models varied by calibration
scenario (Table 7). The multivariate model calibrated with the gaged approach (MG) selected two
model members. The stepwise parameter selection process for the ungaged multivariate model
calibration approach (Mu) resulted in a univariate model (S08), as a balance between model
parsimony and maximum model likelihood. The multivariate model calibrated with the aug-
mented dataset incorporated all potential spectral indices except for S02 and S06. In all cases,
the models with the lowest AIC also had the highest F1 scores.

4 Discussion

We developed models that can be applied to identify algal blooms from satellite imagery by
evaluating different data sources describing the presence and absence of algal bloom conditions
against multiple spectral indices designed to identify chlorophyll presence.

Fig. 6 Modeled probability of exceeding 10 μg∕L (y axis) for each observed chlorophyll-a con-
centration (x axis) from the 10-fold cross validation for models calibrated with the ungaged
approach. The vertical black line at 10 μg∕L represented the classification threshold of bloom ver-
sus no-bloom in the observed data. The dashed horizontal line at 0.5 exceedance probability rep-
resents the threshold of bloom versus no-bloom in the remotely sensed data. Points in the upper
right are true positives (TPs), upper left are false positives (FPs), bottom left are true negatives
(TNs), and bottom right are false negatives (FNs).
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4.1 Correlation of Spectral Indices

Although 17 spectral indices were identified in the literature and evaluated in this work, many
were found to be highly correlated. Through an iterative index removal process, 11 indices were
removed before the remaining indices had VIFs <10. This result indicates that only six of the
evaluated 17 spectral indices are required to represent the observed variability in chlorophyll-a
concentrations. Reducing the search space by more than 60% is valuable as it reduces the num-
ber of indices that require evaluation.

4.2 Spectral Indices

As expected, spectral indices developed for and evaluated on MSI imagery outperformed those
developed for other sensors when used in isolation in the univariate models calibrated with in situ
observations (Tables 1 and 3). Specifically, the top-performing univariate models with the gaged
calibration approaches, S10 and S13, were developed for the MSI.30,43 They also both focus on
band 5 (704 nm) relative to band 4 (665 nm) normalized by bands 6 (740 nm) or 8a (865 nm) thus
illustrating the importance of the “red edge” and red bands for retrieving a chlorophyll signal in
agreement with previous work.68 However, indices developed for other sensors joined the top
performers when model calibration included visually identified data and in multivariate models.
Specifically, S08, developed for OLI,30 and S14, developed for the MSI, were the top performing
univariate models in the ungaged calibration scenario (Table 4). Indices S08 and S14 focus on
the reflectance peak for band 3 (560 nm), illustrating the influence of “green” light on the iden-
tification of algal blooms when using RGB color composites to identify algal blooms. Index S05,
developed for MERIS58 and focused on the “red edge,” joined S08 and S14 as a top performer for
the augmented calibration scenario (Table 5). The improved performance from the augmented

Table 5 Univariate model performance using the augmented calibration approach.

Index Model ID β0 β1 β1 p-value Accuracy Precision Recall F1

S01a UA1 0.06 153.5 <0.01 0.58 0.14 0.60 0.22

S02a UA2 9.22 4.4 <0.01* 0.72 0.45 0.91 0.51

S03a UA3 −15.04 12.2 <0.01 0.68 0.27 1.00 0.43

S04 UA4 −1.25 -0.6 0.06 0.48 0.05 0.17 0.07

S05 UA5 −5.03 579.4 <0.01 0.74 0.41 1.00 0.58

S06 UA6 −0.82 0.00 0.11 0.46 0.09 0.22 0.13

S07 UA7 −1.09 4.0 <0.01 0.56 0.09 0.50 0.15

S08 UA8 −10.27 411.6 <0.01 0.74 0.41 1.00 0.58

S09 UA9 −4.04 588.9 <0.01 0.68 0.27 1.00 0.43

S10a UA10 -2.92 20.9 <0.01 0.68 0.27 1.00 0.43

S11a UA11 −2.86 28.9 <0.01 0.68 0.27 1.00 0.43

S12 UA12 0.32 2.3 0.02 0.48 0.14 0.30 0.19

S13a UA13 −2.92 25.6 <0.01 0.66 0.23 1.00 0.37

S14a UA14 −7.74 476.8 <0.01 0.74 0.41 1.00 0.58

S15 UA15 0.41 5.1 <0.01 0.54 0.14 0.43 0.21

S16a UA16 −4.00 590.6 <0.01 0.68 0.27 1.00 0.43

S17 UA17 −0.06 −15.4 0.50 0.84 0.95 0.75 0.84

aIndex developed for MSI (Table 1).
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calibration scenarios (Table 6) highlights the value of using visible, spatial, and infrared cues to
identify algal blooms.

4.3 Univariate versus Multivariate Results

The multivariate model performed just as well as all the statistically significant univariate models
for the gaged and ungaged calibration scenarios. The multivariate model under the augmented
calibration scenario was the highest performing of the statistically significant models overall.
This increase in the performance could be due to the incorporation of multiple spectral features
present in algal blooms (Fig. 4), as the ensemble model calibrated with in situ data augmented
with spectra extracted from satellite imagery focused on bands 2–5 and 8a (Table 1). This result
is similar to previous studies69,70 and is consistent with our hypothesis “incorporating multiple
spectral indices is more robust than selecting a single spectral index.” The improvement in
accuracy is attributable to an increase in precision associated with a reduction in false positives
as well as an increase in recall. These results suggest that the multivariate models were more
skilled in identifying observed bloom conditions (Table 6).

4.4 Incorporating Image Derived Training Data

The univariate and multivariate models trained on visually identified training data alone were
nearly as accurate (79% accuracy) as training based on in situ observations (80% accuracy). This

Fig. 7 Modeled probability of exceeding 10 μg∕L (y axis) for each observed chlorophyll-a con-
centration (x axis) from the 10-fold cross validation for models calibrated with the augmented
approach. The vertical black line at 10 μg∕L represented the classification threshold of bloom ver-
sus no-bloom in the observed data. The dashed horizontal line at 0.5 exceedance probability rep-
resents the threshold of bloom versus no-bloom in the remotely sensed data. Points in the upper
right are true positives (TPs), upper left are false positives (FPs), bottom left are true negatives
(TNs), and bottom right are false negatives (FNs).
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is a remarkable finding because it implies that training datasets can be built for waterbodies
lacking in situ data by extracting the necessary information from the satellite images themselves.
Further, the multivariate approach calibrated on the augmented observations provided the highest
accuracy overall with a mean accuracy of 82% indicating a benefit of including visually iden-
tified end-member spectra even in cases where in situ data are available.

Fig. 8 Spectral index correlation matrix. Pearson correlation coefficients are provided in the upper
right. Positive correlation values are in blues, negatives are in reds. Indices with “*” annotations
had VIF values <10 at the end of the stepwise removal process and were included in the multi-
variate model calibration process.

Table 6 Performance of the multivariate and top performing univariate models.

Calibration approach Model Accuracy Precision Recall F1

Gaged S10, S13 0.80 0.64 0.88 0.74

MG 0.80 0.59 0.93 0.72

Ungaged S08, S14 0.79 0.50 >0.99 0.67

MU 0.79 0.50 >0.99 0.67

Augmented S05, S08, S14 0.74 0.41 >0.99 0.58

MA 0.82 0.57 >0.99 0.73

MG , MU , and MA refer to top performing multivariate models calibrated with the gaged, ungaged, and aug-
mented approaches, respectively.
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The multivariate model calibrated on visually identified data (MU) had near perfect model
recall, meaning that nearly all the observed bloom conditions in the in situ observation
dataset were identified in the resulting model. However, this same model had relatively low pre-
cision due to the presence of numerous false positives. The high recall and low precision indicate
that classification with visually identified data is best suited to cases where decision makers tend
to be more tolerant of false positives than false negatives. Notably, the probability (50%) and
concentration (10 μg∕L) thresholds can, and likely should, be adjusted in this approach to fit
end-user communication and reporting needs. In fact, it can be seen in Fig. 9(c) that selecting
a slightly higher chlorophyll-a threshold (∼15 μg∕L) would result in perfect classification.

Figure 4 shows that the visually identified bloom locations had higher NIR reflectance than
pixels identified as bloom conditions via in situ observations. This may reflect a bias in the visual
interpretation toward identifying floating algae that would have higher NIR reflectance than
submerged algae. Further, a robust analysis of the consistency and repeatability of manually
classified training data in Brownlee and other waterbodies could improve classification.

The ungaged model results indicate that the use of image-derived spectra for training
models could be useful in cases where in situ observations are limited. The reasonable accuracy
obtained with the ungaged multivariate calibration (79% for MU), and the increased accuracy

Fig. 9 Modeled probability of exceeding 10 μg∕L (y axis) for each observed chlorophyll-a con-
centration (x axis) for multivariate models calibrated with the (a) gaged, (b) ungaged, and (c) aug-
mented approaches. The vertical black line at 10 μg∕L represented the classification threshold of
bloom versus no-bloom in the observed data. The dashed horizontal line at 0.5 exceedance prob-
ability represents the threshold of bloom versus no-bloom in the remotely sensed data. Points in
the upper right are true positives (TPs), upper left are false positives (FPs), bottom left are true
negatives (TNs), and bottom right are false negatives (FNs).

Table 7 Multivariate model parameters for each calibration approach.

Term Index name

Gaged (MG) Ungaged (MU ) Augmented (MA)

Coefficient p-value Coefficient p-value Coefficient p-value

Intercept — −1.2 0.0336 −26.69 <0.01 −5.4 <0.01

S02a BR23 — — — — — —

S06 KIVU — — — — — —

S07 L83BDA — — — — −4.5 <0.01

S08 FLHviolet — — 1057.9 0.01 160.6 <0.01

S11a NDCI54 30 0.037 — — 24.5 <0.01

S15 SABI −13 0.1 — — −12.2 <0.01

aIndex developed for MSI.
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of the augmented multivariate (MA) relative to the gaged multivariate (MG) is consistent with our
hypothesis “satellite imagery itself contains information useful for evaluating spectral indices.”

4.5 Spatial Patterns in Model Results

In addition to the correct identification of conditions at observation locations, the spatial patterns
of model results can be examined qualitatively to confirm agreement with features visible in
satellite imagery. In Fig. 10(a), an algal bloom is clearly seen in the true color composite. A

Fig. 10 Classification of a bloom visible in Sentinel-2 true color (red, band 4; green, band 3; and
blue, band 2) (a) imagery (RGB) from September 3, 202048 for each (b)–(r) individual spectral
index (S1–S17) and the multivariate models for the (s) gaged (MG), (t) ungaged (MU ), and
(u) augmented (MA) scenarios. The bloom seen in these images was sampled on September
3, 2020 [“+” in (a)] and had chlorophyll-a concentration of 86.6 μg∕L.
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sample collected fromwithin this feature had chlorophyll-a concentration of 86.6 μg∕L, verifying
the feature as an algal bloom. The ribbon-like features of the algal bloom are well described by
some of the models (Fig. 10). However, some univariate models do not appear to be sensitive to
the presence of the algal mass, returning nearly uniform exceedance probabilities for all pixels
in the image. Although this is not a quantitative assessment, examining the models’ abilities to
reproduce spatial patterns of algal blooms provides insight into an index’s general performance.

4.6 Sources of Uncertainty

The approach taken here is subject to multiple sources of uncertainty, including but not neces-
sarily limited to the atmospheric correction procedure, interfering effects of sediment and other
nonchlorophyll-a containing substances on the chlorophyll-a signal, the presence of nonalgal
plants (e.g., submerged aquatic vegetation of sloughed macrophyte mats) obfuscating interpre-
tation of the chlorophyll-a signal as an algal bloom, error rates associated with the visual iden-
tification process, the effects of wind-driven sun glint, the use of chlorophyll-a that is not
corrected for degradation byproducts like pheophytin, adjacency effects, bottom reflectance, and
potential temporal and spatial mismatch between in situ observations and extracted aquatic
reflectance values. The limited number of in situ observations likely also contributed to calibra-
tion uncertainty, exemplifying the very common challenge of calibrating semiempirical
approaches with limited data. Notably, the ungaged calibration approach removes the uncertainty
associated with temporal and spatial mismatch as the signals are derived from imagery directly.
This, in addition to a larger validation dataset, may have contributed to more univariate models
with statistically significant calibrations under the ungaged approach relative to the gaged
approach. Despite many potential sources of error, the achieved accuracies of 80% and higher
indicate that the algal bloom signal is large in comparison with the noise associated with all these
potential sources of uncertainty. The encouraging results reported herein notwithstanding,
addressing each of these potential sources of uncertainty could improve model accuracy.

4.7 Future Applications

Our intent in introducing this approach is to provide an additional tool for public health and
natural resource managers to identify potentially harmful conditions that warrant in situ mon-
itoring. Providing timely situational awareness of algal bloom extent has the potential to increase
resource efficiency by guiding field staff to priority sampling locations. These methods also
afford the potential to identify nascent blooms in remote areas before they would be identified
otherwise. Finally, historic satellite imagery contains information on algal bloom dynamics.
Reanalysis of these images could provide information on spatial and temporal trends that might
yield insight regarding potential drivers of algal blooms.

5 Conclusion

Multivariate models were as accurate as univariate indices in classifying aquatic chlorophyll-a
relative to a 10-μg∕L threshold. Manually digitized observations of end-member conditions
(e.g., bloom and nonbloom) were used to calibrate aquatic chlorophyll-a retrieval in the absence
of in situ observations with reasonable accuracy (79%) that is nearly equal to that of using in situ
observations only (80%). Augmenting in situ observations with manually digitized observations
of end-member conditions (e.g., bloom and nonbloom) improved remote sensing accuracy to
82%. These results suggest that image interpretation might be suitable for deriving training data
for algal bloom classification in the absence of or to augment in situ observations matched with
Sentinel-2 satellite imagery.
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