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Abstract. Convolutional neural networks (CNNs) are very important deep neural networks for
analyzing visual imagery. However, most CNN-based methods have the problem of over-
smoothing at boundaries, which is unfavorable for hyperspectral image classification. To address
this problem, a spectral-spatial multiscale residual network (SSMRN) by fusing two separate
deep spectral features and deep spatial features is proposed to significantly reduce over-smooth-
ing and effectively learn the features of objects. In the implementation of the SSMRN, a multi-
scale residual convolutional neural network is proposed as a spatial feature extractor and a band
grouping-based bi-directional gated recurrent unit is utilized as a spectral feature extractor.
Considering that the importance of spectral and spatial features may vary depending on the spa-
tial resolution of images, we combine both features with two weighting factors with different
initial values that can be adaptively adjusted during the network training. To evaluate the
effectiveness of the SSMRN, extensive experiments are conducted on public benchmark data
sets. The proposed method can retain the detailed boundary of different objects and yield com-
petitive results compared with several state-of-the-art methods. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work
in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.JRS.16.048506]
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1 Introduction

With the rapid development of remote sensing imaging spectroscopy technology, hyperspectral
images (HSIs) have become increasingly important in Earth observation due to their rich spectral
and spatial information. Classification is an important technique for HSI data exploitation.
HSI classification (HSIC) is the task of identifying the category for each pixel with a proper
land-cover label,1 which is more challenging because of the large dimensionality, spectral hetero-
geneity, and complex spatial distribution of the objects.2

To alleviate these problems, traditional HSIC methods involve two steps: (1) feature selection
and extraction.3 This step relies on utilizing feature engineering skills and domain expertise to
design several human-engineered features. (2) Classifier training. A classifier in machine learn-
ing is an algorithm that automatically orders or categorizes data into one or more of a set of
classes. However, the traditional HSIC approaches use handcrafted features to train the classifier.
These features may be insubstantial in the case of real data. Therefore, it is difficult to fine-tune
between robustness and discriminability as a set of optimal features considerably vary between
different data.4

Deep neural networks (DNNs) can automatically learn the features from data in a hierarchical
manner to construct a model with growing semantic layers until a suitable representation is
achieved.5 To overcome the issue of high intraclass variability and high interclass similarity
in HSI, stacked autoencoders6–8 and deep belief networks9,10 are introduced as accurate un-
supervised methods to extract layerwise trained deep features. However, their standard fully
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connected (FC) architecture imposes a feature flattening process before the classification,
leading to the loss of spatial-contextual information.11 On the contrary, convolutional neural
networks (CNNs) can automatically extract spectral-spatial features from the raw input data.
Recurrent neural networks (RNNs) process the spectral information of HSI data as a time
sequence considering the spectral bands as time steps. There are three basic models of
RNN: (1) Vanilla, (2) long–short-term memory (LSTM), and (3) gated recurrent unit (GRU).
Therefore, a large number of CNN or RNN-based methods are proposed for end-to-end model-
ing and can handle HSI data in spectral and spatial domains individually, and also in a coupled
fashion.12

For instance, Yang et al.13 designed a CNN model with two-branch architecture to learn the
spectral features and spatial features jointly. Zhong et al.14 raised an end-to-end three-dimen-
sional (3D) residual CNN architecture for spectral-spatial feature learning and classification.
Motivated by the attention mechanism of the human visual system, a residual spectral-spatial
attention network (RSSAN)15 was proposed for HSI classification. To reduce computations, fully
convolutional networks were proposed for HSIC.16 For correctly discovering the contextual rela-
tions among pixels, the graph convolutional network was adopted for dealing with the HSIC,
which was originally designed for arbitrarily structured non-Euclidean data.17 The morphologi-
cal operations, i.e., erosion and dilation, are powerful nonlinear feature transformations. Inspired
by these, an end-to-end morphological CNN (MorphCNN)11 was introduced for HSIC by con-
catenating the outputs from spectral and spatial morphological blocks extracted in a dual-path
fashion. To represent high-level semantic features well, a spectral-spatial feature tokenization
transformer (SSFTT) method18 was proposed to capture spectral-spatial features and high-level
semantic features. Keeping in view the sequential property of HSI to determine the class labels,
an RNN-based HSIC framework with a novel activation function (parametric rectified tanh) and
GRU was proposed.19 The work20 proposed a spectral-spatial LSTM-based network that learns
spectral and spatial features of HSI by utilizing two separate LSTM-followed Softmax layers for
classification, while a decision fusion strategy is implemented to get joint spectral-spatial clas-
sification results. In the literature, several works have proposed a CNN joint RNN architecture
for HSIC. Spatial-spectral unified network (SSUN) combined a spectral dimensional band
grouping-based LSTM model with 2D CNN for spatial features and integrated the spectral
feature extraction (FE), spatial FE, and classifier training into a unified neural network.2

In a spectral-spatial attention network (SSAN),21 RNN with attention can learn inner spectral
correlations within a continuous spectrum, while CNN with attention is designed to focus on
saliency features and spatial relevance between neighboring pixels in the spatial dimension. The
work22 integrated CNN with bidirectional convolutional LSTM (CLSTM) in which a 3D CNN
model is used to capture low-level spectral-spatial features and CLSTM recurrently analyzes
this low-level spectral-spatial information.

CNN is commonly applied to analyze visual imagery.23 Most of the above methods are based
on the CNN backbone and its variants. However, most CNN-based methods have the problem of
over-smoothing at boundaries, which is unfavorable for HSIC. DNNs usually yield overfitting
methods24 and are sensitive to perturbations.25 A large number of training samples are usually
required for deep learning methods.26,27 To significantly reduce the over-smoothing effect and
effectively learn the features of objects, a multi-task learning spectral-spatial multiscale residual
network (SSMRN) is proposed for the end-to-end HSIC. The contributions can be summarized
as follows:

1. An end-to-end SSMRN is designed by fusing two separate deep spectral features and
deep spatial features to extract spectral-spatial features for HSIC. The model yields com-
petitive results under different training sample conditions.

2. The proposed framework takes the weight between spectral and spatial features into con-
sideration, which increases the influence of the current pixel and reduces over-smooth-
ing. Meanwhile, the multi-task learning technology is integrated into the framework,
improving the stability of results.

The rest of the sections are organized as follows. First, Sec. 2 introduces the preliminary
knowledge of CNN, residual networks, and RNN. The proposed architecture along with the
design methodology is introduced in Sec. 3. Next, experimental data sets and results are given
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in Sec. 4. Then, the impact of the SSMRN architecture on classification results is analyzed in
Sec. 5. Finally, Sec. 6 concludes the paper with a summary of the proposed method and the scope
of future work.

2 Preliminary

In this section, we mainly recall the background information on CNN, residual networks,
and RNN.

2.1 Convolutional Neural Network

A CNN28 is a class of DNNs, most commonly applied to analyzing visual imagery. Three main
types of layers are used to build CNNs architectures: convolutional layer, pooling layer, and FC
layer. Compared with multilayer perceptron neural networks, CNNs are easier to train because of
the parameter sharing scheme and local connectivity.

While CNN-based methods have achieved large improvement in HSIC, they usually suffer
from severe over-smoothing problems at edge boundaries. There are two major reasons: (1) the
scales between supervised information and spatial features do not match. The supervised infor-
mation of HSIC is pixel-level, while the spatial features are extracted from the neighbourhood of
the current pixel. (2) The parameter sharing scheme makes the spatial features extracted for the
patch instead of the current pixel. Two major reasons lead to an insufficient influence of the
current pixel in classification. Attentional mechanisms can counteract the effects of parameter
sharing,15,21 but increase the amount of computation. A smaller size patch will also decrease the
possibility of the over-smoothing phenomenon2 but result in insufficient extraction of spatial
information and lower classification accuracy (CA).29 Another approach is to utilize superpixel
segmentation,17 but the segmentation algorithm affects the classification results.

2.2 Residual Networks

A residual network is an effective extension to CNNs that has empirically shown to increase
performance in ImageNet classification. A residual network does this by utilizing a skip con-
nection to jump over some layers. As shown in Fig. 1, the typical residual block is implemented
with double-layer skips that contain nonlinearities. The skip connections between layers add the
outputs from previous layers to the outputs of stacked layers. One motivation for skipping over
layers is to avoid the problem of vanishing gradients, by reusing activations from a previous layer
until the adjacent layer learns its weights.30 Skipping effectively simplifies the network, using
fewer layers in the initial training stages. The residual block is easy to understand and optimize
and can be stacked to any depth and embedded in any existing CNN.
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X
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ReLU
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F(X)

F(X)+X
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identity

Fig. 1 Architecture of a typical residual block.
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2.3 Recurrent Neural Network

RNNs allow us to operate over sequences of input, output, or both at the same time. RNN makes
them applicable to challenging tasks involving sequential data such as speech recognition and
language modeling. LSTM and GRU31 are introduced to learn long-term dependencies and
alleviate the vanishing/exploding gradient problem. These two architectures do not have any
fundamental differences from each other, but they use different functions to compute the hidden
state. LSTM is strictly stronger than the GRU as it can easily perform unbounded counting. The
GRU has fewer parameters than LSTM, and GRU has been shown to exhibit better performance
on certain smaller and less frequent data sets. Bi-directional RNNs (Bi-RNNs) utilize a finite
sequence to predict or label each element of the sequence based on the element's past and future
contexts, as shown in Fig. 2. Bi-RNN concatenating the outputs of two RNNs allows them to
receive information from the sequence from left to right, the other one from right to left.

Hyperspectral data usually have hundreds of bands. So, pixel classification in HSI can be
treated as a many-to-one task where we are given a sequence of bands of a pixel and then classify
what classification that pixel is. A natural idea is to consider each band as a time step. The large
length of RNNs input sequence can lead to an overfitting issue, which consumes high computing
and storage resources. In addition, a large number of spectral channels and limited training
samples restrict the performance of HSIC.26

3 Proposed Framework

The deep networks used for HSIC are divided into spectral-feature networks, spatial-feature
networks, and spectral-spatial-feature networks. To effectively learn the features of objects,
we utilize the spectral-spatial-feature networks to extract joint deep spectral-spatial features for
HSIC. The joint deep spectral-spatial features are mainly obtained by the following three ways:32

(1) mapping the low-level spectral-spatial features to high-level spectral-spatial features via deep
networks; (2) directly extracting deep features from original data or several principal components
of the original data; and (3) fusing two separate deep spectral features and deep spatial features.
Considering that the importance of spectral and spatial features may vary depending on the spa-
tial resolution of images, we adopt the way of fusing two separate deep features to conveniently
adjust the influence of different features on the classification results.

Three sections are playing crucial roles in our methodology: a multiscale residual CNN
(MRCNN)-based spatial feature learner, a bi-directional GRU (bi-GRU)-based spectral feature
learner, and a multi-task learning model that combines both features with two weighting factors.

3.1 Multiscale Residual CNN for Spatial Classification

The proposed MRCNN architecture is shown in Fig. 3. Let X ∈ Rr×c×b be the original HSI data,
where r, c and b are the row number, column number, and band number, respectively. First, to
suppress noise and reduce the computational costs, the principal component analysis is applied
to the original HSI data, and only the first p principle components are reserved. Denote the
dimension-reduced data by Xp ∈ Rr×c×p. Around each pixel, a neighbor region is extracted with
the size of k × k × p as the input of the spatial branch.
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Input layer
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Fig. 2 Architecture of Bi-RNN.

He et al.: Tackling the over-smoothing problem of CNN-based hyperspectral image classification

Journal of Applied Remote Sensing 048506-4 Oct–Dec 2022 • Vol. 16(4)



Considering the complex environment of the HSI, where different objects tend to have differ-
ent scales, we propose to extract both shallow and deep features by applying a convolution
layer with rectified linear unit (ReLU) activation and two residual blocks in the classification.
The local max pooling layer is adopted in residual blocks. We add a flatten layer and an FC
layer with the same number of neurons after each scale output. Then, these FC layers are merged
into a new FC layer. Let hðjÞ ¼ fðWðjÞxðjÞ þ bðjÞÞ, j ¼ 1;2; 3 denotes the j’th FC layer,
where xðjÞ is the flattened features in the jth flatten layer, WðjÞ and bðjÞ are the corresponding
weight matrix and bias term, respectively. The fourth FC layer hð4Þ can be calculated as
hð4Þ ¼ concat½hð1Þ; hð2Þ; hð3Þ�. In this way, features in different layers are taken into consideration
during the classification stage, and the network will possess the property of multiscale.

The loss function for cross entropy of MRCNN can be expressed as

EQ-TARGET;temp:intralink-;e001;116;408L ¼ −
1

M

XM

m¼1

XN

n¼1

ynm logðŷnmÞ; (1)

where ynm and ŷnm denote the truth and predicted labels, respectively.M is the number of training
samples and N is the number of classes.

3.2 Bi-GRU for Spectral Classification

GRU has fewer parameters than LSTM for modeling various sequential problems, and Bi-GRU
allows the sequential vector to be fed into the architecture one by one to learn continuous features
with forward and backward directions. So, we utilize Bi-GRU for spectral classification.

The complete spectral classification framework is shown in Fig. 4. To reduce computation,
a suitable grouping strategy2 is used in this paper. For each pixel x in the HSI, let
x ¼ ðλ1; λ2; : : : ; λj; : : : λbÞT be the spectral vector, where λj is the reflectance of the j’th band
and b is the number of bands. Let rð≪ bÞ be the number of time steps (e.g., number of groups).
The transformed sequences can be denoted by ðc1; c2; : : : ; ct; : : : crÞ, where ct is the sequence at
the tth time step. Specifically, the grouping strategy is

EQ-TARGET;temp:intralink-;e002;116;188

c1 ¼ ðλ1; λ1þr; : : : ; λ1þðm−1ÞrÞT
c2 ¼ ðλ2; λ2þr; : : : ; λ2þðm−1ÞrÞT
: : :

ct ¼ ðλt; λtþr; : : : ; λtþðm−1ÞrÞT
: : :

cr ¼ ðλr; λrþr; : : : ; λrþðm−1ÞrÞT; (2)

Fig. 3 Architecture of the proposed MRCNN.
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where m ¼ floorðb∕rÞ is the sequence length of each time step and floorð·Þ function
rounds numbers down. After grouping, spectral vector x is transformed into sequences
ðc1; c2; : : : ; ct; : : : crÞ.

The input to our model is the sequences ðc1; c2; : : : ; ct; : : : crÞ, and the bi-directional hidden
vector is calculated as

Forward hidden state:

EQ-TARGET;temp:intralink-;e003;116;488hð1Þt ¼ tanhðWð1Þ · ct þ Uð1Þ · hð1Þt−1 þ bð1ÞÞ: (3)

Backward hidden state:

EQ-TARGET;temp:intralink-;e004;116;440hð2Þt ¼ tanhðWð2Þ · ct þ Uð2Þ · hð2Þtþ1 þ bð2ÞÞ; (4)

where the coefficient matrices Wð1Þ and Wð2Þ are from the input at the present step, Uð1Þ is from
the hidden state hð1Þt−1 at the previous step, Uð2Þ is from hð2Þtþ1 at the succeeding step, tanh is the
hyperbolic tangent, and the memory of the input as the output of this encoder is gt:

EQ-TARGET;temp:intralink-;e005;116;365gt ¼ concatðhð1Þt ; hð2Þt Þ; (5)

where concatð·Þ is a function of concatenation between the forward hidden state and backward
hidden state.

The grouping strategy uses the original HSI spectral vector as the feature of the new sequence
and the RNN uses the parameter sharing scheme, so a one-dimensional convolutional residual
block is added to reassign the weight of the feature based on the channel attention mechanism.
So, we can compute the predicted label yi of pixel xi as follows:

EQ-TARGET;temp:intralink-;e006;116;259yi ¼ VðF1dðg1; : : : ; gt; : : : ; grÞ þ ðg1; : : : ; gt; : : : ; grÞÞ; (6)

where F1dð·Þis one-dimensional convolutional layer with stride one and Vð·Þ indicates a series of
operations as shown in Fig. 4, including a ReLU activation, a flatten function, an FC layer and
a Softmax activation function.

3.3 SSMRN

The proposed SSMRN framework is shown in Fig. 5, which starts with two branches, learning
the spatial and spectral features, respectively. Then, concatenate these two branches into a layer.
λspatial and λspectral are the corresponding weighting factors.

To better train the whole network, two auxiliary tasks are added to the framework.2 So, the
proposed SSMRN is a triple-task framework, including one main task (classification based on
spectral-spatial information) and two auxiliary tasks (classification based on spectral information
and classification based on spatial information). The complete loss function for cross entropy of
the SSMRN is defined as

Fig. 4 Band grouping-based Bi-GRU model for spectral classification.
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EQ-TARGET;temp:intralink-;e007;116;355

L ¼ Ljoint þ Lspectral þ Lspatial ¼ −
1

M

XM

m¼1

XN

n¼1

ynm logðŷnjointm Þ − 1

M

XM

m¼1

XN

n¼1

ynm logðŷnspectralm Þ

−
1

M

XM

m¼1

XN

n¼1

ynm logðŷnspatialm Þ; (7)

where Ljoint is the main loss function, Lspectral and Lspatial are two auxiliary loss functions,ŷnjointm ,

ŷnspectralm , and ŷnspatialm are the corresponding predicted labels, ynm is the true label.M is the number
of training samples and N is the number of classes. The whole network is trained in an end-to-
end manner, where all the parameters are optimized by the batch stochastic gradient descent
algorithm at the same time. In this way, the complete loss function will balance the convergences
of both the whole network and the subnetworks.

4 Experiment

In this section, we introduce three public data sets used in our experiment and the configuration
of the proposed SSMRN. In addition, classification performance based on the proposed method
and other comparative methods is presented.

4.1 Experimental Data

Three publicly available hyperspectral data sets are utilized to evaluate the performance of the
proposed method, i.e., Indian Pines (IP) from the airborne visible/infrared imaging spectrometer

Fig. 5 Architecture of the proposed SSMRN.
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(AVIRIS) sensor, Pavia University (PU) from the reflective optics systems imaging spectrometer
(ROSIS) sensor, and Salinas (SA) from the AVIRIS sensor. The data set details are shown in the
following Table 1.

4.2 Experimental Setting

4.2.1 Evaluation indicators

To quantitatively analyze the effectiveness of the proposed method and other methods for
comparison, three quantitative evaluation indexes are introduced, including class-specified CA,
overall classification accuracy (OA), and Kappa coefficient (Kappa). The larger value of each
indicator represents a better classification effect.

4.2.2 Configuration

All the experiments are implemented with an Intel(R) Xeon(R) Sliver 4210 CPU @ 2.20-GHz
with 64 GB of RAM and an NVIDIA RTX2080 graphic card, TensorFlow 2.3.1, and Keras 2.4.3
with python 3.7.6. We use the Adam optimizer to train the networks with a learning rate of 0.001.
The gradient of each weight is individually clipped so that its norm is no higher than 1. The
training epochs are set as 1500 with batch size 1048.

4.2.3 Parameter setting

All the experiments in this paper are randomly repeated 30 times. In each repetition, we first
randomly generate the training set from the whole data set with the same number of the labelled
class. Then, the remaining samples make up the test set. Details are given in Tables 2–4.

For the proposed MRCNN, the input is a 24 × 24 × 4 patch, where 4 is the number of
reserved principal components. All convolutional layers have 64 filters. The kernel size of the
first left convolutional layer is 1 × 1, and the other kernel sizes are 3 × 3. The size of the
max pooling layers is 2 × 2. The three FC layers after each scale output each own 64 units.
For the proposed Bi-GRU, let 3 be the number of time steps. The hidden size in GRU is 64,
so one-dimensional convolutional layers have 128 filters because of Bi-GRU. For the proposed
SSMRN, the input is as same as the Bi-GRU and MRCNN. The number of neurons of the
FC layer in the spectral branch and spatial branch is 192, so the number of neurons in the joint
FC layer is 384.

In our study, we adopt the way of fusing two separate deep spectral features and deep
spatial features. Since the importance of spectral and spatial features may vary depending
on different spatial resolutions, we consider the weight of these two parts and we need to
specify the initial value of these hyperparameters. The principle is that the higher the spatial
resolution and the smaller the influence of the mixed pixel effect, the greater the initial spectral
weight should be. Suppose the sum of the two weights is 1 and the weights for both parts are
close to each other. Owing to the proposed strategy, the weights for the spectral and spatial parts
can be adjusted adaptively. The initial value of weighting factors λspatial and λspectral are given in
Table 5.

Table 1 Summary of the HSI datasets used for experimental evaluation.

Data
set Source

Number
of pixels

Number of
spectral

reflectance
bands

Wavelength
range

(10−6 m)

Spatial
resolution
(m/pixel)

Number
of classes

IP AVIRIS 145 × 145 200 0.4–2.5 20 16

PU ROSIS 613 × 340 103 0.43–0.86 1.3 9

SA AVIRIS 512 × 217 204 0.4–2.5 3.7 16
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4.2.4 Ablation study

In this section, we compare the SSMRN with the SSMRN without auxiliary tasks. As shown in
Table 6, the SSMRN surpasses the SSMRN without auxiliary tasks, especially for small samples
of the IP data set. These results demonstrate that multi-task learning can select the useful HSI
data for feature learning.

4.3 Classification Results

To demonstrate the superiority and effectiveness of the proposed SSMRN model, it is compared
with the proposed Bi-GRU, MRCNN, and advanced spectral-spatial DNNs methods, such as

Table 2 Number of training and test samples used in the IP data set.

Class name Training Test

1 Alfalfa 30 16

2 Corn-notill 30 1398

3 Corn-mintill 30 800

4 Corn 30 207

5 Grass-pasture 30 453

6 Grass-trees 30 700

7 Grass-pasture-mowed 15 13

8 Hay-windrowed 30 448

9 Oats 15 5

10 Soybean-notill 30 947

11 Soybean-mintill 30 2425

12 Soybean-clean 30 563

13 Wheat 30 175

14 Woods 30 1235

15 Buildings-grass-trees-drives 30 356

16 Stone-steel-towers 30 63

Table 3 Number of training and test samples used in the PU data set.

Class name Training Test

1 Asphalt 200 6431

2 Meadows 200 18,449

3 Gravel 200 1899

4 Trees 200 2864

5 Painted metal sheets 200 1145

6 Bare soil 200 4829

7 Bitumen 200 1130

8 Self-blocking bricks 200 3482

9 Shadows 200 747
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SSUN,2 SSAN,21 RSSAN,15 MorphCNN,11 and SSFTT.18 Bi-GRU is the spectral FE branch of
SSMRN. MRCNN is the spatial FE branch of SSMRN. SSUN, SSAN, RSSAN, MorphCNN,
SSFTT, and SSMRN are all based on the CNN backbone and its variants, integrating spatial
features, and spectral features. RSSAN and SSFTT directly extract the joint deep spectral-spatial
features via CNNs. SSUN, SSAN, MorphCNN, SSFTT, and SSMRN obtain deep spectral fea-
tures and deep spatial features via two deep networks. And the two kinds of features are fused to
generate the joint deep spectral-spatial features. The difference is that SSMRN considers the
weight relationship between the spectral and spatial branches depending on the spatial resolution
of images, and embeds multi-task learning technology at the same time.

Table 4 Number of training and test samples used in the SA data set.

Class name Training Test

1 Brocoli_green_weeds_1 200 1809

2 Brocoli_green_weeds_2 200 3526

3 Fallow 200 1776

4 Fallow_rough_plow 200 1194

5 Fallow_smooth 200 2478

6 Stubble 200 3759

7 Celery 200 3379

8 Grapes_untrained 200 11,071

9 Soil_vinyard_develop 200 6003

10 Corn_senesced_green_weeds 200 3078

11 Lettuce_romaine_4wk 200 868

12 Lettuce_romaine_5wk 200 1727

13 Lettuce_romaine_6wk 200 716

14 Lettuce_romaine_7wk 200 870

15 Vinyard_untrained 200 7068

16 Vinyard_vertical_trellis 200 1607

Table 5 Initial value of weighting factors.

Data set Spatial resolution (m/pixel) λspatial λspectral

1 IP 20 0.5 0.5

2 PU 1.3 0.4 0.6

3 SA 3.7 0.4 0.6

Table 6 OA (%) of SSMRN with two modules.

Module IP PU SA

SSMRN 94.87� 1.21 99.90� 0.07 99.76� 0.14

SSMRN without
auxiliary tasks

92.57� 1.26 99.77� 0.17 99.71� 0.24
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For SSUN, SSAN, and MorphCNN, the input is a 24 × 24 × 4 patch, where 4 is the number
of reserved principal components. Limited by our computer configuration, we cannot run
RSSAN properly with the original input size in the corresponding reference, so the input of
RSSAN is a 24 × 24 × 8 patch, where 8 is the number of reserved principal components instead
of the number of spectral bands. According to the reference, the input of SSFTT is a 13 × 13 ×
30 patch. For the SSUN, SSAN, RSSAN, MorphCNN, and SSFTT, all network settings are as
described in their corresponding references. For a fair comparison, the training sample sets and
test sample sets of all methods are randomly selected, as shown in Tables 2–4.

Quantitative evaluation: Tables 7–9 report the CA, OA, and Kappa using all the mentioned
methods for the IP, PU, and SA datasets, respectively. All algorithms are executed 30 times. The
average results with the standard deviation obtained are reported to reduce random selection
effects. The optimal results are denoted in bold. The evaluation data clearly show that the pro-
posed SSMRN method performs the best. The SSMRN obtains the highest OA and Kappa.
SSMRN also generates most of the highest class-specific accuracy, where the results of a few
classes have slightly lower precisions than MRCNN, SSUN, and SSFTT. Particularly in the IP
datasets, the results of SSMRN are higher than other methods, which shows that SSMRN can

Table 7 Classification results of different methods for the IP data set. Bold indicates the best
result.

Label Class name Bi-GRU MRCNN SSUN SSAN RSSAN MorphCNN SSFTT SSMRN

1 Alfalfa 95.62 100 100 100 99.79 96.25 100 99.79

2 Corn-notill 68.39 81.13 72.35 78.24 63.24 78.16 84.76 87.76

3 Corn-mintill 64.40 93.60 88.92 89.47 74.40 82.86 90.21 95.75

4 Corn 82.25 98.96 96.71 98.24 91.75 92.75 99.14 99.35

5 Grass-pasture 89.25 95.65 93.00 92.81 89.83 85.24 94.77 96.57

6 Grass-trees 94.90 97.24 92.85 94.90 94.14 87.23 99.10 99.47

7 Grass-pasture-mowed 96.41 100 99.74 100 100 93.33 100 100

8 Hay-windrowed 96.46 99.88 99.69 99.61 99.63 97.66 99.90 99.99

9 Oats 99.33 100 100 100 100 91.33 100 100

10 Soybean-notill 77.99 90.99 79.67 82.02 76.68 87.54 89.97 94.29

11 Soybean-mintill 59.77 88.91 75.08 82.37 70.79 88.70 84.42 92.11

12 Soybean-clean 78.65 91.36 88.08 88.88 77.82 81.52 87.75 96.52

13 Wheat 99.12 99.88 99.37 99.94 98.93 91.90 99.90 99.92

14 Woods 83.94 97.86 89.92 93.80 87.82 94.33 97.02 99.03

15 Buildings-grass-
trees-drives

76.89 98.68 96.65 98.26 91.89 94.44 98.56 99.89

16 Stone-steel-towers 94.55 99.31 99.78 99.47 98.46 97.30 99.31 100

OA (%) 74.96 91.93 84.02 87.70 78.98 87.48 90.74 94.87

�1.22 �2.05 �1.55 �1.41 �2.29 �13.86 �1.41 �1.21

Kappa ×100 71.73 90.88 81.89 86.02 76.22 85.58 89.46 94.13

�1.34 �2.23 �1.73 �1.57 �2.56 �16.22 �1.59 �1.38

Runtime (s) 59.09 111.66 50.75 162.26 89.97 205.27 58.68 160.58

±0.75 ±0.57 ±0.59 ±1.28 ±0.47 ±1.84 ±0.12 ±0.84
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effectively learn the features of objects, especially under the condition of a small number of
samples. The CA, OA, and Kappa of Bi-GRU are lower than other methods, specifically in
Table 5. Because Bi-GRU only uses the spectral feature, and the IP datasets have lower spatial
resolution and the bigger influence of the mixed pixel effect. MRCNN's results are second only
to SSMRN, which shows that good results can be obtained using spatial features and proper
deep network structure. Especially in the SA data set, the results of the MRCNN and SSMRN
models are almost identical. The likely reason is that the ground objects of interest in the image
are homogeneous, regular, and have a large area. The pixel-level supervised information can be
better regarded as the patch-level supervised information. The scales between supervised infor-
mation and spatial features match. The structures of SSUN and SSAN are similar to that of
SSMRN, which belongs to the way of fusing two separate deep spectral features and deep spatial
features. However, the reason why the results of SSUN and SSAN are not as good as SSMRN
may be that the network depth of spectral and spatial FE is not enough. The structures of
RSSAN, MorphCNN, and SSFTT belong to the way of directly extracting deep features from
original data or several principal components of the original data. The RSSAN and SSFTT are
powerful methods. The main limitation of RSSAN and SSFTT is that a certain number of
samples are required, which may result in poor performance with small samples, such as in the
IP data sets. The accuracy of classification results of MorphCNN is low and unstable in Tables 7
and 8. Because compared with the objects in PU and SA, the morphological feature contained in
the patch is not obvious.

As shown in Tables 7–9, Bi-GRU, SSUN, and SSFTT generally cost less time than MRCNN
and other spectral-spatial feature methods. The reasons may be the grouping strategy of Bi-GRU,
the grouping strategy and insufficient network depth of SSUN, and the transformer encoder
module of SSFTT. The runtime of the MorphCNN is the longest. The reason is that network
structure is more complex and deeper than other networks.

Tables 10–12 show the OA of SSUN, SSAN, RSSAN, MorphCNN, SSFTT, and SSMRN
with different training samples. Considering the stability and robustness of the proposed method
under different training samples, 5, 10, 15, and 30 labeled samples of each class are randomly

Table 8 Classification results of different methods for the PU data set. Bold indicates the best
result.

Label Class name Bi-GRU MRCNN SSUN SSAN RSSAN MorphCNN SSFTT SSMRN

1 Asphalt 88.74 99.74 95.92 96.86 98.68 91.55 99.39 99.81

2 Meadows 92.26 99.88 97.29 96.53 99.52 83.82 99.76 99.94

3 Gravel 86.05 99.93 97.39 98.64 99.31 92.32 99.45 99.97

4 Trees 96.84 99.26 99.29 98.28 98.63 91.92 98.88 99.61

5 Painted metal sheets 99.73 99.82 99.98 99.97 99.82 96.98 99.90 99.96

6 Bare soil 93.68 98.03 99.00 99.63 99.87 90.45 99.99 99.99

7 Bitumen 93.79 100 99.09 99.77 99.74 89.42 99.99 99.99

8 Self-blocking bricks 85.45 99.64 98.39 98.61 98.47 92.58 98.39 99.85

9 Shadows 99.85 99.45 99.83 99.92 99.38 95.37 99.51 99.99

OA (%) 91.71 99.57 97.68 97.59 99.28 88.25 99.54 99.90

�0.64 �1.31 �0.67 �1.20 �0.37 �23.50 �0.17 �0.07

Kappa ×100 89.00 99.41 96.90 96.79 99.03 86.51 99.38 99.87

�0.82 �1.82 �0.89 �1.59 �0.50 �24.85 �0.23 �0.10

Runtime (s) 107.75 332.85 98.55 321.25 335.54 744.56 204 394.69

�1.61 �4.81 �0.92 �2.00 �3.94 �5.14 �1.89 �5.15
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selected as training data for the IP and 30, 50, 100, and 200 for the PU and SA in the experiment.
With the change in sample size, the results of MorphCNN fluctuate sharply. It further proves that
the morphological feature is unstable. As the number of samples increases, the results of SSUN,
SSAN, RSSAN, SSFTT, and SSMRN become better. And SSMRN significantly outperforms

Table 9 Classification results of different methods for the SA data set. Bold indicates the best
result.

Label Class name Bi-GRU MRCNN SSUN SSAN RSSAN MorphCNN SSFTT SSMRN

1 Brocoli_green_weeds_1 99.45 100 99.84 100 99.97 92.84 100 99.99

2 Brocoli_green_weeds_2 99.85 100 99.83 99.96 99.98 82.84 99.99 99.99

3 Fallow 99.70 100 99.83 99.99 99.94 72.61 100 99.99

4 Fallow_rough_plow 99.47 99.98 99.87 99.87 99.93 87.74 99.77 99.92

5 Fallow_smooth 98.90 99.91 99.53 99.67 99.90 76.90 99.63 99.54

6 Stubble 99.89 100 99.96 99.90 99.97 89.16 99.99 99.99

7 Celery 99.76 99.98 99.95 99.95 99.89 87.45 99.96 99.94

8 Grapes_untrained 79.35 99.11 90.17 96.44 96.36 59.83 98.33 99.39

9 Soil_vinyard_develop 99.66 100 99.85 99.70 99.78 60.71 99.99 99.98

10 Corn_senesced_
green_weeds

95.51 99.97 99.08 99.70 99.87 70.71 99.78 99.64

11 Lettuce_romaine_4wk 99.02 99.93 99.92 99.61 99.90 73.04 100 99.97

12 Lettuce_romaine_5wk 99.96 100 99.96 99.82 99.95 48.45 100 100

13 Lettuce_romaine_6wk 99.32 100 99.96 99.86 99.92 53.79 99.99 99.92

14 Lettuce_romaine_7wk 98.26 100 99.93 99.93 99.96 65.59 99.93 99.83

15 Vinyard_untrained 76.38 99.41 95.68 98.32 98.53 46.15 99.18 99.70

16 Vinyard_vertical_trellis 99.16 100 99.90 99.89 99.82 88.73 99.93 99.95

OA (%) 91.71 99.71 97.13 98.89 98.94 68.15 99.48 99.76

�0.86 �0.28 �0.48 �0.46 �1.18 �16.64 �0.38 �0.14

Kappa ×100 90.73 99.68 96.79 98.76 98.82 64.31 99.42 99.74

�0.94 �0.31 �0.54 �0.51 �1.32 �19.06 �0.42 �0.16

Runtime (s) 192.09 595.64 159.61 1065.16 577.14 1333.84 365.99 740.52

�1.85 �2.04 �1.09 �8.65 �2.68 �40.29 �0.99 �4.54

Table 10 OA(%) of different methods under different training sample numbers of each class on
the IP data set. Bold indicates the best result.

Training sample
numbers of each class SSUN SSAN RSSAN MorphCNN SSFTT SSMRN

1 5 57.93 57.29 50.59 62.22 67.87 67.80

2 10 69.88 70.87 62.72 77.73 78.13 83.91

3 15 75.13 77.17 68.37 68.20 83.88 89.23

4 30 84.02 87.70 78.98 87.48 90.74 94.87
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other methods under different training sample conditions. In the case of a small number of sam-
ples, our method still results in a good performance. In addition, when the number of samples of
each class is 100 in PU and SA, the OAs of all the other methods are <99%, but the accuracy of
the SSMRN can reach 99.5%. These prove that SSMRN can effectively learn the features of
objects under different training sample conditions.

Qualitative evaluation: the classification maps of different methods are shown in Figs. 6–8.
By visual comparison, the classification map obtained by SSMRN is the cleanest and the closest

Table 11 OAs (%) of different methods under different training sample numbers of each class on
the PU data set. Bold indicates the best result.

Training sample
numbers of each class SSUN SSAN RSSAN MorphCNN SSFTT SSMRN

1 30 87.27 84.57 87.84 82.40 94.90 95.15

2 50 90.46 88.46 91.98 80.84 97.00 97.71

3 100 95.09 94.10 97.75 90.10 98.76 99.55

4 200 97.68 97.59 99.28 88.25 99.54 99.90

Table 12 OAs (%) of different methods under different training sample numbers of each class on
the SA data set. Bold indicates the best result.

Training sample
numbers of each class SSUN SSAN RSSAN MorphCNN SSFTT SSMRN

1 30 93.84 93.80 95.79 80.05 96.42 97.63

2 50 95.03 95.46 96.59 88.95 97.65 98.48

3 100 96.35 97.38 96.56 77.96 98.86 99.51

4 200 97.13 98.89 98.94 68.15 99.48 99.74

(a) (b) (c) (d) (e)

(f) (g) (h)
Asphalt 

Corn-notill

Corn-mintill

Corn

Grass-pasture 

Grass-trees

Grass-pasture-mowed 

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass-Trees-Drives

Stone-Steel-Towers

(i) (j)

Fig. 6 IP data set and classification maps using different methods: (a) false-color image;
(b) ground-truth map; (c) Bi-GRU; (d) MRCNN; (e) SSUN; (f) SSAN; (g) RSSAN; (h) MorphCNN;
(i) SSFTT; and (j) SSMRN.
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to the ground-truth map. Due to the lack of spatial features, classification maps of Bi-GRU suffer
from the pepper noise and misclassification inside an object. Compared with spectral FE meth-
ods, spatial FE methods make full use of the continuity of the ground object and yield a cleaner
classification map. The main problem of MRCNN lies in the over-smoothing phenomenon.
SSRAN, MorphCNN, and SSFTT have the over-smoothing phenomenon, too. They belong
to the way of directly extracting joint deep spectral-spatial features from original data or several
principal components of the original data, and spectral features come from the patch scale.
Meanwhile, SSMRN, SSUN, and SSAN can better retain the detailed boundary of different
objects, and acquire more smooth and homogeneous results, especially within the white dashed
box. The most likely reason is that they have spatial and spectral FE branches, and spectral
features come from the pixel scale. But SSUN and SSAN do not consider the weight relationship
between the two branches depending on the spatial resolution of images. The proposed SSMRN
takes the weight between spectral and spatial features into consideration and can further reduce
over-smoothing.

5 Discussion

The experimental results of the three public data sets indicate that SSMRN has a more com-
petitive performance in terms of three measurements (CA, OA, and Kappa) and classification
maps than all the compared methods. This is due to:

1. The SSMRN is designed with a spectral branch and a spatial branch to extract spectral-
spatial features. These operations join spectral features and spatial information together
sufficiently.

Fig. 7 PU data set and classification maps using different methods: (a) false-color image;
(b) ground-truth map; (c) Bi-GRU; (d) MRCNN; (e) SSUN; (f) SSAN; (g) RSSAN; (h) MorphCNN;
(i) SSFTT; and (j) SSMRN.
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2. The proposed framework takes the weight between spectral and spatial features into con-
sideration and can reduce over-smoothing. Meanwhile, the multi-task learning technol-
ogy is integrated into the framework, improving the stability of results.

6 Conclusion

To significantly reduce the over-smoothing effect and effectively learn the features of objects, a
multi-task learning SSMRN has been proposed to extract spectral-spatial features. The exper-
imental results of the three public data sets demonstrate that the method not only mitigates
the over-smoothing phenomenon, but also has a better performance compared with the other
methods in terms of CA, OA, and Kappa. Our method significantly outperforms other methods
under different training sample conditions.

Although we utilize the proposed band Bi-GRU and MRCNN as the spectral and spatial
feature extractors in the implementation of the proposed SSMRN, other deep networks can also
be introduced into our model, especially for spectral extractors. It deserves to be investigated in
future work.

Fig. 8 SA data set and classification maps using different methods on the: (a) false-color image;
(b) ground-truth map; (c) Bi-GRU; (d) MRCNN; (e) SSUN; (f) SSAN; (g) RSSAN; (h) MorphCNN;
(i) SSFTT; and (j) SSMRN.
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