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Abstract. Plant water stress can be detected via remote sensing. The objective of the study was
to determine which leaf water index is best for assessing leaf water content from the laboratory
standpoint. This study investigated the relationship between equivalent water thicknesses (EWT),
gravimetric water content (GWC), and plant water concentration in the 350- to 2500-nm
reflectance spectral range. A total of 277 leaf samples taken from ten different plants were
used as calibration dataset, and 605 leaves from different plants, including LOPEX93 and
ANGERS database, were used for validation. Three specific indices were analyzed: simple ratio,
normalized ratio, and double difference (Datt type of index). A regression approach based on the
iteration method at 5-nm interval was used for model calibration. Three bands index was found
the most suitable and was validated by 605 leaf samples: for the linear regression model, the
index is ðR1910 − R1340Þ∕ðR1910 − R1125Þ with R2 ¼ 0.96 and root mean square error ðRMSEÞ ¼
0.001 ðg∕cm2Þ and, for nonlinear regression model the index is ðR1930 − R1425Þ∕ðR1930 − R1360Þ
with R2 ¼ 0.95 and RMSE ¼ 0.001 ðg∕cm2Þ for EWT. The newly proposed indices take
advantage of being able to eliminate additional noise created by the leaf surface, making them
helpful for agricultural-related research.© The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.17.014523]
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1 Introduction

Water is the essential variable affecting crop productivity; there is a direct link between biomass
output and water absorbed through transpiration.1 In many parts of the world, water shortages
brought about by climate change have forced plants to endure severe water stress, which has
reduced food yield. Variability in leaf water content is important for plant–environment inter-
actions, ecosystem function, and crop development. Photosynthesis, evapotranspiration, and
net primary productivity are all affected by plant leaf water content. Estimating each plant’s
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hydration status is required to schedule the irrigation times of a crop and the amount of water it
requires. However, estimating water content accurately using reflectance factors across diverse
plant species remains difficult.1,2 Global climate change and biodiversity loss significantly
impact species and ecosystem functions, which in turn affects processes at the regional and
landscape sizes and disturbs the world’s biogeochemical cycles.3 Important factors in a range
of environmental processes include the water content of leaves and the canopy.4

Remote sensing has gained popularity as a technology to track and measure vegetation char-
acteristics in recent years. Plant responses to environmental factors and their impact on ecosys-
tem processes, including adaptations to climate change, are influenced by canopy biophysical
and biochemical variables involved in the biophysical processes of terrestrial ecosystems.5

Remote sensing technology is particularly effective in monitoring leaf water content over a large
area, and it is also useful for detecting water stress, assessing fire danger, and scheduling
irrigation. Water and dry matter in leaves impact near-infrared and shortwave infrared (SWIR)
reflectances, which are additionally controlled by leaf structure, canopy structure, and leaf area
index (LAI).6–8

Hyperspectral remote sensing is promising for detecting vegetation water content and
can potentially reveal the whole scenario from a small to a large scale.9 Literature related to
hyperspectral remote sensing, different wavelengths, and indices were claimed by researchers
to establish a satisfying correlation with leaf water content for equivalent water thickness (EWT),
plant water concentration (PWC), and gravimetric water content (GWC).10,11 The reliability of
direct water absorption characteristics has resulted in the introduction of simple band ratio
indices for assessing plant water using optical remote sensing.7 The first stage in developing
an operational approach for retrieving vegetation water content via hyperspectral remote sensing
is clearly defining and illustrating the possibilities. It is crucial to remember that, for the provided
algorithm indices, the water absorption wavelengths employed vary slightly depending on the
scenario to achieve the best absorption bands.12,13

Numerous algorithms to extract leaf water content from spectral data have been described in
light of the design that the depth and shape of the water-related absorption band are indicative
of the water content of leaves. Studies show slightly varied ideal absorption bands, even if
the water-absorption wavelengths employed in the algorithms indices are not necessarily the
same.14,15 When evaluating the likelihood of wildfires or determining the drought status in
forestry and agriculture, it is crucial to understand how the earth’s ecosystems function. For
instance, the water content of vegetation restricts biochemical processes, such as photosynthesis
and evaporation.5,15

Many methods for estimating leaf water content from reflectance data at different levels
have been developed; however, they generally rely on empirical or physical approaches that
use regression techniques using hyperspectral indices and leaf and canopy radiative transfer
models.16,17 Ordinary least squares regression approaches are often used at the leaf level to build
empirical correlations between leaf water content and laboratory reflectance data acquired in the
near- and short-infrared spectral regions. Using acceptable spectral reflectance indices, several
investigations have employed empirical relationships to assess leaf water content.18

A fast, accurate, and non-destructive means of determining the status of the water is provided
by remote sensing techniques. Spectral reflectance measurements have been connected to several
markers of water quality.19,20 Investigations at the leaf level showed that the assessment of
leaf water content in terms of EWT expressed in the quantity of water per unit area (g∕cm2) was
more accurate than moisture content expressed in the quantity of water per quantity of fresh or
dry mass.12,21,22

The visible and near-infrared region (0.4 to 2.50 μm) may be divided into seven primary
sections based on varied features of green plant leaves.23 The three most relevant bands for the
remote sensing of green vegetation are chlorophyll absorption band, highly reflective leaf struc-
ture band, and broad foliar water absorption band, which stretch from 0.63 to 0.69 μm, 0.74 to
1.10 μm, and 1.35 to 2.50 μm, respectively.24,25 In SWIR, specifically at 1450, 1940, and
2500 nm wavelength, string water absorption can be detected, whereas in the NIR region close
to 970- and 1200-nm wavelength, the water absorption is very weak. Therefore, remote sensing
techniques can be used to assess vegetation water content from radiation reflected from leaves
and canopies.
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The EWT is extremely important in various processes, including photosynthesis, evapora-
tion, and primary conductivity,26 and is closely correlated with the depth of SWIR absorption
bands; hence, it has a higher link with spectral leaf features.11 It takes time and involves pro-
ductivity errors to measure leaf water content precisely and accurately. Because laboratory
research also enables us to identify the many wavelengths where water content has a significant
impact on leaf reflectance factor.27

Gravimetric measurement is sometimes regarded as the most used destructive approach
because of its excellent dependability and simplicity. The GWC, defined as the ratio of leaf
water mass to leaf dry or fresh mass and given as a percentage, is a popular way to quantify
leaf water content.28 The vegetation fuel community prefers the GWC in dry mass form, but
the ecological community prefers it in fresh mass form. The optical domain determination of
GWC was based on the link between reflectance at 700 to 2500 nm and the amount of water
present.23,29 The spectral variation induced by changes in leaf GWC is related to changes in both
leaf water absorption and dry matter absorption.12 Dry matter absorbs light in the SWIR band,
which is unfortunately hidden by the presence of water in young leaves.18

The PWC measurements are important for irrigation techniques and natural community
drought assessments. The usual method for measuring water concentration, which involves dry-
ing plant leaves in an oven, is straightforward and dependable, but it is also time-consuming and
labor-intensive. It has been demonstrated that utilizing electromagnetic and infrared radiation to
absorb water is a viable technique for determining plant water contents.15,20

Plant development is dependent on the availability of water.30 The leaf scale water content is
one of the most important physiological measures for determining plant water status among all
known physiological parameters.25 Unfortunately, our understanding is severely limited by the
availability of reliable field sampling/monitoring data on plant water status and plant water use
until the present, which is far beyond the requirement for assessing the impacts of global change.31

Comparatively, plant water use (transpiration) has been far less investigated through hyper-
spectral reflectance. Developed approaches of hyperspectral remote sensing for retrieving plant
traits can typically be grouped into two categories: physically based inversions and empirically/
statistically based methods. Both approaches widely retrieve biophysical and biochemical
variables from hyperspectral information.32

Remote sensing has been used widely for detecting water stress at the leaf, canopy, and forest
scales in terms of EWT, GWC, and PWC.33 Variability in leaf water content influences plant-
environment interactions and crop development.34

This research is mostly concerned with:

1) to evaluate the performances of different published indices with our study site data.
2) To find out the relationship between the reflections of leaves and plant water content.
3) To determine the new remote sensing index for leaf water content estimation.

The study’s findings will assist in identifying, calculating, and clarifying the problems raised
above. It will also assist in segmenting plant species to allow efficient and successful precision
agriculture.

2 Material and Methods

2.1 Leaf Sampling in the Study Area

Leaves from ten unique plants, including Prunus padus L., Swida alba Opiz, Acer saccharum
Marsh, Armeniaca vulgaris Lam., Populus L., Epipremnum aureum, Schefflera microphylla
Merr, Pachira aquatica, Juglans, and Citrus limon (L.) Burm. F. were collected from the
Garden of Northeast Normal University, Changchun, Jilin, China. A total of 277 samples of
10 unique plant species were collected, as shown in Fig. 1. The basic statistics for the calibration
dataset is shown in Table 2. All samples were collected by the most reliable and accurate method
for reflectance. Before measurement, the samples were kept hydrated in a dark environment with
high humidity and a low temperature, and all of the samples were mature leaves.35–38 As in other
studies, we only selected fresh leaves with a consistent color with no obvious signs of illness.39,40
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To detect spectrum reflection, we utilized the Northeast Normal University Laboratory
Goniospectrometer System (NENULGS).41 An Analytical Spectral Devices FieldSpec4 and a
goniometer was included in NENULGS, which was comprehensively discussed in the article.41

Several research studies have used NENULGS to analyze various leaf characteristics42–44 pre-
cisely. The reflectance measurement was followed by a fresh weight measurement, which was
afterward air-dried to a stable weight. The samples were dried in the oven for 36 hrs at 80°C, and
their dry weight was calculated.38 While the measurements were being taken, the leaf sample was
placed on an object stage entirely covered with dark black tape. Because the black backdrop has
a wavelength-independent reflectance factor of less than 0.05, it does not affect leaf reflection.
The reflected radiance (dLSample) from the leaf sample surface is normalized by the reflected
radiance (dLReference) from the reference surface (Spectralon) in the same viewing geometry to
give the bidirectional reflectance factor (BRF)45

EQ-TARGET;temp:intralink-;e001;116;249BRF ðλ; θs; θv;φs;φvÞ ¼
dLSampleðλ; θs; θv;φs;φvÞ
dLReferenceðλ; θs; θv;φs;φvÞ

ρλ: (1)

2.2 Definition of Water Equation Used

Several techniques, which include EWT, PWC, and GWC, were used to assess the water con-
dition of leaves. EWT is the term used to describe how much water is present and how much
energy is absorbed per unit of leaf area.28,46 PWC relates to the dry weight ratio, and GWC
determines the weight of the fresh and dry leaves.

Below is the correspondence for EWT, PWC, and GWC

EQ-TARGET;temp:intralink-;e002;116;105EWT ðg∕cm2Þ ¼ ðWF −WDÞ
LA

; (2)

Fig. 1 (a)–(j) Leaf samples from various plant types were used in this research.
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EQ-TARGET;temp:intralink-;e003;116;723PWC ¼ ððWF −WDÞ∕WDÞ100; (3)

EQ-TARGET;temp:intralink-;e004;116;701GWCF ¼ ðWF −WDÞ
WF

; (4)

and

EQ-TARGET;temp:intralink-;e005;116;666GWCD ¼ ðWF −WDÞ∕WD; (5)

where WF, WD, and LA refer to fresh weight, dry weight, and leaf area, respectively.

2.3 Choosing the Optimal Index by Iteration Method

We implemented the Datt type of index (combination of three different bands), which has been
popularly used recently.47 For EWT, PWC, and GWC, using MATLAB code to assess the best
index in this study using a 5-nm wavelength interval with iteration method on the calibration
datasets. The iteration process was programmed in such a way that those wavelength combi-
nations with higher R2 come out from the large amount of data, which has been taken during
leaf sample reflection measurement. The equation is defined as

EQ-TARGET;temp:intralink-;e006;116;514Datt ¼ ðRλ1 − Rλ2Þ∕ðRλ1 − Rλ3Þ; (6)

where Rλ1, Rλ2, and Rλ3 represent radiance at certain wavelengths (250 to 2500 nm) at λ1, λ2, and
λ3, correspondingly.

2.4 Published leaf Water Indices

Different hyperspectral indices depend on the double difference ratio of three individual wave-
lengths within a specific spectrum and have been taken into account to figure out plant water
content on the calibration dataset. For this analysis, ten previously published indices were chosen
to test their effectiveness regarding how they respond to the data from the leaf dehydration
experiment used in this work. The selected indices are listed in Table 1.

Table 1 Published water indices for determining the water status of leaves.

Index Formula Indicators (for) References

SR R900∕R970 PWC 15

R1300∕R1450 GWC 48

NDWI ðR860 − R1240Þ∕ðR860 þ R1240Þ EWT 7

NDWI ðR860 − R1640Þ∕ðR860 þ R1640Þ EWT 49

ðR850 − R2218Þ∕ðR850 − R1928Þ EWT and GWC 21

ðR850 − R1788Þ∕ðR850 − R1928Þ EWT and GWC 21

Index of moisture stress R1600∕R820 EWT 50

WI using an SRSRWI R860∕R1240 WI 51

Normalized difference WI centered
at 1640 nm (NDWI1640)

ðR858 − R1640Þ∕ðR858 þ R1640Þ WI 49

Normalized difference WI centered
at 2130 nm (NDWI2130)

ðR858 − R2130Þ∕ðR858 þ R2130Þ WI 49
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2.5 Leaf Reflection Factors: Spectral Properties and Distribution

The spectral reflectance factors with multiple indicators at the nadir view zenith angle are shown
in Fig. 2. The considerable absorption of leaf water at wavelengths greater than 1250 nm resulted
in the spectral BRF of leaves being constrained as the different water indices shown in the nadir
direction in NIR and SWIR wavelengths.38 Various spectral indices are associated with these
spectral properties to measure the water content. When the reflectance factor is considered,
it can be used to understand the reflection attribute of leaves from various species.

3 Results

3.1 Statistical Analysis

A collection of 277 leaf samples from 10 different species was analyzed to determine the best
hyperspectral index for calculating leaf water content. To assist in finding unique indices, several
statistical tests were performed on data sets. The best indices were then chosen, and their robust-
ness was verified and validated. First, some basic statistics were applied to the calibration data-
set, as shown in Tables 2 and 3. Equations (2)–(5) have been used to calculate the results in
Table 2.

Additionally, the regression approach expands to both linear and nonlinear regression. The
procedures described were applied to all possible wavelength combinations, and an iterative
approach resulted in a wavelength interval of 5 nm.28,38 The parameters of published indices
were selected using the maximum coefficient of determination (R2), and the least root mean
square error (RMSE). The principal objective was to identify indices with minimum RMSE and
the highest R2 values.

Fig. 2 (a)–(d) Leaves BRF at nadir direction with variables EWT, GWC, and PWC.
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Table 2 The statistics provided below were utilized to calculate the EWT, GWC, and PWC of
the samples used.

Name (sample size = 277) EWT (g∕cm2) GWCF (g/g) GWCD (g/g) PWC (%)

Prnnus padus L. Min 0.005 0.451 0.821 82.189

Max 0.009 0.596 1.480 148.042

Mean 0.007 0.525 1.120 112.044

Swida alba Opiz Min 0.006 0.560 1.273 127.384

Max 0.012 0.706 2.411 241.101

Mean 0.009 0.645 1.855 185.517

Acer saccharum Marsh Min 0.005 0.586 1.415 141.583

Max 0.011 0.791 3.806 380.665

Mean 0.008 0.696 2.420 242.071

Armeniaca vulgaris Lam Min 0.007 0.534 1.146 114.607

Max 0.015 0.690 2.233 223.366

Mean 0.010 0.612 1.612 161.248

Populus L Min 0.006 0.546 1.207 120.736

Max 0.014 0.847 5.544 554.417

Mean 0.010 0.695 2.451 245.167

Epipremnum aureum Min 0.018 0.874 6.986 698.671

Max 0.029 0.946 17.60 1760.17

Mean 0.024 0.912 10.84 1084.36

Schefflera microphylla Merr Min 0.016 0.718 2.554 255.492

Max 0.043 0.919 11.45 1145.16

Mean 0.031 0.845 5.866 586.645

Pachira aquatica Min 0.007 0.680 2.133 213.306

Max 0.015 0.883 7.611 761.161

Mean 0.011 0.812 4.643 464.320

Juglans Min 0.007 0.616 1.606 160.630

Max 0.010 0.764 3.251 325.155

Mean 0.008 0.689 2.305 230.559

Citrus limon (L.) Burm. F. Min 0.009 0.527 1.118 111.829

Max 0.018 0.670 2.035 203.504

Mean 0.014 0.598 1.527 152.718

Table 3 Summary statistics for calibration data (n ¼ 277).

Mean
Range from

min to maxi value
Standard error of

mean
Standard
deviation

Variation
coefficient

EWT 0.01591 0.03792 0.0006 0.0098 0.62

GWCF 0.7325 0.4951 0.0074 0.1231 0.17

GWCD 3.922 16.78 0.1783 2.967 0.76

PWC 392.2 1678 17.83 296.7 0.76

Leaf area 59.87 165.3 1.797 29.91 0.49
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3.2 Outcome of the Published Indices

Selected published indices performance in this study was analyzed individually to assess
variation in EWT, PWC, and GWC. These published indices, which include ðR860 − R1640Þ∕
ðR860 þ R1640Þ, ðR850 − R2218Þ∕ðR850 − R1928Þ, ðR850 − R1788Þ∕ðR850 − R1928Þ, ðR1600∕R820Þ
and ðR858 − R1640Þ∕ðR858 þ R1640Þ, have good results in terms of EWT with calibration data
sets, and no other indicator have a good result with the calibration dataset. The detail for each
indicator and the corresponding results has been given in Table 4.

3.3 Newly Identified Leaf Water Status Index

Calibration dataset for EWT, PWC, and GWC was examined using an iteration process for 5-nm
interval for linear [Eq. (7)] and nonlinear [Eq. (8)] regression approaches. The regions with the
highest R2 [Eq. (9)] and lowest RMSE value were finally selected based on reflectance spectra.
In general, particular bands were strongly correlated with EWT, PWC, GWCD, and GWCF,
as shown in Tables 5 and 6. The approach used in this was linear and nonlinear regression,
respectively. Overall, the newly identified indices have a notable correlation with EWT, whereas
PWC and GWC were not as good as EWT.

3.4 Regression Analysis

Linear and nonlinear regressions were executed to develop models, determine the coefficient of
determination between different wavelength ranges and water indices, and compare the model’s
efficiency

EQ-TARGET;temp:intralink-;e007;116;454Linear regression equation yi ¼ β0 þ β1xi; (7)

EQ-TARGET;temp:intralink-;e008;116;411Nonlinear regression equation y ¼ aebx; (8)

EQ-TARGET;temp:intralink-;e009;116;388Coefficient of determination R2 ¼ 1 −
P

n
i¼1 ðy − ŷÞ2

P
n
i¼1 ðy − yÞ2 ; (9)

where yi and xi are dependent and independent variables, respectively. α, β0- intercept;
b, β1- slope; and ŷ refers to the estimated values of dependent variables.

The results for both linear and nonlinear models are shown in Figs. 3 and 4. By looking at
the coefficient of determination, we can easily analyze the indices.

3.5 Validation Datasets from Different Sources

The leaf optical properties experiment (LOPEX) of the European Commission’s Joint Research
Center includes 330 leaf samples from 45 diverse plants.52 An experiment conducted at the
INRA (National Institute for Agricultural Research) in Angers, France in June 2003, where
a dataset associating visible/infrared spectra of vegetation elements with physical measurements
and biochemical analyses was constructed. Reflectance and transmittance measurements of
275 leaf samples from 43 different species were collected along with associated biochemical
and physical measurements.28,53

Additional data from the LOPEX and ANGERS databases were considered to validate the
indices provided in this work and determine their generalizability and reliability. As for both
the databases reflectance curves with median spectrum have been measured, as shown in
Fig. 5. First, EWT, GWC, and PWC were calculated and further expanded to assess R2 and
RMSE for the proposed spectral indices (Table 7).

In the LOPEX dataset, the proposed index exhibits better results in terms of EWT having
a strong coefficient of determination with the lowest RMSE (g∕cm2), as shown in Fig. 6.

The above Fig. 6 shows the result for EWT ðR1910 − R1340Þ∕ðR1910 − R1125Þ and
ðR1930 − R1425Þ∕ðR1930 − R1360Þ, GWCF ðR1400 − R1835Þ∕ðR1400 − R1505Þ and ðR1395 − R1825Þ∕
ðR1395 þ R1515Þ, GWCD ðR1400 − R1835Þ∕ðR1400 − R1505Þ and ðR1515 − R1825Þ∕ðR1515 − R1395Þ
and PWC ðR1495 − R1400Þ∕ðR1495 − R1830Þ, and ðR1500 − R1400Þ∕ðR1500 − R1830Þ.
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Table 4 The evaluation of published water indices for EWT, PWC, and
GWC using calibration dataset.

Indices Indicators R2 RMSE

R900∕R970 EWT 0.6103 0.0062

PWC 0.2375 259.5

GWCF 0.2499 0.1068

GWCD 0.2375 2.595

R1300∕R1450 EWT 0.7827 0.0045

PWC 0.3507 239.5

GWCF 0.3327 0.101

GWCD 0.3507 2.395

ðR860 − R1240Þ∕ðR860 þ R1240Þ EWT 0.4151 0.0075

PWC 0.0978 282.3

GWCF 0.0965 0.1173

GWCD 0.0978 2.823

ðR860 − R1640Þ∕ðR860 þ R1640Þ EWT 0.8451 0.0039

PWC 0.2602 255.6

GWCF 0.2313 0.1082

GWCD 0.2602 2.556

ðR850 − R2218Þ∕ðR850 − R1928Þ EWT 0.8256 0.0041

PWC 0.2705 253.9

GWCF 0.1996 0.1104

GWCD 0.2705 2.539

ðR850 − R1788Þ∕ðR850 − R1928Þ EWT 0.9054 0.0030

PWC 0.3254 244.1

GWCF 0.3020 0.1031

GWCD 0.3254 2.441

R1600∕R820 EWT 0.8356 0.004

PWC 0.2808 252.1

GWCF 0.2324 0.1081

GWCD 0.2808 2.521

R860∕R1240 EWT 0.4293 0.0074

PWC 0.0988 282.1

GWCF 0.0998 0.117

GWCD 0.0988 2.821

ðR858 − R1640Þ∕ðR858 þ R1640Þ EWT 0.8448 0.0039

PWC 0.2602 255.6

GWCF 0.2314 0.1082

GWCD 0.2602 2.556

ðR858 − R2130Þ∕ðR858 þ R2130Þ EWT 0.7542 0.0049

PWC 0.2634 255.1

GWCF 0.1870 0.1112

GWCD 0.2634 2.551
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Table 5 Evaluation of four types of indices using a linear regression
approach.

Indicators Index R2 RMSE

EWT ðR1910 − R1340Þ∕ðR1910 − R1125Þ 0.969 0.001

PWC ðR1495 − R1400Þ∕ðR1495 − R1830Þ 0.863 0.003

GWCD ðR1400 − R1835Þ∕ðR1400 − R1505Þ 0.863 0.003

GWCF ðR1400 − R1835Þ∕ðR1400 − R1505Þ 0.896 0.002

Table 6 Using a nonlinear regression technique, four different types of
indices are evaluated.

Indicators Index R2 RMSE

EWT ðR1930 − R1425Þ∕ðR1930 − R1360Þ 0.959 0.001

PWC ðR1500 − R1400Þ∕ðR1500 − R1830Þ 0.882 0.003

GWCD ðR1515 − R1825Þ∕ðR1515 − R1395Þ 0.882 0.003

GWCF ðR1395 − R1825Þ∕ðR1395 þ R1515Þ 0.895 0.002

Fig. 3 Utilizing calibration data, linear regression models were used to calculate the coefficient of
determination of the selected wavelength and WI (EWT, GWCF, GWCD, and PWC).
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While in the ANGERS dataset, the indicators were individually compared to the proposed
indices. The results were encouraging for EWT, which had the highest R2 and minimum RMSE
values, as shown in Fig. 7.

The Fig. 7 presented the result for EWT ðR1910 − R1340Þ∕ðR1910 − R1125Þ and
ðR1930 − R1425Þ∕ðR1930 − R1360Þ, GWCD ðR1400 − R1835Þ∕ðR1400 − R1505Þ and ðR1515 −R1825Þ∕
ðR1515 −R1395Þ and PWC ðR1495 −R1400Þ∕ðR1495 −R1830Þ, and ðR1500 −R1400Þ∕ðR1500 −R1830Þ.

So generally, it is concluded that both the databases, i.e., LOPEX and ANGERS have
good correlations with the suggested indices (linear and nonlinear), specifically with EWT.
While for the other two indices, such as GWC and PWC, LAI is not involved in measuring
water content.

Fig. 4 Nonlinear regression models were used to obtain the coefficient of determination of the
selected wavelength and WI using calibration data (EWT, GWCF, GWCD, and PWC).

Fig. 5 Reflectance spectrum from validation dataset (a) ANGERS and (b) LOPEX. The median
spectrum is shown by the dashed red line.
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3.6 Best Indicators for Defining the Status of Leaf Water

Ratio of modified difference, normalized difference index, double difference (R1 − R2/R1 −
R3), and simple ratios (SR) are the most commonly used criteria for evaluating leaf water indi-
ces. These criteria typically disrupt standard water-absorbing indices, such as water index (WI),
normalized differential water index (NDWI), and water index using a simple ratio (SRWI),
because they vary and use different wavelengths. Our findings also show that the combination
of the ðR1-R2Þ and ðR1-R3Þ bands significantly impacts the status of leaf water. In this study,

Table 7 Validation datasets to calculate EWT, GWC, and PWC.

Spectrophotometer

LOPEX ANGERS

Perkin Elmer Lambda 19 ASD FieldSpec

Estimation Laboratory Laboratory

Spectral range 400 to 2500 350 to 2500 (nm)

Sample size 45 43

Mean (g∕cm2) 0.0111 0.0116

Min (g∕cm2) 0.0003 0.0044

Max (g∕cm2) 0.0525 0.0340

References 52 53

Fig. 6 The validation of results of both linear and nonlinear indices of EWT, GWCF, GWCD, and
PWC. Based on using the LOPEX database, RMSE is computed based on these models; R2 is
the determination coefficient, where panels (a) and (b) refer to linear and nonlinear regression
indices, respectively.

Fig. 7 The validation of results of the EWT, GWC, and PWC based on using the ANGERS data-
base. RMSE is calculated based on these models and R2 is the determination coefficient. Panels
(a) and (b) refer to linear and nonlinear regression indices, respectively.
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the linear regression model ðR1910 − R1340Þ∕ðR1910 − R1125Þ having R2 ¼ 0.9692 and RMSE ¼
0.0017 ðg∕cm2Þ while the nonlinear regression model ðR1930 − R1425Þ∕ðR1930 − R1360Þ having
R2 ¼ 0.9596 and RMSE ¼ 0.0019 ðg∕cm2Þ shows good results as compared to the already
published indices. Therefore, the recommended indices are more dependable and persistent in
calculating leaf water content for the plants species used in this study.

The results have been further verified by LOPEX and ANGERS datasets; as we can see in
Fig. 7, both the suggested indices have performed well in terms of R2 and RMSE, which further
strengthens the results on the proposed linear and nonlinear indices. Figure 7 indicates that EWT,
with LOPEX and ANGERS, has come up with better results than the other water indicators, such
as GWTand PWC.54 Both, the indices have shown reliable results with calibration data set, but to
make these indices more generalized and could be used for any type of plant leaf that’s why we
have to check the accuracy and the reliability of the proposed indices with already published and
worldwide used databases, such as LOPEX and ANGERS and while looking at the results, as
shown in Fig. 7, we can see that the indices proposed in this study are reliable and accurate.

4 Discussion

4.1 Stability of the Index Suggested

The proposed EWT linear and nonlinear indices were tested with odd combinations until 57 nm
in both a forward and backward manner within the calibration dataset. The combination of the
proposed indices has been made with the difference of odd numbers (to take the average), such as
5, 9, and 13 nm, until 57 nm and they showed stability and a strong determination coefficient on
both aspects, indicating their correctness and dependability as shown in Fig. 8. Theoretically,
a valid and reliable index should be assessed for calibration on numerous datasets with varying
random percentages and to keep high stability under different wavelength resolution.38,55 Newly
proposed indices have the potential to be expanded to enormous sizes and would satisfy future
applications due to their intensity and dependability.38

4.2 Leaf Properties Based on Individual Wavelength

We have checked the individual wavelength and their correlation coefficients. In the single band,
the correlation coefficient is relatively low with the calibration dataset. But these individual
bands play a crucial role in estimating leaf water content because they cover the sensitive region
where water can be traced. The main theme of doing this is to show how they respond separately,
and when it came to bands combination, they have shown good results. As a result, we used
a technique that included specified steps to examine how each band of the indices related to
reflectance, as shown in Fig. 9.

Fig. 8 From calibration dataset: suggested bandwidth index for EWT with reliable stability show-
ing both (a) linear and (b) nonlinear indices.
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The mean spectra of leaves for various EWT ranges are illustrated in Fig. 10. At 1350 to
1580 nm, leaves with high EWT and other indicators show comparatively low reflectance.
The spectral region of the reflectance spectrum is primarily influenced by pigment absorption
(mostly by chlorophyll molecules).56,57 Increased relative reflectance at wavelengths between
1400–1580 nm resulted from the dehydration of leaves, affecting their optical characteristics.
However, numerous published research documents erratic changes in leaf reflectance during
dehydration, such as an overall rise, a decrease, and no significant fluctuations in reflectance.56,58

After using the first derivative of relative reflectance, these outcomes were more obvious as
shown in Fig. 10(b). The trend of the Pearson’s correlation coefficients (rP) in the relationship
between the EWTand wavelength-dependent relative reflectance values shown in Fig. 10(c).18,34

While Fig. 10(d) demonstrates how rP has changed over time in the relationship between the
wavelength dependent first derivative of the relative reflectance values and EWT.

As Fig. 11 demonstrates that the indices’ values are restricted to the ranges of 0.6 to 1.0 for
LOPEX and 0.001 to 0.04 for ANGERS (horizontal axis). Leaf samples were utilized to evaluate

Fig. 9 Relationship between EWT and reflectance from calibration data set at (a) linear (bands):
R1125, R1340, and R1910 (nm) and (b) non-linear (bands): R1360, R1425, and R1930 (nm). Power
curves of the form best represented the relationships as y ¼ ax−b . Correlation coefficients (r ) are
shown.

Fig. 10 (a) Reflectance spectral signatures, (b) first derivative for reflectance, (c) EWT correlation
coefficient (rp) and reflectance spectra correlation, and (d) first derivative of reflectance.
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the model. The relative RMSE was calculated in relation to the mean measured values. Overall,
it is evident that the model’s predicted values and the measured values exhibit a strong linear
positive connection. Most of the existing research on the association between the water content
of leaves and their ability to reflect light (particularly EWT) is restricted to several unique species
and specific wavelengths. However, in our study, we try not to keep ourselves to specific species;
as a result, the method applies to any species for EWT calculation.

Due to changes in water indices and interior leaf structure, the spectral reflectance fluctuates
slightly, mainly in the infrared and NIR. This study examines whether a water sensitivity index
can accurately estimate the EWT of different plant species.

4.3 Advantages of the Proposed Indices

Nowadays, most EWT indices are calculated using measurements of the reflectance factors of
leaves obtained with an integrating sphere, a spectrometer equipped with a leaf clip, or a spec-
trometer positioned close to the nadir direction.50 Although it has not received much attention
from academics seeking to estimate EWT, the specular reflection off the leaf surface in these
directions has little impact on spectral reflection measurements. In a variety of illumination-
viewing geometries over a wide range of species, the newly suggested index can reduce the
specular reflection brought on by the leaf surface. Compared to other existing indices in this
study, this enables these indices to have the best relationship with EWTand the lowest sensitivity
to reflectance variables.

The proposed indices also have the advantage of being adaptable to additional observed and
simulated datasets containing reflected signals from other plant species in various geographic
locations or regions under various measurement conditions. The reflectance factors of leaves
take into account reflection values that are equivalent to those measured by leaf clip or integrat-
ing sphere, as well as reflectance factors that are dominated by specular reflection from the leaf
surface, which result in the expected phenomena.

5 Conclusion

This study evaluated how effectively several indices performed while estimating EWT, PWC,
GWCF, and GWCD. In estimating EWT for different plant species, most spectral indices based
on the theory of water absorption performed surprisingly well, having the highest R2 and
the lowest RMSE value. Since PWC and GWC did not perform well, it is inferred that
EWT is the water-sensitive spectral indices. The final EWT linear and nonlinear indices are
ðR1910 − R1340Þ∕ðR1910 − R1125Þ and ðR1930 − R1425Þ∕ðR1930 − R1360Þ, respectively.

The Datt type of index, ðR1 − R2Þ∕ðR1 − R3Þ, is a sensitive indicator for estimating plant
species’ leaf water content since it is based on the ratio of differences of three wavelengths.

Fig. 11 The results of validation of EWT based on using the (a) LOPEX and (b) ANGERS data-
bases. RMSE is computed based on the EWT model and R2 is the coefficient of determination.
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This index cannot only estimate water content with high accuracy but also estimate leaf water
content with reflection with the same precision as one direction. In this study, we looked into
the effectiveness of specific hyperspectral indices in determining EWT, PWC, and GWC.
As a result, it is concluded that EWT measured the water-sensitive spectral indices instead of
PWC and GWC.

The Datt type of index, the ratio of reflectance differences, can be used to reduce specular
reflection and then estimate leaf water content with quite consistent and high accuracy for
the plant species in this research. Because specular reflection alters the association of spectral
indices with leaf water content, as a physical optical characteristic of a leaf, it is consi7dered
“noise” in assessing leaf water content.

These indices can be used for reflected signals from various plant species in various locations
or regions and under various measurement settings. This is because leaf reflectance factors
contain reflectance factors primarily caused by specular reflection off the leaf surface in addition
to reflection values similar to those obtained using a leaf clip or an integrating sphere. More
research is needed to see if the Datt type can be used to remotely estimate the leaf water content
of other plant species with varied leaf surfaces.
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