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ABSTRACT. The registration of synthetic aperture radar (SAR) and optical images is a meaningful
but challenging multimodal task. Due to the large radiometric differences be-
tween SAR and optical images, it is difficult to obtain discriminative features only
by mining local features in the traditional Siamese convolutional networks. We
propose a modality-shared attention network (MSA-Net) that introduces nonlocal
attention (NLA) to the partially shared two-stream network to jointly exploit local and
global features. First, a modality-specific feature learning module is designed to
efficiently extract shallow modality-specific features from SAR and optical images.
Subsequently, a modality-shared feature learning (MShFL) module is designed to
extract deep modality-shared features. The local feature extraction module and
the NLA module in MShFL extract deep local and global features to enrich feature
representations. Furthermore, a triplet loss function with a cross-modality similarity
constraint is constructed to learn modality-shared feature representations, thereby
reducing nonlinear radiometric differences between the two modalities. The MSA-
Net is trained on a public SAR and optical dataset and tested on five pairs of SAR
and optical images. In the registration results of five pairs of test SAR and optical
images, the matching rate of the MSA-Net is 5% to 15% higher than that of other
compared methods, and the matching errors of the matched inliers are on average
reduced by about 0.28. Several ablation experiments verify the effectiveness of
the partially shared network structure, the MShFL module, and the cross-modality
similarity constraint.
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1 Introduction
Image registration is the process of matching two or more images of the same scene captured at
different times, from different viewing angles, and using different sensors. This process achieves
geometric alignment between the reference image and the image to be registered. Image regis-
tration is widely used in various fields, such as image fusion,1–3 image mosaic,4 image stitch-
ing,5,6 and multitemporal image change detection.7,8 With the rapid development of multisensor
technology, many different modes of images can be obtained from the same scene. Synthetic
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aperture radar (SAR) and optical images are the two main ways of observing the earth. Because
these two images have complementary information, they are widely used in multimodal remote
image tasks.1–3,8–12 For these multimodal tasks to be accurate, the registration results of SAR and
optical images are crucial.

However, nonlinear radiation differences between SAR and optical images and coherent
speckles in SAR images make registration an unsolved and challenging research issue. Both
traditional handcrafted methods13–19 and deep learning-based ones have been used to address
these issues.20–28

The handcrafted image registration approaches mainly include intensity-based and feature-
based methods. Due to the poor similarity of intensity-based descriptors, the former is less effec-
tive in multimodal image registration. The latter can deal with nonlinear radiation differences
more effectively by mining the structural features of multimodal images to obtain descriptors. As
a result, feature-based approaches are increasingly being used in image registration. The gra-
dient-based descriptor algorithms, such as scale-invariant feature transform (SIFT),13 SAR-
SIFT,15 and OS-SIFT,16 are applied to optical image registration, SAR image registration, and
optical and SAR image registration, respectively. Nonetheless, gradient-based descriptors extract
less valuable information from darker images. Compared with gradients, changes in light and
radiation have no effect on phase congruency. The registration algorithms based on phase con-
gruency, such as the histogram of phase congruency (HOPC),17 phase congruency structural
descriptor (PCSD),18 and radiation-invariant feature transform (RIFT),19 have been successfully
employed in SAR and optical image registration. Recently, Fan et al.29 proposed a new nonlinear
diffusion-based Harris-Laplace detector and a new structural descriptor based on multiscale
adaptive binning phase congruency that is more robust to geometric and radiometric differences,
improving the number of matching points and reducing matching errors.

The handcrafted methods based on gradient and phase congruency mentioned above mine
modality-shared features, i.e., structural features. The handcrafted methods use a fixed feature
extraction pipeline to align a small number of images. They do not have the ability to handle the
resolution, scale, and rotations that occur in the alignment of a large number of SAR and optical
images. With its powerful data mining capabilities, deep learning has been widely used in various
tasks involving remote sensing images. In recent years, many deep-learning registration methods
have been proposed. For example, L2-Net,20 HardNet,21 and Siamese fully convolutional net-
work (SFcNet)24 based on Siamese convolutional network have been proposed for single- or
multimodal image matching or registration. MatchosNet26 and CNet27 based on pseudo-
Siamese convolutional networks are proposed for SAR and optical image matching and
registration.

The application of the above-mentioned Siamese or pseudo-Siamese convolutional networks
to multimodal image registration has two problems. First, neither the Siamese nor pseudo-
Siamese networks take into account both nonlinear radiation differences and mining modal-
ity-shared features. Since it is a two-stream network with completely shared parameters, the
Siamese network ignores the radiation differences between SAR and optical images. The
pseudo-Siamese network is a two-stream network that does not share parameters at all, which
makes it unable to fully exploit the modality-shared features. Second, the local features extracted
by convolutional networks are easily affected by radiation differences and noise, resulting in low
similarity of extracted features.

For the first problem mentioned above, we propose a partially shared dual-stream convolu-
tional neural network (CNN) to mine shared features that help improve registration accuracy. For
the second problem mentioned above, we insert nonlocal attention (NLA) into the two-stream
CNNs to extract both local and global features. Local features are limited due to receptive fields,
which make it difficult to extract similar features from multimodal images. Global features have a
larger range of receptive areas and are less affected by modal differences than local features.
Therefore, considering global correlation can improve the robustness of features to a certain
extent.

In this paper, we propose a modality-shared attention network (MSA-Net) to construct
modality-shared feature descriptors for SAR and optical image registration. The main contribu-
tions of our method are summarized as follows.
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(1) In MSA-Net, we built a partially shared network structure for mining the modality-
specific and modality-shared features of SAR and optical images to overcome modal
differences.

(2) In MSA-Net, a modality-specific feature learning (MSpFL) module is designed to extract
shallow modality-specific features, and a modality-shared feature learning (MShFL)
module is designed to extract deep modality-shared features. Specifically, the MShFL
module consists of three local feature extraction (LFE) modules and three NLA modules,
which can extract both local and global features.

(3) In MSA-Net, a triplet loss function with a cross-modality similarity constraint is designed
to make the MSA-Net less susceptible to modal changes. The triplet loss can encourage
the MSA-Net to learn shared features between SAR and optical images.

The reminder of this paper is organized as follows: Section 2 briefly introduces the related
work of this paper. Section 3 elaborates on the proposed registration algorithm and the archi-
tecture of MSA-Net in detail. In Sec. 4, the experimental comparisons and analysis are performed
on a public SAR and optical dataset. In addition, the comparisons between five test SAR and
optical image pairs are carried out. Finally, Sec. 5 summarizes this paper.

2 Related Work

2.1 Deep Learning Registration Methods
Deep learning-based methods learn data-driven deep features through Siamese and pseudo-
Siamese networks. L2Net20 and HardNet21 are methods applied to optical image matching.
The similarity between the two is that they use a Siamese network with completely shared param-
eters to learn local feature descriptors. The difference is that L2-Net uses all positive and negative
samples in the batch to optimize the network, whereas HardNet uses hard negative samples in a
batch to complete the network optimization. Due to the successful application of HardNet in
optical image matching, some papers22,24 used its improved Siamese convolutional network
to extract deep features and realize multimodal image matching or registration. Bürgmann et
al.22 input SAR and optical image patches of larger size into a modified Siamese network based
on HardNet to obtain sparse feature descriptors and use the L2 distance of feature descriptors to
obtain a similarity metric. Zhang et al.24 adopted the SFcNet to learn the similarity score between
two different kinds of image patches.

However, the Siamese network ignores the radiometric differences between SAR and optical
images and the scattered noise in SAR images. Hughes et al.23,24 explained that pseudo-Siamese
networks are better suited for multimodal image matching. MatchosNet26 and CNet,27 based on
pseudo-Siamese network structure, have achieved average results in SAR and optical image
registration. MatchosNet is template matching, which can obtain better results only when there
is no large translation or rotation transformation between the two images to be registered.
However, the pseudo-Siamese network lacks the interaction between different modalities in the
process of learning features, so it is more difficult to explore the shared features between different
modalities. In addition, pseudo-Siamese networks increase the network parameters, which makes
convergence more difficult. Therefore, we design a partially shared network to mine similar fea-
tures in multimodal images while considering the differences between modalities.

2.2 Nonlocal Attention
Due to the limited perceptual field of CNN, it is difficult to capture the global correlations of
images. Thus it does not cope well with multiple transformations and nonlinear radiometric
differences in multimodal image registration. Due to its sequence (image block) modeling struc-
ture, the transformer30 based on self-attention mechanism is particularly good at capturing global
interactions between token embeddings. ViT31 has successfully applied the transformer30 from
natural language processing to computer vision.32–34 It demonstrates that transformer also has a
strong ability to model spatial correlations of images. The main reason for the success of the
transformer is its core component, the self-attention module that captures global information.
The self-attention module computes the response at a position in a sequence (e.g., a sentence)
by focusing on all positions and taking their weighted average in the embedding space. In the
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registration task, the two images to be registered may have scale, rotation, translation, and other
transformations. Due to various transformations, the local information of an image changes.
However, the relative position between two pixels in one image is constant, which is equivalent
to the relative position of two words in a sentence in natural language. Mathematically, self-atten-
tion can be understood as a nonlocal averaging operation35 that captures long-distance depend-
encies. To fully exploit the features, we use a nonlocal operation similar to the self-attention
module in the transformer to extract global features and CNN to extract local features.

3 Proposed Method
The proposed algorithm framework in this paper is depicted in Fig. 1. First, we use the phase
congruency maximum moments (MMPC)19 to extract keypoints from SAR and optical images.
Then we cut patches centered on the keypoints to generate SAR and optical image patches. These
patches are converted into 8-bit grayscale images and then fed into MSA-Net to learn deep fea-
tures. The matching points are obtained by the nearest-neighbor matching strategy. Finally, the
final registration results are obtained after removing the outliers by random sample consensus
(RANSAC).

As shown in Fig. 2, the proposed MSA-Net learns modality-shared features between the
SAR and optical images to improve multimodal image registration performance. First, the
MSpFL module is proposed to extract specific shallow features from SAR and optical images.
Second, the MShFL module is used to extract deep local and global features shared between the
two modalities. The MShFL module includes three LFE modules and three NLA modules. Third,
a triplet loss function with a cross-modality similarity constraint is used to match multimodal
features. The structure of MSA-Net is shown in Table 1.

Given a set of SAR and optical patch pairs, ps
i ⊆ ps, po

i ⊆ po, i ∈ 1; 2; : : : ; N, where N is
the number of the patches. When i ¼ j, ps

i ¼ po
j are the corresponding SAR and optical image

patches. Thus ps
i ¼ po

j are the noncorresponding SAR and optical image patches, when i ≠ j.
The goal of the MSA-Net is to make the distances between the corresponding patch pairs
closer and the distances between the noncorresponding patch pairs farther. First,
fðps

i ; p
o
i Þ; i ¼ 1; 2; : : : ; Ng are separately fed into the MSpFLSAR and MSpFLOPT modules to

obtain N pairs of modality-specific feature maps fðfsi ; foi Þ ∈ Rc×h×w; i ¼ 1; 2; : : : ; Ng, where
h and w represent the spatial height and width of the feature map, and c is the channel dimension
of each feature map. fsi and f

o
i represent two i’th shallow modality-specific features. Second, the

MShFL module extracts deep modality-shared features. Each MShFL module includes three
LFE modules and three NLA modules. The LFE module is used to extract local features, and
the NLA module is used to extract global features. Third, the feature maps obtained by MShFL
are fed into a kernel size with 8 × 8 convolution to obtain the 128-dimensional deep feature
vectors fðesi ; eoi Þ ∈ R128×1; i ¼ 1; 2; : : : ; Ng. Finally, the triplet loss function with a cross-

Fig. 1 Framework of the proposed registration algorithm.
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modality similarity constraint motivates the MSA-Net to learn more similar feature representa-
tions between corresponding SAR and optical image patches.

3.1 Modality-Specific Feature Learning Module
Considering the nonlinear radiation differences between SAR and optical images, we design
MSpFL modules that do not share parameters to extract modality-specific features, such as tex-
ture, in the shallow network. There are two reasons to propose MSpFL modules. On the one
hand, since the difference between modalities is not considered, it is difficult for the
Siamese network to extract effective features that are favorable for multimodal image registra-
tion. On the other hand, if a pseudo-Siamese network is used, it will increase the number of
network parameters and the difficulty of convergence.

Table 1 Detailed structure of the proposed MSA-Net.

Structure Details Output size

Input layer Optical image patch 1 × 64 × 64

SAR image patch 1 × 64 × 64

MSpFLSAR Convð32 × 3 × 3Þ∕BN∕ReLU 32 × 32 × 32

Convð32 × 3 × 3Þ∕BN 32 × 32 × 32

MSpFLOPT Convð32 × 3 × 3Þ∕BN∕ReLU 32 × 32 × 32

Convð32 × 3 × 3Þ∕BN 32 × 32 × 32

MShFL LFE1 32 × 32 × 32

NLA1 32 × 32 × 32

LFE2 64 × 16 × 16

NLA2 64 × 16 × 16

LFE3 128 × 8 × 8

NLA3 128 × 8 × 8

Last layer Dropout ð0.1Þ∕Convð128 × 8 × 8Þ 128 × 1

Fig. 2 Framework of the proposed MSA-Net.
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Based on the above analysis, this paper proposes a partially shared feature extraction net-
work. The MSpFL module is used to extract the specific shallow features of SAR and optical
images. Suppose that the SAR and optical image patch pairs are fðps

i ; p
o
i Þ; i ¼ 1; 2; : : : ; Ng, ps

i is
the i’th SAR image patch, and po

i is the corresponding optical image patch of ps
i . When they are

fed into the MSpFL module, the modality-specific features learned from SAR and optical images
can be expressed as follows:

EQ-TARGET;temp:intralink-;e001;114;664fsi ¼ MSpFLSARðps
i Þ; foi ¼ MSpFLOPTðpo

i Þ; (1)

where MSpFLSAR and MSpFLOPT represent the branches that extract modality-specific features
of SAR and optical images, resepctively. fsi is the learned SAR feature of ps

i , and f
o
i is the learned

optical feature of po
i .

MSpFLSAR andMSpFLOPT are two networks that do not share parameters but have the same
structure. As shown in Table 1,MSpFLSAR andMSpFLOPT contain two convolutional layers with
a kernel size of 3 × 3 and a number of convolutional filters of 32. The strides of the two convolu-
tional layers are 2 and 1, respectively. The first convolutional layer is followed by a batch nor-
malization (BN) layer and a rectified linear unit (ReLU) layer, and the second convolutional layer
is followed by a BN layer.

3.2 Modality-Shared Feature Learning Module
After extracting the shallow specific features from the two modalities, we need to further extract
the shared deep features. Here we design the MShFL module to learn the shared features from
SAR and optical images, which includes three LFE modules and three NLA modules:

EQ-TARGET;temp:intralink-;e002;114;472esi ¼ MShFLðfsi Þ; eoi ¼ MShFLðfoi Þ; (2)

where esi is the shared feature of fsi , e
o
i is the shared feature of foi , and MShFL is the MShFL

module.

3.2.1 Local feature extract module

We design three LFE modules in the MShFL module to extract local features shared between
SAR and optical images. Each LFE module includes a residual structure of two convolution
layers with a kernel size of 3 × 3. The strides of the two convolution layers are 2 and 1, respec-
tively. The channels of the two convolutional layers in the three modules are 32, 64, and 128.
Residual connections are added to prevent the network from overfitting. The learned modality-
shared local features can be represented as follows:

EQ-TARGET;temp:intralink-;e003;114;315fsi;kþ1 ¼ LFEkðfsi;kÞ; foi;kþ1 ¼ LFEkðfoi;kÞ; (3)

where LFEk represents k’th shared LFE module, k ¼ 1, 2, 3. fsi;k and f
o
i;k represent the SAR and

optical features input to LFEk, respectively. fsi;kþ1 and foi;kþ1 represent the SAR and optical fea-
tures output from LFEk, respectively.

3.2.2 Nonlocal attention module

Although CNN has good perception abilities for local regions, it lacks the modeling of global
information. For the registration task, the information of the local area is important, but the global
information can better describe the long-distance correlation and has good robustness to changes
in scale, rotation, etc. For example, in two images with the same scene, the content in the images
remains the same even after a slight rotation and translation transformation. Local information
cannot capture unchanged information due to its limited perceptual range, while global infor-
mation can still capture relevant information due to its large perceptual region. The NLA module
aims at strengthening the features of the current pixel position by aggregating the information
from all other positions in the feature map.

As shown in Fig. 3, x ∈ Rc×h×w is transformed into x 0 ∈ Rc×hw by the reshape operation R.
Let x 0 denotes the input feature map of the NLA module, where c is the number of channels, and
hw is the number of positions in the feature map. We use three 1 × 1 convolutions that form three
functions called α, g, and v, reducing the number of channels from c to c∕r for the input x. In our
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experiments, we set the reduction factor r to 2. We use dot-product similarity30 to define the
normalized pairwise relationship between positions i and j in a feature map:

EQ-TARGET;temp:intralink-;e004;117;603wij ¼
fðx 0

i ; x
0
jÞ

CðxÞ ¼ hWαx 0;Wgx 0
ji

hw
; (4)

where wij ∈ Rhw×hw is a normalized similarity matrix, fðx 0
i ; x

0
jÞ is the relationship between posi-

tions i and j, Wα and Wg are the weights of two convolution functions α and g. CðxÞ is a nor-
malization factor, in this case CðxÞ ¼ hw.

Then the similarity matrix wij is multiplied by the value matrix Wv to obtain the output
matrix:

EQ-TARGET;temp:intralink-;e005;117;501yi ¼
Xhw
j¼1

wijðWv · x 0
jÞ; (5)

where yi is the attention value of position i, and Wv is the weight of the convolution function v.
The output of the NLA module is defined as

EQ-TARGET;temp:intralink-;e006;117;433z 0i ¼ Wzyi þ x 0
i ; (6)

where Wz is a 1 × 1 convolution with the channel number of c, “þ” in the formula indicates
residual connection, z 0i represents the output of the NLA module at position i. z 0 ∈ Rc×hw is
transformed into z ∈ Rc×h×w by the reshape operation R. The input feature dimension of the
NLA module is the same as the output feature dimension, which allows us to insert it anywhere
in the network.

The NLA module can be regarded as a global information construction module. The specific
operation is to obtain the global contextual features of the current pixel by the weighted average
of all positions.

3.3 Triplet Loss with Similarity Constraint
In order to learn modality-shared features between the SAR and the corresponding optical patch
pairs, the triple loss function is used to minimize the distances of the features of corresponding
patch pairs and maximize the distances of the features of noncorresponding patch pairs. The
margin m is a hyperparameter that aims to keep a certain distance between the corresponding
and noncorresponding features. The triple loss Lt is calculated as follows:

EQ-TARGET;temp:intralink-;e007;117;228Lt ¼
1

Nt

XNt

i¼1

maxðdðesi ; eoi Þ − dðesi ; eoj Þ þm; 0Þ; (7)

where dðesi ; eoi Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2esi e

o
i

p
represents the L2 pairwise distance of the corresponding fea-

tures, dðesi ; eoj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2esi e

o
j

p
, i ≠ j, represents the L2 pairwise distance of the noncorrespond-

ing features, and Nt represents the number of samples in a batch, m ¼ 1.
Negative sampling is usually required when calculating the triple loss function, which usu-

ally includes random sampling in all samples20 and hard negative sample sampling in batches.21

We adopt the latter to improve the optimization performance of the MSA-Net. Under hard neg-
ative sample mining, the triple loss is rewritten as

Fig. 3 NLAmodule extracts global features. “R” represents reshape operation, “⊗” denotes matrix
multiplication, and “�” denotes element-wise sum.
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EQ-TARGET;temp:intralink-;e008;114;736Lt ¼
1

Nt

XNt

i¼1

maxðdðesi ; eoi Þ − dðesi ; eohardÞ þm; 0Þ; (8)

where eohard is the hard negative sample in the minibatch of esi .
In order to reduce the modal differences between corresponding patch pairs of SAR and

optical images, it is necessary to add similarity constraints between them. In this way, the net-
work can learn more compact feature representations between corresponding patches. The cross-
modality similarity constraint loss function Ls is defined as

EQ-TARGET;temp:intralink-;e009;114;639Ls ¼
1

Nt

XNt

i¼1

logð1þ expðdðesi ; eoi ÞÞÞ; (9)

where log and exp represent a logarithmic and exponential function, respectively.
Therefore, the overall loss function is expressed as

EQ-TARGET;temp:intralink-;e010;114;573L ¼ Lt þ λLs; (10)

where λ is the weighting coefficient of the loss function.

4 Experiments and Discussion
To validate the performance of the proposed MSA-Net, the experiments are performed on a pub-
lic SAR and optical image dataset SEN1-236 and five pairs of SAR and optical images. We com-
pare our method with three handcrafted and three deep learning methods, including OS-SIFT,16

PCSD,18 RIFT,19 HardNet,21 MatchosNet,26 and CNet.27 Section 4.1 describes a data description.
Section 4.2 introduces implementation details for the training stage, testing stage, and matching
stage. Section 4.3 describes the evaluation criteria used to evaluate algorithm performance.
Section 4.4 presents the results and analysis of the experiments. Section 4.4.1 analyzes the in-
fluence of three weight-sharing strategies on the model’s performance. In Secs. 4.4.2 and 4.4.3,
we verify the effectiveness of the NLA module and the cross-modality similarity constraint. In
Sec. 4.4.4, we conduct a parameter sensitivity analysis to analyze the influence of parameter λ on
the matching accuracy. In Sec. 4.4.5, we analyze the influence of fine tuning on registration
results. In Sec. 4.4.6, we compare the registration results of seven algorithms on five pairs
of SAR and optical images, including qualitative analysis and quantitative evaluation. The com-
putational times of seven methods are shown in Sec. 4.4.7.

4.1 Data Description
The proposed MSA-Net is trained on SEN1-2,36 which is a public SAR and optical image
dataset. The SEN1-2 includes 282,384 co-registered SAR and optical images, each with a
size of 256 × 256 and a resolution of 10 m. The SEN1-2 dataset contains four folders:
ROIs1158_spring, ROIs1868_summer, ROIs1970_fall, and ROIs2017_winter. In order to ensure
that the training samples and test samples do not overlap, we select the data in ROIs1868_
summer as the training samples and the data in ROIs1970_fall as the test samples and filter out
fuzzy images without obvious ground objects, as shown in Fig. 4. We uniformly sample the
images selected from SEN1-2 with a stride of 32 to obtain a patch of size 64 × 64. After rotation
and zooming, we obtain 70,193 training sample pairs and 11,147 validation sample pairs. The
information about five pairs of SAR and optical images used for testing is shown in Table 2.

Fig. 4 Examples of SAR and optical images with no obvious objects filtered out from SEN1-2.
A pair of corresponding (a), (c) SAR and (b), (d) optical images.
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The “*” in Table 2 represents unknown information. The SAR and optical images in pairs 1 to 3
are from TerraSAR-X and Google Earth, and the SAR and optical images in pairs 4 to 5 are from
GaoFen-3 and Google Earth. In this paper, all experiments are conducted on a desktop computer
with Windows 10, an RTX 3060 GPU, and 24 GB RAM. The MSA-Net proposed in this paper is
built using the PyTorch37 deep learning framework.

4.2 Implementation Details

4.2.1 Training stage

We first train our network from scratch on 70,193 pairs of training samples in SEN1-2 and val-
idate it on 11,147 pairs of validation samples. The batch size is 300. The SGD optimizer with an
initial learning rate of 0.1 is adopted. The training epoch is 20. Next, the network is fine-tuned
with the five pairs of images before testing. Specifically, we manually select four points on each
SAR and optical image and use HOPC17 to get registered images. According to the stride of 16,
we cut the registered image into patches with a size of 64 × 64. Some blank patches without
content are removed. The reason for using a stride of 16 instead of 32 for the test image is that
the number of test data is small, and reducing the stride can generate more patches. Meanwhile,
reducing the stride results in more overlap between adjacent patches, leading to increased sim-
ilarity between their contents. This forces the network to learn more discriminative features, so
that the feature distance between different patches is as large as possible. These patches are
amplified using the same data enhancement techniques as SEN1-2. The purpose of using over-
lapping blocks instead of nonoverlapping blocks is to make MSA-Net learn more discriminative
features from certain similar samples. When one pair of images is tested, the remaining pairs of
images are used to fine-tune the network. The parameters m and λ in the proposed loss function
are 1 and 0.1, respectively.

4.2.2 Testing stage

The feature points are extracted using the MMPC.19 Next, a local patch with a size of 64 × 64 is
cropped around each feature point. Then the local patch is fed into the network to obtain the 128-
dimensional feature vector, that is, the proposed modality-shared feature descriptor.

4.2.3 Matching stage

We match the modality-shared feature descriptors corresponding to each feature point through
nearest-neighbor matching to obtain the initial matching points. The affine transformation param-
eters from the image to be registered (optical image) to the reference image (SAR image) are

Table 2 Information about five pairs of SAR and optical images used for testing.

Pair Modality Sensor Size (m) Resolution (m)

1 SAR TerraSAR-X 550 × 512 *

Optical Google Earth 550 × 512 *

1 SAR TerraSAR-X 550 × 512 *

Optical Google Earth 550 × 512 *

1 SAR TerraSAR-X 550 × 512 *

Optical Google Earth 550 × 512 *

4 SAR GaoFen-3 512 × 512 1

Optical Google Earth 512 × 512 1

4 SAR GaoFen-3 512 × 512 1

Optical Google Earth 512 × 512 1

Hu et al.: Synthetic aperture radar and optical image registration. . .
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calculated by using the initial matching points. Finally, outliers are deleted by RANSAC to
obtain the final registration result.

4.3 Evaluation Criteria
We use two metrics to evaluate the matching performance, including FPR95 and accuracy. The
FPR95 refers to the false positive rate in which the true positive rate equals 95%, the accuracy
refers to the probability that the network correctly predicts the matching label of two patches.
Therefore, the smaller the FPR95 is, the higher the accuracy is, and the better the matching
performance will be.

We quantitatively evaluate different registration methods using the number of correct
matches (NCM), the ratio of correct matches (RCM), and the root-mean-square error
(RMSE) as evaluation metrics:

EQ-TARGET;temp:intralink-;e011;114;592RCM ¼ NCM

NM
; (11)

EQ-TARGET;temp:intralink-;e012;114;547RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NCM

XNCM
i¼1

½ðm 0
i −miÞ2 þ ðn 0

i − niÞ2�
vuut ; (12)

where NM is the total of matches, ðm 0
i ; n

0
i Þ is the coordinate of the image to be registered after the

transformation matrix, and ðmi; niÞ is the coordinate of the reference image.

4.4 Experimental Results and Analysis

4.4.1 Influence of three weight-sharing strategies

As the analysis in Sec. 2.1 shows, although the Siamese network with completely shared weights
can mine shared features, it may ignore modal differences. The pseudo-Siamese network with
completely unshared weights can extract modality-shared features, but it does not take modality-
shared features into account. Therefore, this paper discusses three weight-sharing strategies,
including completely unshared, completely shared, and partially shared weights. The experiment
is carried out on the SEN1-2 dataset, and the experimental results are shown in Table 3. The
“Dist_np” in Table 3 represents the L2 pairwise distance between positive samples and negative
samples. The larger the distance is, the better the network’s ability to distinguish between pos-
itive and negative samples will be.

From Table 3, we can see that the network structure with completely shared weights achieves
the lowest matching accuracy. The FPR95 is the highest and Dist_np is the lowest among the
three weight-sharing strategies, which indicates that the network with completely shared weights
does not cope well with differences of multimodal images. The third and fourth rows in Table 3
are the experimental results of the completely unshared weight network and the partially shared
weight network, respectively. The latter achieves a higher matching accuracy, about 1.1% higher
than the former, and the FPR95 of the latter is 0.1769, about 0.06 lower than the former. The
Dist_np of the partially shared weight network is 0.2299, about 0.03 higher than the completely
unshared weight network. Therefore, we propose a dual-stream network with partially shared
weights can better mine the modality-shared features of SAR and optical images and improve
matching accuracy.

Table 3 Matching results of different weight-sharing strategies.

Weight-sharing strategy Accuracy FPR95 Dist_np

Completely unshared 0.9539 0.2356 0.2035

Completely shared 0.9346 0.2497 0.1943

Partially shared 0.9669 0.1769 0.2299
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4.4.2 Effectiveness of the NLA module

Figures 5(a) and 5(b) show the changing trend of FPR95 and accuracy under three network struc-
tures, which are HardNet, MSA-Net without NLA, and the proposed MSA-Net. MSA-Net without
NLA represents the network structure after removing the NLA module from MSA-Net. It can be
seen that the matching accuracy of MSA-Net is the highest and the FPR95 of MSA-Net is the
lowest among the three models. The NLA module mines global features with a larger receptive
field. This is so that MSA-Net can cope with radiation differences to a certain extent, thus improv-
ing matching performance. We can also see that MSA-Net without NLA achieves higher matching
accuracy and lower FPR95 in fewer epochs compared to HardNet. The difference between the two
models lies in whether the weights of the feature network are completely shared and whether
residual connections are used. HardNet learns features from SAR and optical images using a net-
work with completely shared weights and no residual connections, both of which make HardNet
less effective than MSA-Net without NLA in handling multimodal data.

4.4.3 Influence of loss function

Figures 5(c) and 5(d) show the FPR95 and accuracy change curves of different loss functions.
After adding cross-modality similarity constraints to the loss function, the matching accuracy is
further improved and the FPR95 is further reduced. It proves that the combination of triplet loss
and cross-modality similarity constraint loss allows the MSA-Net to further explore the similarity
between SAR and optical images.

4.4.4 Parameter sensitivity analysis

In this section, we analyze the influence of the weight coefficient λ on matching accuracy. To
observe the changing trend of accuracy in the test set of SEN1-2, we gradually increase the value
of λ from 0 to 1 with an interval of 0.1. Figure 6 reports the average of three experiments. When

(a) (b) (c) (d)

Fig. 5 Changing trend of (a) FPR95 and (b) accuracy with epoch under different models. Changing
trend of (c) FPR95 and (d) accuracy with epoch under different loss functions.

Fig. 6 Changing trend of accuracy with λ.
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the value of λ is between 0 and 1, the value of accuracy is between 0.978 and 0.982. It indicates
that adding cross-modality similarity constraints to the loss function will not affect the stability of
the network. When λ is 0.1, accuracy reaches its maximum value. It can be seen that a small
weight for Ls can make the network learn well. When λ increases to 1, accuracy gradually
decreases. We conclude that giving a larger λ to cross-modal similarity constraints is not con-
ducive to learning features of multimodal images. We should not let the network pay too much
attention to learning similar features without considering that the multimodal data itself is differ-
ent. So it is necessary to obtain an appropriate weight coefficient through experiments.

4.4.5 Influence of fine-tuning on registration results

In Fig. 7, we show the influence of fine-tuning on the registration results of five test images,
including NCM and RMSE. Figure 7(a) shows that the NCM increases significantly after
fine-tuning, especially in pairs 1, 2, 4, and 5. As shown in Fig. 7(b), the RMSEs of pairs 1 and
2 decrease after fine-tuning. The RMSE of pair 3 is higher after fine-tuning. The RMSEs of pairs
4 and 5 do not change significantly before and after fine-tuning. It can be seen that registration
results can be improved to some extent through fine-tuning. Even without fine-tuning, relatively
good results can be obtained, indicating that the model trained with SEN1-2 data has transfer
ability. Considering that different data are distributed differently, fine-tuning can improve the
adaptability of the network and obtain better registration results.

4.4.6 Comparison with the other registration methods

We select five pairs of SAR and optical images for evaluating seven registration methods. In pairs
1 to 3, there are not only radiation differences between SAR and optical images but also rotation
and translation transformations. Pairs 4 and 5 have obvious radiation differences, noise, slight
translation transformations, and no rotation transformation. Figures 8(a)–8(g)–12(a)–12(g) show
the matching points obtained by seven methods in five pairs of SAR and optical images.
Figures 8(h)–12(h) show the registration results of MSA-Net. We superimpose the outlines
(as shown by the yellow curve) of transformed optical images on the original SAR images and
use several red rectangles to highlight the registration results for certain regions.

From Figs. 8(a)–8(c)–12(a)–12(c), we can see that the three handcrafted algorithms have
achieved relatively good registration results for the five pairs of images. RIFT obtains more
matching points than OS-SIFT and PCSD thanks to its use of radiation-invariant phase congru-
ency to extract keypoints and construct descriptors. OS-SIFT has the fewest matching points
among the three handcrafted algorithms because the descriptor based on gradient is worse than
the one based on phase congruency in dealing with radiation differences. PCSD matches descrip-
tors in the local window, resulting in fewer matching points obtained.

(a) (b)

Fig. 7 Influence of fine-tuning on the registration results of five test image pairs. (a) NCM obtained
by MSA-Net in five pairs of test images with or without fine-tuning. (b) RMSE obtained by MSA-Net
in five pairs of test images with or without fine-tuning.

Hu et al.: Synthetic aperture radar and optical image registration. . .

Journal of Applied Remote Sensing 036504-12 Jul–Sep 2023 • Vol. 17(3)



Among the four deep learning methods, MatchosNet obtains few matching points with
obvious errors in pairs 1 to 3 [as shown in Figs. 8(e)–10(e)], but a certain number of correct
matching points can be found in pairs 4 and 5 [as shown in Figs. 11(e) and 12(e)]. The main
reason is that MatchosNet is a position-matching algorithm, which needs to know the approxi-
mate offset of the two images to be registered in advance. Therefore, it is often difficult for
MatchosNet to find the correct number of matching points in a pair of images with rotation and
translation transformations. HardNet, CNet, and MSA-Net are patch-based feature extraction
networks. The difference between the three is the weight-sharing strategy of the networks.
Specifically, HardNet is a Siamese network with weight sharing, CNet is a pseudo-Siamese net-
work without weight sharing completely, and MSA-Net is a network structure with partial weight

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Registration results of seven methods in image pair 2. (a)–(g) Matches found using OS-
SIFT, PCSD, RIFT, HardNet, MatchosNet, CNet, and MSA-Net, respectively. (h) Registration
result of our proposed MSA-Net.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Registration results of seven methods in image pair 1. (a)–(g) Matches found using OS-
SIFT, PCSD, RIFT, HardNet, MatchosNet, CNet, and MSA-Net, respectively. (h) Registration
result of our proposed MSA-Net.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 Registration results of seven methods in image pair 3. (a)–(g) Matches found using OS-
SIFT, PCSD, RIFT, HardNet, MatchosNet, CNet, and MSA-Net, respectively. (h) Registration
result of our proposed MSA-Net.

Hu et al.: Synthetic aperture radar and optical image registration. . .

Journal of Applied Remote Sensing 036504-13 Jul–Sep 2023 • Vol. 17(3)



sharing. HardNet does not consider the modal differences, and CNet does not take the mining of
the modality-shared features into account, so the matching points obtained by both [as shown in
Figs. 8(d) and 8(f)–12(d) and 12(f)] are not as much as those obtained by MSA-Net. As shown in
Figs. 8(g)–12(g), our proposed MSA-Net achieves the highest number of matching points among
the seven registration methods. MSA-Net combines two-stream CNNs and NLA to extract both
local and global features and obtains features with different perceptual ranges to cope with radi-
ation differences between SAR and optical images. In Figs. 8(h)–12(h), after carefully observing
the registration results, we find that the outlines of the transformed optical image and the cor-
responding SAR images almost overlap each other. Meanwhile, the regions circled by the red
rectangles are well-matched. In summary, compared with the other six methods, the proposed
MSA-Net achieves the best registration results and the most matches on the five pairs of images,
which can prove the effectiveness of the proposed method.

Table 4 shows the quantitative comparison of the seven methods on five pairs of test images,
including NCM, RCM, and RMSE. The higher the NCM and RCM and the lower the RMSE, the
better the performance of the registration algorithm. The “*” in Table 4 indicates that the method
is invalid for this pair of images. Even though the algorithm finds some matching points, the error
of these matching points is relatively large.

Our proposed MSA-Net obtains the highest NCM and RCM and the lowest RMSE among
the seven algorithms. This is mainly due to the fact that our algorithm not only considers the
radiation differences between SAR and optical images but also mines the shared features between
the two modalities to improve the similarity of features. In order to achieve the above, MSA-Net

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Registration results of seven methods in image pair 5. (a)–(g) Matches found using OS-
SIFT, PCSD, RIFT, HardNet, MatchosNet, CNet, and MSA-Net, respectively. (h) Registration
result of our proposed MSA-Net.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 Registration results of seven methods in image pair 4. (a)–(g) Matches found using OS-
SIFT, PCSD, RIFT, HardNet, MatchosNet, CNet, and MSA-Net, respectively. (h) Registration
result of our proposed MSA-Net.
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constructs two MSpFL modules and three MShFL modules to extract local and global features
and designs a loss function that considers similarity constraints. PCSD, RIFT, HardNet, and
CNet all find some correct matching points in the five pairs of test images. PCSD and RIFT
construct descriptors based on phase congruency, which can cope with radiation differences.
HardNet and CNet are patch-based deep feature extraction networks, and the network can mine
similar features of the two modalities through data learning. However, as the radiation difference
increases, the matching points will decrease accordingly. PCSD, RIFT, HardNet, and CNet
obtain more matching points in pairs 1 and 2 than in pairs 3 to 5. OS-SIFT and MatchosNet
fail on some image pairs. OS-SIFT is a gradient-based descriptor that is susceptible to radiation
differences. MatchosNet is an algorithm based on position matching, which fails in image pairs
with rotation and translation transformations.

4.4.7 Computational time of the seven methods

The computational time of the seven algorithms on the five pairs of images is shown in Table 5.
Among the seven algorithms, RIFT has the fastest computational efficiency. This is because it

Table 4 Quantitative comparison of the proposed MSA-Net with OS-SIFT, PCSD, RIFT, HardNet,
MatchosNet, and CNet. The bold values represent the best results among all compared methods.

Pair Metric OS-SIFT PCSD RIFT HardNet MatchosNet CNet MSA-Net

1 NCM 50 73 85 110 13 101 119

RCM (%) 33.33 48.67 56.67 73.33 * 67.33 79.33

RMSE 1.3516 1.2018 1.0523 0.9816 * 1.1243 0.9520

2 NCM 40 54 65 67 17 57 78

RCM (%) 26.67 36 43.33 44.66 * 38 52

RMSE 1.0425 1.1443 0.9795 0.9589 * 1.1790 0.8790

3 NCM 21 23 25 26 16 21 29

RCM (%) 42 46 50 42 * 42 58

RMSE 1.3659 1.1039 1.0301 0.9659 * 1.1414 0.8863

4 NCM 10 16 47 16 22 34 69

RCM (%) * 5.93 18.57 6.31 8.69 13.43 29.99

RMSE * 1.7755 1.6657 1.5570 1.5085 1.6414 1.4346

5 NCM 18 25 48 13 27 17 62

RCM (%) 8.87 10.34 24.13 6.40 13.30 8.37 40.78

RMSE 2.0426 1.8089 1.6524 1.5198 1.6484 1.4634 1.4201

Table 5 Computational time of the seven methods.

Pair OS-SIFT (s) PCSD (s) RIFT (s) HardNet (s) MatchosNet (s) CNet (s) MSA-Net (s)

1 31.32 44.45 12.73 13.79 17.16 16.05 19.33

2 25.32 41.26 9.57 11.86 14.28 17.89 14.34

3 24.92 45.26 7.71 8.82 10.65 13.14 13.34

4 19.73 42.24 8.63 9.65 10.65 16.14 18.47

5 20.92 43.10 7.71 9.78 10.43 15.42 16.87
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uses the FAST detector to extract key points, the phase consistency algorithm to extract descrip-
tors, and the ratio threshold for matching. The calculation time of OS-SIFT is much longer than
that of RIFT. Because OS-SIFT extracts keypoints and constructs descriptors in the multiscale
space, and it takes a certain amount of time to construct a multiscale space. PCSD takes the
longest time, mainly because it uses template matching. Each keypoint calculates its similarity
to all keypoints in the local window. The larger the window is, the more the keypoints are, and the
longer the time will be. The computational time of the four deep learning algorithms is relatively
close. HardNet takes the least time because it is a Siamese network with the least network param-
eters. MatchosNet and CNet are pseudo-Siamese networks with more parameters than HardNet.
MSA-Net has a partially shared network structure and three NLA modules. The computational
complexity of the NLA module is the square of the number of samples. So the computation time
of MSA-Net is longer than that of MatchosNet and CNet.

5 Conclusion
This paper proposes a deep learning algorithm, called MSA-Net, for accomplishing SAR and
optical image registration. The algorithm combines a dual-stream network with NLA to construct
modality-shared features descriptors for SAR and optical images. In MSA-Net, the MSpFL mod-
ule extracts shallow features from SAR and optical images to obtain modality-specific features,
whereas the MShFL module combines the LFE module and NLA module to obtain richer deep
modality-shared features, including both local and global features. A loss function that combines
triplet loss with cross-modality similarity constraint is also proposed to further improve matching
accuracy by constraining the network to be immune to radiometric differences. The experiments
are conducted on a public dataset and five pairs of test SAR and optical images. Specifically,
the validation experiments verify that the partially shared weight strategy, the NLA, and
cross-modality similarity constraints in MSA-Net help to improve the matching accuracy of
SAR and optical images. In addition, the comparative experimental results demonstrate that
our proposed method achieves the best registration results among the seven registration methods.
In future work, we would like to study more diverse attention mechanisms and feature fusion
techniques to further enhance the capabilities of the network for SAR and optical image
registration.
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