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Abstract. Human action recognition is an active and interesting research topic in computer vision and pattern
recognition field that is widely used in the real world. We proposed an approach for human activity analysis
based on motion energy template (MET), a new high-level representation of video. The main idea for the
MET model is that human actions could be expressed as the composition of motion energy acquired in a
three-dimensional (3-D) space-time volume by using a filter bank. The motion energies were directly computed
from raw video sequences, thus some problems, such as object location and segmentation, etc., are definitely
avoided. Another important competitive merit of this MET method is its insensitivity to gender, hair, and clothing.
We extract MET features by using the Bhattacharyya coefficient to measure the motion energy similarity
between the action template video and the tested video, and then the 3-D max-pooling. Using these features
as input to the support vector machine, extensive experiments on two benchmark datasets, Weizmann and KTH,
were carried out. Compared with other state-of-the-art approaches, such as variation energy image, dynamic
templates and local motion pattern descriptors, the experimental results demonstrate that our MET model is

competitive and promising. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution
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1 Introduction

In recent years, automatic capture, analysis and recognition
of human actions is a highly active and significant area in the
computer vision research field, with plentiful applications
both offline and online,"? for instance, video indexing and
browsing, automatic surveillance® in shopping malls, and
smart homes, etc. Moreover, interactive applications, such
as human-interactive games,” also benefit from the progress
of human action recognition (HAR).

In this paper, we address the problem of representation
and recognition of human activities directly from original
image sequences. An action video can be interpreted as a
three-dimensional (3-D) space-time volume (X-Y-T') by con-
catenating each two-dimensional (2-D) (X-Y) frame along
one-dimensional time (7). Various literature demonstrates
that spatiotemporal features, which include motion features
and shape features, are elementary and useful for HAR.>®
This means that shape features and motion features are
often combined to achieve more useful action representation.

The optical flow,® which is extracted from the motion
between two adjacent image frames, can be utilized to
distinguish action representation. Nevertheless, optical flow-
based methods, such as histograms of optical flow’” and
motion flow history,® are affected by uncontrolled illumina-
tion conditions.

Another important class of action representation is based
on gradients, such as histograms of oriented gradients
(HOG)’. The HOG descriptor is capable of describing local
edge structure or the appearance of an object, it is computed
from the local distribution of gradients, and its performance
is robust. However, gradient-based algorithms are sensitive
to noise.

*Address all correspondence to: Yanhua Shao, E-mail: syh@cqu.edu.cn
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Many “‘shape features” of action in 3-D X-Y-T space are
widely used in human action representation and HAR, for
instance, the motion energy image (MEI)® and motion his-
tory image (MHI)." However, those methods are not
immune to motion cycles.

Based on the idea that an action can be considered as a
conglomeration of motion energy in a 3-D space-time
volume (X-Y-T), which is treated as an “action-space,” we
introduce a new high-level semantically rich representation
model, which is called motion energy template (MET)
model, that is based on the filter bank for HAR. It should be
stressed that similar filter-based methods have been applied
with success to other challenging video understanding tasks,
e.g., spacetime stereo,'! motion estimation,'>!* and dynamic
scene understanding analysis.'"* The framework of our
method is shown in Fig. 1. The MET method, which is illu-
minated by the object bank method'® and action spotting,'®
performs recognition by template matching. The MET model
is obtained directly from video data, so some limitations of
classical methods can be avoided, such as foreground/back-
ground segmentation, prior learning of actions, motion esti-
mation, human localization and tracking, etc. Taking the
silhouette-based method for example, background estima-
tion is an important and challenging task to improve the qual-
ity of silhouette extraction.'”

Input videos typically consist of template videos and
search videos (unrecognized candidate videos), as shown in
Fig. 1. In our method, the motion template is defined first by
a small template video clip. Human actions are expressed as
the composition of motion energy in a high-dimensional
“action-space” in several predetermined spatiotemporal ori-
entations by 3-D filter sets. In other words, the representation
task is achieved by the MET model, and the classification
task is fulfilled directly by a classifier [such as support vector
machine (SVM)]. The algorithm processes, as shown in
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Fig. 1, are as follows. (1) The 3-D Gaussian filter bank is
used to decompose input videos into shorthand for space-
time oriented motion energy (SOME) volumes (Sec. 3.1).
(2) The SOME volumes are then matched to a database
of the SOME template volumes at the corresponding spatio-
temporal points using the Bhattacharyya coefficient. By this
means, the similarity volumes of the action template (T) and
the unrecognized video (S) are obtained (Sec. 3.2). (3) After
3-D max-pooling (3DMP), we get the MET features
(Sec. 3.3). (4) Finally, the MET features can be used to
obtain the action labels. In our experiments, by combining
with a linear SVM on the benchmark datasets, i.e.,
Weizmann and KTH, our method achieves 100% and
95.37% promising accuracies, respectively.
Our contributions could be summarized as follows:

(1) We proposed a novel template-based MET algorithm
which could generate discriminative features directly
from the video data for HAR.

(2) We evaluated the MET model on two benchmark
action datasets and showed that MET model is an
appreciative tool for action representation, enabling
us to obtain the highest reported results on the
Weizmann dataset.

(3) We demonstrated that our method achieves excellent
results on a benchmark dataset (KTH) despite the dif-
ferent scenarios and clothes.

The remainder of this paper is organized as follows. In
Sec. 2, we briefly review the related work in the field of
HAR. In Sec. 3, we elaborate on the MET model. In
Sec. 4, we present the experimental results from two public
benchmark action recognition datasets, Weizmann and KTH.
Finally, conclusions are given in Sec. 5.

2 Related Work

HAR is often done in two steps: action representation and
action classification. The first key step is action representa-
tion. There exists a great deal of literature on human action
representation and HAR.>'® In this section, we focus discus-
sions mainly on action representation, especially high-level
features and template-based methods, which are more rel-
evant to our approach.

2.1 High-Level Features

In spite of a robust low-level image, features have been
proven to be effective for many different kinds of visual rec-
ognition tasks. However, for some high-level visual tasks
such as scene classification and HAR, many low-level
image representations carrying relatively little semantic
meaning are potentially not good enough. Object bank'
was proposed as a new “high-level image representation”
based on filter banks for image scene -classification.
Action spotting,'® a novel compact high-level semantically
rich representation method, was introduced based on the
space-time oriented structure representation. Those methods
carry relatively more semantic meaning.

2.2 Template-Based Method

The “template-based” method has gained increasing interest
because of its convenience for the computing process.®!*!

Optical Engineering

063107-2

Bobick and Davis® computed Hu moments of MEI and
MHI to create action templates based on a set of training
examples. Kellokumpu et al.”> proposed a new method
using texture-based feature work with raw image data rather
than silhouettes. Dou and Li*° constructed motion temporal
templates by combining the 3-D scale invariant feature trans-
form with the templates of Bobick.

Chaudhry et al.'” modeled the temporal evolution of the
object’s appearance/motion using a linear dynamical system
from sample videos and used the models as a dynamic tem-
plate for tracking objects in novel videos.

Efros et al.>? proposed a template-based method based on
optical flow. Their methods can be thought of as a special
type of action database query and are effective for video
retrieval tasks.

Shechtman and Irani** used a behavior-based similarity
measure to extend the notion of the traditional 2-D image
correlation into 3-D space-time video-template correlation
and they further proved that the 3-D correlation method
has good robustness to small changes in scale and orientation
of the correlated behavior.

Hae Jong and Milanfar’' introduced a novel method based
on the matrix cosine similarity measure for action recogni-
tion. They used a query template to find similar matches.

It should be noted that despite the fact that these methods
are all based on the template pattern, the action representa-
tions obtained are relatively varied. For instance, some
methods may require background estimation,®* noise
reduction, period estimation,” object segmentation, human
localization or tracking,® and so on. These pretreatments
may not be conducive to automatically recognize action in
real applications.

2.3 Action Classification

Classifier is an important factor which affects the per-
formance of HAR. Heretofore, many famous pattern classi-
fication techniques [for instance, k-nearest neighbor,'® prob-
abilistic latent semantic analysis (pLSA),?® neural network
(NN, SVM,?'?7 relevance vector machine (RVM), >
and multiple kernel learning]® and their modifications
have been proposed and employed in the action recognition
field.

More detailed surveys on action recognition can be found
in Refs. 2 and 18.

3 MET Model

As mentioned before, Fig. 1 shows the framework of our
method, which consists of the following three algorithmic
modules: (1) filtering, (2) measuring SOME volumes simi-
larity based on the Bhattacharyya coefficient, and (3) 3DMP.
Finally, after achieving the above steps, the MET features
were gained. Later in this section, we will elaborate on
each step from Secs. 3.1-3.3, respectively.

3.1 SOME Features Construction for MET Model:
Filtering

The requested space-time oriented decomposition is

obtained by the phase-sensitive third derivative of 3-D

Gaussian filters'**"*! G5 (x)=d*kexp[—(x*+y*+1%)]/ 06’

with x = (x, y, f) denoting the space-time position and k is a

normalization factor. 6 = (a, f, 7) is the unit vector capturing
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Our algorithm
———— 3D Gaussian
Template filters SOlE
videos P template —
volumes | |Bhattacharyya
3D Gaussian coefficient 3D
Search filters SOE .| Similarity Max-pooling .| MET . Action
videos ~| volumes | volumes | features g O g labels

Fig.1 Framework of our action recognition system which consists of the following three algorithmic mod-
ules: filtering, measuring shorthand for space-time oriented motion energy volumes similarity based on
Bhattacharyya coefficient and three-dimensional max-pooling (3DMP).

their 3-D direction of the filter symmetry axis and a, §, y are
the direction cosines according to which the orientation of
the 3-D filter kernel is steered.>! More detailed expositions
on the mathematical formulation and design of the filters can
be found in Refs. 30 and 31. (The filter code can be obtained
by email for academic research).

A locally summed pointwise energy measurement can be
gained by rectifying the responses of the raw video to those
filters over a visual space-time neighborhood Q(x), which
covers the entire action of the video sample under analysis,
as follows:

> (Gs, ),

XEQ(x)

E-

5(x)

6]

where * denotes convolution and [;, is the input video.
Spatiotemporally oriented filters are phase sensitive,'* which
is to say that the filters’ output may be positive, negative, or
zero, so that the instantaneous output does not directly signal
the motion.'> However, by squaring and summing those fil-
ters’ outputs, this process follows from Parseval’s theorem
and the resulting signal gives a phase-independent measure
of motion energy which is always positive and directly sig-
nals the motion.'

2

Ey(x) < > |F{Gs, I Hoy. 0y, 0,)], #))

[ONRONRON

where F denotes the Fourier transform, (w,, ,) is the spa-

tial frequency and o, signifies the temporal frequency.
Obviously, retaining both the visual-spatial information

and dynamic behavior of the action process in the region

of interest, which is determined by filtering, an example
of which is illustrated in Fig. 2(b), is relatively important.
But it is unnecessary and redundant to describe the detailed
differences among different people, who perform the same
action wearing different clothes in several different scenar-
ios. That is, in action recognition, the dynamic properties of
an actor are more important than the spatial appearance,
which comes from the actors’ different clothes, etc. Never-
theless, in the MET method, human actions are expressed as
the composition of motion energy along with several pre-
determined spatiotemporal orientations, 6, and the responses
of the ensemble of oriented energy are partly appearance de-
pendent. To overcome this issue, we take full advantage of
3-D marginal information, which emphasizes and highlights
the value of the dynamic properties in the process of building
the spatial orientation component. The process can be refor-
mulated with more detail as follows.

As is well known, when using an N-order 3-D derivative
of Gaussian filters, (N + 1) directional channels are required
to span in a reference plane.’ In this study, N = 3 is adopted
in the process of space-time oriented filtering which is
defined as in Eq. (1). Consequently, it is suitable to consider
four directional channels along each reference plane in the
Fourier domain. Finally, we obtained a group of four isomet-
ric directions within the plane:

0, = cos (’;’) 0,(7) + sin (’Z) 0, (7).,
éa(ﬁ) =nx éx/Hﬁ X éxH’
0,(R) = A x0,(R). 3)

(d)

(e)

(@)

®

Fig. 2 General structure of the motion energy representation.

(b)

(@)

Input video (xxyxt=

160 x 120 x 360): boxing taken from the KTH action dataset. (b) Oriented motion energy volumes.
Five different space-time orientations are made explicitly. (c) downward motion; (d) upward motion;
(e) leftward motion; (f) rightward motion; (g) flicker motion.
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where 0 < i < 3, n signifies the unit normal of a frequency
domain plane and e, is the unit vector along the @, axis.

Now, finally, the marginalized motion energy measure-
ment along a Fourier domain plane can be obtained by sum-
ming the energy measurements, Ej, in all four specified
predefined directions. Those d1rect10ns are typically
expressed as 6; in Eq. (3).

3
E;(x) = Z E; (x). “)

Each Ej , as shown in Eq. (4), is computed by Eq. (1). In
the present 1mplementat10n five energy measurements of an
action are made explicitly at several different directions, 0.
Finally, the normalized energy measurement is composed of
the energy of each channel responses at each pixel by

5
By (0) = E5 (0/(O By () +¢). )

J=1

where e, which depends on the particular action scenario, is a
constant background noise for avoiding instabilities at the
space-time position where the entire motion energy is too
small. By using Eqs. (3) and (4), we obtained five normalized
SOME measurements.

Based on the above-mentioned theories, for clarity, we
present a pictorial display of the general structure of the
space-time oriented structure representation for the MET
model, as shown in Fig. 2. Figure 2(a) shows an example
of a 3-D X-Y-T volume corresponding to the human action
of boxing. Each oriented motion energy measurement is
extracted from the response to the oriented motion energy
filtering along a predefined spatiotemporal orientation, 6, as
shown in Fig. 2(b), corresponding to leftward ( \/_Z \/_ 0,1/
V/2), rightward (1/+/2,0,1/+/2), upward (0,1/+/2 1/\/—
downward (0,—-1/v/2,1/ f 2), and flicker (1,0,0) motion.

3.2 Measuring SOME Volumes Similarity: Template
Matching

After obtaining the SOME template volumes and SOME vol-
umes of the search videos, similarity calculation is required
in order to get the MET features.

In order to define a (dis)similarity measure between prob-
ability distributions, a variety of information-theoretic mea-
sures can be used.'**>* Tt was demonstrated that in
numerous practical applications, the Bhattacharyya coeffi-
cient provided better results as compared to the other related
measures (such as Kullback-Leibler divergence, L, L,,
etc.).'*3? Furthermore, there is also a “technical” advantage
gained from using the Bhattacharyya coefficient, which has a
particularly simple analytical form.*

Therefore, here, we use the Bhattacharyya coefficient
m(-), which is robust to small outliers, for motion energy
volumes similarity measurement. The range of this measure
is [0, 1]. Herein, O indicates complete disagreement, in-
between values indicate higher similarity, and 1 denotes
absolute agreement. The individual histogram similarity
measurements> are expressed as a set of Bhattacharyya
coefficients.

As mentioned above, the MET T is usually defined by
small template action video clips and S signifies the search
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video. The global match measurement, M (x), is represented
by

x) =) m[S(r). T(r - x)], (6)

where r = (u, v, w) denotes the range of the predefined tem-
plate volume. Hence, m[S(r), T(r — x)], which signifies the
similarity between T and S at each space-time position, is
summed across the predefined template volume. The global
peaks of similarity measure roughly estimate the potential
match locations.

In short, we obtained the similarity volumes by using a
Bhattacharyya coefficient-based template matching algorithm.

3.3 MET Features’ Vector Construction: 3DMP

The similarity volumes were then used to calculate the MET
features’ vector through the 3DMP (MP) method. In specific,
the 3DMP method* ™ is used to calculate a similarity meas-
urement with three levels in the octree (as shown in Fig. 3).
We note that the 3DMP method has two remarkable proper-
ties for feature expression in the MET model: (1) 3DMP is
able to generate a fixed-length output vector regardless of the
input size of the similarity matrix/volume and (2) 3DMP uses
multilevel spatial bins. Multilevel pooling has been shown to
be robust to object deformations.**>® Therefore, this con-
structs a 73-dimension feature vector, X = {x,,...,xs3}, for
each action pair.

In our implementation, 102 action videos were selected
from the Weizmann®’ dataset and the KTH?’ dataset in order
to construct the template set, in particular, 72 (three actors
performed six actions under four scenarios) video clips from
KTH and 30 (three actors performed 10 actions) video clips
from Weizmann.

As for the scale problem, a scale has two aspects: spatial
scale and temporal scale (motion periodicity). In particular,
the spatial scale determines the size of the objects/actors to
the most degree. In our implementation, the scale of the pre-
defined template volume for the MET is unfixed. On the con-
trary, in order to improve the robustness of the MET model,
we should take different spatial scales and temporal scales
into consideration in the process of selecting a template.
The influence on recognition results by different numbers
of scales was analysed in Sec. 4.6 by verifying different
numbers of MET.

In other words, N, = 102. For the given MET model with
N, templates, we achieve N, correlation volumes from the
MET model. Hence, the overall length of the MET features’
vector would be 7446 (N, x 73 = 102 x 73). Thus, we have
the MET features defined for classifiers input.

4 Experimental Results and Analysis

In this section, our approach is evaluated on two action
recognition datasets, Weizmann®’ and KTH,”” which are
widely used as benchmarks. Our experiment was based on
MATLAB code implemented on a 2.4 GHz Intel processor
without special hardware acceleration (such as parallel com-
puting, multicore CPUs, GPUs, etc.). The LIBSVM software
is used to classify the actions.*® A linear SVM classifier com-
bined with the MET model defines one novel method for
HAR. Sections 4.1 and 4.2 contain the comparative evalu-
ation using Weizmann®’ and KTH,?’ respectively.
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Fig. 3 The schematic of 3DMP. (a) Recursive subdivision of a cube into octants. (b) The corresponding

octree.

Abundant information of the evaluation of the MET
model is also given in Sec. 4.3-4.6. Specifically, the run
time of the MET model is analyzed in Sec. 4.3. After that,
we individually evaluate the impact of a classifier in Sec. 4.4.
Then the performance with different dimensionality
reduction methods is evaluated in Sec. 4.5. Finally, the per-
formance with different numbers of METs is directly com-
pared directly in Sec. 4.6.

4.1 Action Recognition on Weizmann Dataset

In this section, the proposed method is tested with a standard
Weizmann benchmark dataset,?” which provides a good plat-
form for comparing the MET model with other methods
under similar evaluation setups. Here, first, we will provide

a brief introduction about this dataset. Then the experimental
evaluation results and discussions are reported in Sec. 4.1.2.

4.1.1 Weizmann dataset

This single-scenario dataset involves 90 uncompressed
colorful videos with an image frame size of 180 X 144 pixels
(25 frames/s). Figure 4 shows some example frames from
this dataset.

4.1.2 Experimental results and discussion

In this section, 10 rounds of threefold cross validation are
performed. The quantitative recognition performance and
some state-of-the-art methods are shown in Table 1, such

(b)

Fig. 4 Sample frames from the ten actions in the Weizmann dataset: (a) bend; (b) jack; (c) jump-forward;
(d) jump-up-down; (e) run; (f) gallop-sideways; (g) skip; (h) walk; (i) wave-one-hand; (j) wave-two-hands.
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Table 1 Comparing the recognition performance on the Weizmann dataset.

Approach Feature expression Classifier Accuracy (%)
Niebles et al.?® Space-time interest points pLSA 90
Zhou et al.” Silhouettes SVM 91.4
Chaudhry et al."® Dynamic templates k-NN 92,5
Yogameena et al.?® Shape descriptions of silhouette RVM 94.6
Bouziane et al.* 3-D Zernike moments Spectral graph 96.3

He et al.?® Variation energy image mRVM 98.2
Guha et al.*® Local motion pattern descriptors Concatenated dictionary 98.9
Our approach MET model SVM 100

Note: pLSA, probabilistic latent semantic analysis; SVM, support vector machine; k-NN, k-nearest neighbor; RVM, relevance vector machine; MET,

motion energy template.

as the variation energy image (VEI) model,” dynamic tem-

plates'® and local motion pattern descriptors.*” Table 1 shows
that RVM has a higher recognition accuracy than SVM when
based on a similar feature expression.'”*® The moment-based
method provides a very useful analysis tool for HAR and
obtains some satisfying results.”>** Rubner*® explores the
effectiveness of sparse representations for action recognition
in videos. In Ref. 21, the VEI model is much less time con-
suming during the feature extraction stage. Nevertheless, this
method requires silhouette extraction, period estimation and
background. References 15 and 21 are based on the template
pattern, but different feature extractions and classifiers are
specifically employed.

Intuitively, the method we proposed has a higher recog-
nition rate than these state-of-the-art methods. This is mainly
due to the following three reasons: (1) the MET model is
more effective; (2) the Weizmann dataset is not challenging

@ b (@

enough because of its single static scenario; and (3) SVM,
which is based on statistical principle, is one of the most suc-
cessful classification techniques.

4.2 Action Recognition on KTH Dataset
4.2.1 KTH dataset

The KTH dataset’’” contains six human actions and each
action is performed under four different scenarios which
are not presented in action dataset Weizmann.*” For this rea-
son, it is a more challenging dataset. Figure 5 shows some
sample frames of this dataset.

4.2.2 Experimental results and discussion

In this section, evaluation with the experimental setup is
reported: the training set (eight subjects) and the test set (nine
subjects). Here, we compared the performance of the

) (e )

Fig. 5 Sample frames from the KTH dataset.?® All six classes [columns, (a—f): walking, jogging, running,
boxing, waving, and clapping] and four scenarios [rows, top to bottom: S1—outdoors, S2—outdoors with
scale variation, S3—outdoors with different clothes, and S4—indoors] are presented.
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Table 2 Recognition accuracies on the KTH dataset.

Algorithm Feature extraction Classifier Accuracy (%)
Schuldt et al. % Local space-time features SVM 71.7%
Niebles et al. 26 Space-time interest points pLSA 81.5%
Derpanis et al.'® Spatiotemporal orientation analysis k-NN 89.34%
Huang et al.*' Space-time interest points + optical flow hCRF 89.7%
Kovashka et al.? Hierarchical space-time feature MKL 94.53%
Xinxiao et al.*? Spatiotemporal context and appearance MKL 94.5%
Our method MET model SVM 95.37%

Note: pLSA, probabilistic latent semantic analysis; SVM, support vector machine; k-NN, k-nearest neighbour; hCRF, hidden conditional random

field; MKL, multiple kernel learning; MET, motion energy template.

proposed method with other methods on the same bench-
mark dataset. The quantitative recognition results and
some state-of-the-art methods are listed in Table 2. This
shows that the proposed method has a significantly better
performance in terms of average accuracy compared with
the state-of-the-art methods. It should be noted that in
many studies, only one dataset (Weizmann or KTH) is vali-
dated. Some studies (including our work) have shown that
the recognition ratio on Weizmann dataset is higher than
on the KTH based on the same methods.*"** More specifi-
cally, the method [space-time interest points (STIP) +
pLSA], on the benchmark datasets, Weizmann and KTH,
achieves 90% and 71.7% accuracies, respectively. In our
experiments on Weizmann and KTH, our method achieves
100% and 95.37% accuracies, respectively.

It is also interesting to note that in Ref. 41, a hidden condi-
tional random field is more effective than SVM and HMM
based on the same fusion feature (STIP + optical flow).

The confusion matrix is another commonly used evalu-
ation method of the classification performance. The confu-
sion matrix for our method is shown in Fig. 6. It is interesting
to note that the major confusion occurs between the “hand
clapping” and the “hand waving.” This is partly due to the
fact that both of them have close local motion appearance.

Box 0.00 -

Clap 0.00 -

Hwav 0.00
Jog 0.00

Run 0.00 0.00

Walk 000 000 000 0.00
& < 7 % e 2
% % %, © % %

Fig. 6 Confusion matrix for KTH dataset.
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It is clearly seen from Fig. 6 that “box,” “jog,” “run,
and “walk” obtain a recognition rate of 100%. Hence,
our approach can achieve a better performance by paying
more attention to the misclassified activities as mentioned
above.

4.3 Run Time of MET Method

In many real applications, computation cost is one of the
critical factors. Here, we give a quantitative analysis for com-
putation cost. From the viewpoint of mathematics, measur-
ing motion energy similarity is convolution.'”? The MATLAB
program runs on an Intel 2.4 GHz machine without special
hardware acceleration (such as GPU). A video clip (name:
daria_jump.avi, columns: 180, rows: 144, frames: 67)
from the Weizmann dataset is taken as an example, and the
total elapsed time is 2611.2 s (N, = 102, i.e., 25.6 s is the
average time for each template). Thus, the MET method
takes 4.2639 s for calculating the motion energies stage.
This is essentially due to the low computational complexity
of 3DMP.***® Much of the time required to build a new MET
feature is spent on template matching (measuring SOME vol-
umes’ similarity). Also note that our method returns not only
the similarity, but also the locations in the video where the
query clip is matched if needed.

In our implementation, the overall search strategy is
adopted. There are some other strategies to deal with tem-
plate matching, such as coarser sampling and coarse-to-fine
strategy.*® Ning et al.** introduced a coarse-to-fine search
and verification scheme for matching. In their coarse-to-
fine strategy, the searching process takes about one-ninth of
the time to scan the entire video. However, coarse-to-fine
search algorithms have some probability of misdetection.**

Above all, however, measuring motion energy similarity
could be easily implemented using multithreading and
parallel-processing techniques for minimizing the “time to
consume,” because most of the computation involves convo-
lution. Here, an example included in the compute unified
device architecture (CUDA) SDK was used to illustrate the
quantitative analysis. The CUDA conv performed 2-D con-
volution using an NVIDIA graphics chipset that can outper-
form conv2, which was a built-in function from MATLAB,
by as much as 5000%. It is expected that parallel processing
will significantly improve the speed in real applications.
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Table 3 Comparing the recognition performance on the KTH dataset
with different classifiers.

Different classifier

BP-NN Bayes k-NN SVM

Accuracy (%) 77.31 91.67 93.98 95.37

Note: SVM, support vector machine; k-NN, k-nearest neighbor.

4.4 Varying the Classifiers

We compared the recognition performances on the KTH
dataset between the SVM classifier and some other main-
stream classification methods and the same MET model
was employed. To compare all methods fairly, the optimal
parameters, which have been optimized by cross validation
of these classifiers were employed. For instance, in the case
of the backpropagation NN classifier, the number of hidden
layer nodes is set to 10. 3-NN is adopted. For the SVM clas-
sifier, the linear kernel was adopted. The comparison results
were shown in Table 3. Intuitively, the SVM classifier can
acquire a higher recognition rate than that of other classifiers.

4.5 Varying Dimensionality Reduction Techniques

For high-dimensional dataset/features (i.e., in this paper, our
MET model with number of dimensions d,; = 7446),
dimension reduction is usually performed prior to applying
a classifier in order to (1) prevent the problems derived from
the curse of dimensionality and (2) reduce the computing
time in the stage of classification.

In recent years, a variety of dimensionality reduction tech-
niques have been proposed for solving this problem, such as
principal component analysis (PCA), kernel PCA (KPCA), the
linear discriminant analysis (LDA), generalized discriminant
analysis (GDA),** locally linear embedding (LLE), and so on.

In general, dimensionality reduction techniques can be di-
vided in two major categories: linear dimensionality reduc-
tion, such as PCA and LDA; and nonlinear dimensionality
reduction, such as KPCA, GDA, and LLE. More detailed

Table 4 Comparing the recognition performance on the KTH dataset
with different feature reduction techniques.

Different classifier

Reducer 3-NN 5-NN Bayes SVM
PCA 94.91 93.52 93.51 94.44
KPCA 92,13 90.74 87.96 89
LDA 100 100 100 100
GDA 100 100 99.53 100
LLE 91.20 90.74 91.67 89.35

Abbreviations: SVM, support vector machine; PCA, principal compo-
nent analysis; KPCA, kernel principal component analysis; LDA, lin-
ear discriminant analysis; GDA, generalized discriminant analysis;
LLE, locally linear embedding.

Note: The bold values represent the three best results for each
method.
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Fig. 7 Evaluation of the size of features on the KTH dataset.

surveys on dimensionality reduction techniques can be
found in Refs. 45 and 46.

The evaluation results are shown in Table 4, which shows
that LDA and GDA can acquire a higher recognition rate
than that of other reduction techniques. However, LDA and
GDA are supervised subspace learning methods which use
labels to choose projection. In real applications, we often
face unlabeled data.

Moreover, the comparison of different kernel functions
for KPCA shows that the linear kernel function is most suit-
able for our method.

Results for various specific feature dimensions, which are
gained through PCA, are shown in Fig. 7. For all classifica-
tion techniques, the performances are improved while the
dimension d increases up to 7. The reason for this phenome-
non is that the feature needs enough dimensions to encode
action information.

4.6 Varying the Number of METs

From a mathematical perspective, the size of the MET
model plays a crucial part in recognition performance and
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Fig. 8 Evaluation of the size of the motion energy template on the
KTH dataset.
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computational cost. In our approach, analyzing and evaluat- 8
ing the number of METs were also performed on the KTH 9
dataset. For each different number N,, we ran 100 iterations.
It is arranged as follows: (1) we randomly select N, motion
template from all 102 METs and construct a new feature and 10
(2) the evaluation is reported with the training set (eight sub-
jects) and the test set (nine subjects).”” The results are 11
reported in Fig. 8. It can be seen that the recognition accuracy
increases with a larger MET model. Improving the expres- 2
sion ability of the MET model depends on having sufficient '
templates, however, with more templates the total computing 13.
time will also increase. As previously mentioned, proper use 14
of special hardware (such as parallel computing, multicore
CPUs and GPU, etc.) can remarkably accelerate computa-
tions for time-sensitive applications. 15.

Contrasted with other methods, competitive experimental
results are obtained with a relatively small number of METs. 16
For example, with N, =60 on the benchmark dataset ’
(KTH), our method achieves a 92.9% promising accuracy. -
5 Conclusions 8
In this paper, a novel approach based on filter banks is pre-
sented for human action analysis by describing human "
actions with the MET model, a new high-level representation :
of video based on visual space-time oriented motion energy 20.
measurements. The MET model is achieved with the filter
bank. In other words, actions are expressed as the composi- 21.
tion of energy along with several predetermined spatiotem-
poral orientations in a high-dimensional “action-space” by 2.
filter sets. As the MET model is derived from raw image
sequences data, many disadvantages, such as object location 23.
and segmentation, can be ignored. Moreover, the MET
method is much less sensitive to spatial appearances such as 24,
hair and clothing. Extensive experiments on the Weizmann
dataset and the KTH dataset have demonstrated that the MET
model is an ideal method for the HAR problem and other 25.
video understanding tasks.
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