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ABSTRACT. Digital holography enables 3D imagery after processing frequency-diverse stacks of
2D coherent images obtained from a chirped-frequency illuminator. To compensate
for object motion or vibration, which is a common occurrence for long-range imaging,
a constant temporal frequency or “pilot-tone” illuminator can act as a reference for
each chirped frequency. We examine speckle decorrelation between the chirped
and pilot-tone illuminators and its effect on the resultant range images. We show
that speckle decorrelation between the two illuminators is more severe for facets
of the object’s surface that are more highly sloped, relative to the optical axis, and
that this decorrelation results in noise in the range images in the areas of the object
that are highly sloped. We develop a theoretical framework along with wave-optics
simulations for 3D imaging with a pilot tone, and we examine the severity of this
noise as a function of several imaging parameters, including the illumination band-
width, pulse frequency spacing, and atmospheric turbulence strength; we show
that 3D sharpness metric maximization can mitigate some of the noise induced by
turbulence, all in a simulated framework.
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1 Introduction
Frequency-diverse 3D imaging with digital holography (DH) is a coherent imaging technique in
which the 3D Fourier space of an object is sampled and an inverse Fourier transform is used to
generate a 3D image.1,2 Laser frequency diversity provides range information, and cross-range
measurements of speckle fields provide angle-angle information, resulting in a fully 3D range-
angle-angle image. Marron and Schroeder1 demonstrated this process with lensless imaging and
phase-shifting DH, and Shirley and Hallerman2 explained the Fourier relationship in detail in an
instructive paper on 3D imaging using a reference point in the image field of view. Frequency-
diverse 3D imaging, also referred to as holographic laser radar, requires the detection of
2D coherent, cross-range information (in an image, pupil, or other plane) at different temporal
frequencies. One can modulate the illumination laser frequency continuously or in a pulsed fash-
ion such that a stack of frequency-diverse 2D coherent data is obtained over the duration of the
chirp or frequency “ramp,” and we simulate the pulsed case here. One potential limitation of
frequency-diverse 3D imaging is object motion over the duration of the ramp. Krause et al.3

modified frequency-diverse 3D imaging by including a second illuminator, or “pilot tone,” that
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acts as a reference for the chirped frequencies, and later Krause4 patented a pulsed version of the
system. This method has been demonstrated to significantly improve 3D and range image quality
in the presence of object motion and/or object vibration, and it is the focus of the simulations in
this paper.

We first consider the case without the pilot tone. Speckle correlation between pulses within a
ramp is the key driving phenomenon that determines whether or not an adequate 3D image can be
formed by 3D imaging techniques without a pilot tone, which we will refer to as “conventional,
multi-wavelength 3D imaging.” In this case, we describe an imaging system that consists of a
frequency-chirped laser illuminator (which samples the temporal frequency dimension of the
object’s Fourier space) and a finite-width pupil that collects the scattered return from the object
(which samples the Fourier-angle space for a given temporal frequency). To form a 3D image
without the pilot tone, there needs to be a fixed phase relationship between the speckle patterns in
the pupil plane for adjacent frequency pulses, and, in particular, the speckle patterns associated
with adjacent pulses in the pulse train must be correlated to some degree (i.e., they cannot be
independent speckle realizations).

There are multiple mechanisms by which the speckle in the pupil plane can decorrelate from
pulse-to-pulse. Object motion and/or vibration can cause speckle decorrelation. In addition,
speckle can vary as a function of illumination frequency. Goodman5 describes two methods
by which speckle decorrelation occurs with changing frequency. The first is due to the interaction
between the surface roughness of an object and varying illumination frequency. For the scenarios
studied here, this variation of the phase is negligible across the narrow fractional bandwidths that
we employ. Goodman5 states that, when the absolute difference between two frequencies exceeds
c∕ð2σhÞ, where c is the speed of light in vacuum and σh is the standard deviation of the surface
height, complete speckle decorrelation is achieved. For the simulations here, we employ illumi-
nation bandwidths in the tens of GHz and assume surface roughness standard deviations around
100 μm, for which no significant speckle decorrelation will occur across the bandwidth due to
the interaction of the surface roughness and varying frequencies. The second method by which
speckle varies with frequency is by spatial scaling of the speckle pattern as a result of diffraction
angles changing with frequency. This second method is relevant to 3D imaging of any object with
highly sloped facets relative to the optical axis, as will be described in Sec. 2. For the simulations
in this paper, we ignore constant-velocity object motion along the optical axis, for which Doppler
effects must be taken into consideration.

Figure 1 shows (a) an example reflectance map of a simulated, scaled truck object and (b) the
depth profile of the truck object. One can use reflectance maps and depth profiles to simulate the
3D imaging modalities described here. In the case of the truck object, the reflectance map and
depth profile were generated from a computer aided design model of a pickup truck viewed from
a slant angle, which was provided by MZA Associates Corporation. We created the reflectance
map by treating the truck as a Lambertian reflector such that reflectance goes as cosðθÞ, where θ
is the angle between the surface normal of an object facet and the optical axis, and we created the

(a) (b)

Fig. 1 (a) True reflectance map of the scaled truck object on a uniform sloped background
(arbitrary units). (b) True depth map of the object (in units of meters).
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depth profile by measuring the distance to the object from an arbitrary reference plane with a
surface normal that is parallel to the optical axis. We also examined a simple rectangular plate
object in a simulation. For each object, we imported the reflectance map and depth profile into
MATLAB (or created them in MATLAB for the case of the rectangular plate) and scaled them
according to the propagation geometry. For the remainder of the paper, 3D images of the truck
object and the rectangular plate are simulated to act as a qualitative gauge of performance.

In what follows, we first summarize the pros and cons between four different 3D imaging
cases that are particularly illustrative in Fig. 2. The columns of Fig. 2 show the conventional 3D
imaging case in which the pilot tone is off and the motion-compensated 3D imaging case in
which the pilot tone is on. The rows show a case in which there is no object motion (and hence
no speckle decorrelation due to object motion) and a case in which the object is moving/vibrating
such that the speckle patterns are completely independent from pulse-to-pulse. Case 1, in the top
left, with pilot tone OFF and motion OFF, was simulated in Refs. 6 and 7. Here, both 2D and 3D
irradiance images have speckle noise due to the lack of object motion, range images are robust to
speckle and scintillation,8 and range images have somewhat of a “tiled” appearance due to
speckle noise, which is discussed later. Case 2, in the top right, is nearly identical to Case 1
except that the addition of the pilot tone reduces the signal-to-noise ratio (SNR) somewhat
via multiplexed digital holography,9 which is also described later in the paper. The images are
otherwise identical to Case 1. Case 3, with motion ON and pilot tone OFF, in the bottom-left,
features relatively speckle-free 2D irradiance images due to object motion, but 3D imaging and
range imaging are impossible due to speckle decorrelation in this case.

Case 4, which is in the bottom-right of Fig. 2 and is the focus of this paper, describes the case
in which the pilot tone is on and object motion causes speckle decorrelation from pulse-to-pulse.
Here, all irradiance images are relatively speckle-free due to object motion, but 3D and range
imaging are again possible thanks to the addition of the pilot tone. The main downside of this
case is noise in the range images, which we refer to as range chatter, that appears specifically over
the highly sloped facets of the object. This previously unrecognized noise appears in the imagery
even when there is no detector noise present. This paper addresses both the causes of this noise
and the trends of the noise with various imaging parameters.

In brief, this paper serves (1) to develop an in-depth theoretical framework of 3D imaging in
general and (2) to better understand the underlying causes of the noise present in Case 4, men-
tioned previously, in both theory and simulation. We used digital wave-optics simulations in
MATLAB to study both conventional and motion-compensated 3D imaging in a variety of con-
ditions that are pertinent to long-range imaging of objects in motion. In the remainder of this
paper, we describe the theory behind conventional 3D imaging, speckle decorrelation, and
motion-compensated 3D imaging with a pilot tone in Sec. 2, with supplementary analysis in
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Fig. 2 Grid diagram showing the outcomes of 3D DH with and without the pilot tone and with and
without object motion.
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the Appendix, explore the theory with simulations in Sec. 3, and show the results of a trade study
in Sec. 4. Finally, we conclude the paper and discuss the relevant implications in Sec. 5. This
study is an extension of one described in Ref. 10. Here, we build on the previous study by flesh-
ing out the theoretical details and adding some more quantitative results, including some image
sharpening experiments.

2 Theory

2.1 3D Imaging Parameters
We first introduce some 3D imaging parameters that we use throughout the remainder of this
paper. To visualize the 3D images, we usually do not visualize the 3D images themselves, which
is difficult with our 2D displays, and instead visualize two types of 2D images. The first is the
frequency-averaged 2D irradiance, I2Dðu; vÞ, given by

EQ-TARGET;temp:intralink-;e001;114;580I2Dðu; vÞ ¼
1

N

X
n

jUiðu; v; νnÞj2; (1)

where ðu; vÞ are the transverse image plane coordinates,N is the number of illumination frequen-
cies, Uiðu; v; νnÞ is a complex-valued 2D image of the object for a frequency, νn, and n is the
index of the frequency. The sum in Eq. (1) can allow speckle averaging to occur in the irradiance,
depending on the degree of speckle correlation over the stack of Uiðu; v; νnÞ images.

The second type of image that we display requires the generation of the 3D image itself,
which is formed by taking a Fourier transform of Uiðu; v; νnÞ over frequency-index coordinate,
n, via

EQ-TARGET;temp:intralink-;e002;114;458U3Dðu; v; z 0Þ ¼ F νnfUiðu; v; νnÞg; (2)

where z 0 is the relative range coordinate of the image, U3Dðu; v; z 0Þ is the complex-valued 3D
image, and F νn represents a Fourier transform over frequency-index coordinate, n. From here,
we generate the 3D irradiance image as

EQ-TARGET;temp:intralink-;e003;114;397I3Dðu; v; z 0Þ ¼ jU3Dðu; v; z 0Þj2; (3)

and a range image, Rðu; vÞ, via
EQ-TARGET;temp:intralink-;e004;114;361Rðu; vÞ ¼ argmax

z 0
fI3Dðu; v; z 0Þg; (4)

which is formed by determining the z 0 location of maximum irradiance for each ðu; vÞ. We use
range images to gauge the 3D imaging process along with the 2D frequency-averaged irradiance
images, although we also have access to the 3D images from Eqs. (2) and (3). Ideally, the 2D
frequency-averaged irradiance images mimic reflectances like the one shown in Fig. 1(a), and
range images mimic depth profiles like the one shown in Fig. 1(b).

Due to the Fourier transform relationship between frequency and range that is employed in
Eq. (2), the range resolution, δz, is determined by the bandwidth, Δν ¼ νmax − νmin, via

EQ-TARGET;temp:intralink-;e005;114;246δz ¼
c

2Δν
: (5)

This finite resolution is due to the reciprocal nature of Fourier transforms and the limited
frequency bandwidth. Similarly, the discrete nature of the frequency pulses means that the 3D
irradiance images, I3Dðu; v; z 0Þ, repeat themselves in the range dimension at regular intervals.
This interval, known as the range ambiguity interval, Δz, is given by

EQ-TARGET;temp:intralink-;e006;114;166Δz ¼ c
2δν

; (6)

where δν is the interval between frequency samples. The range images similarly exhibit values
that are modulo Δz.

2.2 Conventional, Multi-Wavelength 3D Imaging
Here, we describe the basic theory behind conventional 3D imaging. In this setup, coherent
images of a distant object are collected via DH. The exact method by which the digital holograms
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are generated can vary, but the process allows for the generation of complex-valued fields in an
image plane via Fourier processing techniques on the hologram data.1,11–13 In the case of 3D
digital holography, one obtains a stack of 2D coherent images of the object with different illu-
mination frequencies. Note that the theory here is applicable for long-range imaging with small
fractional bandwidths, but the mathematical description provided here could provide insight into
how to modify the equations for applications with shorter propagation distances, e.g., micros-
copy. We describe the 3D image formation process as follows. In general, we have some 3D
object denoted by an amplitude reflectance function, Uoðξ; η; zÞ, where ðξ; ηÞ are the transverse
coordinates and z is the range coordinate. Assuming on-axis plane-wave illumination, the
reflected field is proportional to Uoðξ; η; zÞ, so we propagate that field by propagating the reflec-
tance function. After illuminating the object with some general illumination frequency, ν, we
collect the scattered light with an aperture some gross distance, z0, from the object. This aperture
effectively samples transverse spatial frequencies of the object, whereas the varied temporal
frequencies sample the spatial frequencies in the range dimension. We write the complex field
in the pupil plane as

EQ-TARGET;temp:intralink-;e007;117;556

Upðx; yÞ ¼ c1

Z
∞

−∞

ei2kz

iλz
exp

�
iπ
λz

ðx2 þ y2Þ
�

×
ZZ

∞

−∞
Uoðξ; η; zÞ exp

�
iπ
λz

ðξ2 þ η2Þ
�
exp

�
−i2π
λz

ðxξþ yηÞ
�
dξ dη dz; (7)

where Upðx; yÞ is the 2D field in the pupil plane with transverse coordinates ðx; yÞ, k is the
wavenumber of the source, λ is the wavelength of the source, and c1 is a constant to ensure
that Upðx; yÞ has units of an optical field. Equation (7) is a Fresnel diffraction integral embedded
within an integral over z. The field in the pupil plane is the sum of the Fresnel propagations for
each relevant z-plane of the object. Note that the Fresnel diffraction integral can be replaced by
any 2D propagation integral (e.g., Fraunhofer propagation, angular-spectrum propagation, etc.).
Any propagator will have a leading term of expði2kzÞ, where the 2 is the result of the round-trip
path of the light, assuming a near-monostatic configuration. We make some simplifications to
Eq. (7) to make it more digestible. First, we define z ¼ z0 þ z 0, where z0 is the distance from a
reference plane in the 3D object to the pupil and z 0 is the fine range coordinate, and perform a
change of variables. For context, in the scenarios that motivated this work, z0 might be one to
several kilometers and the depth of the object might range from one to several meters. Second, we
approximate z in Eq. (7) with just z0 for all but the expði2kzÞ term in Eq. (7) because they vary
negligibly with z 0 for long-range imaging of objects with depths that are much less than z0. This
approximation is valid in the scenarios studied here, but not in the general case. This yields

EQ-TARGET;temp:intralink-;e008;117;308

Upðx; yÞ ≈ c1

Z
∞

−∞

ei2kz
0
ei2kz0

iλz0
exp

�
iπ
λz0

ðx2 þ y2Þ
�

×
ZZ

∞

−∞
Uoðξ; η; z 0Þ exp

�
iπ
λz0

ðξ2 þ η2Þ
�
exp

�
−i2π
λz0

ðxξþ yηÞ
�
dξ dη dz 0: (8)

The only terms with a dependence on z 0 that matter are the leading expði2kz 0Þ term (because
this will vary wildly between different z 0-planes) and the object term Uoðξ; η; z 0Þ. Going further,
we assume that the object is opaque, and thus, for a given point ðξ; ηÞ, light will only reflect from
one z 0 plane. As such, we write

EQ-TARGET;temp:intralink-;e009;117;192Uoðξ; η; z 0Þ ¼ c2Uo;⊥ðξ; ηÞδ½z 0 − Zðξ; ηÞ�; (9)

where Uo;⊥ðξ; ηÞ is the transverse amplitude reflectance function of the object, Zðξ; ηÞ is the 2D
depth profile of the object, and c2 is a constant that ensures that Uoðξ; η; z 0Þ has the right units
given the presence of the delta function. Replacing Uoðξ; η; z 0Þ in Eq. (8) with Eq. (9), exchang-
ing the order of integration, and integrating over z 0 gives
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EQ-TARGET;temp:intralink-;e010;114;736

Upðx; yÞ ≈ c1c2
ei2kz0

iλz0
exp

�
iπ
λz0

ðx2 þ y2Þ
� ZZ

∞

−∞
Uo;⊥ðξ; ηÞei2kZðξ;ηÞ

× exp

�
iπ
λz0

ðξ2 þ η2Þ
�
exp

�
−i2π
λz0

ðxξþ yηÞ
�
dξ dη: (10)

At this point, we recognize that this is a 2D Fresnel transform of Uo;⊥ðξ; ηÞei2kZðξ;ηÞ. To
simplify things, we drop the constant factor c1c2, as it is a global constant factor, and write the
Fresnel diffraction integral as a general 2D propagator PðUoðξ; ηÞ; z0Þ, which takes some input
fieldUoðξ; ηÞ and propagates a distance z0. This modification reflects the fact that we could have
used any 2D propagation integral to begin with, and this gives

EQ-TARGET;temp:intralink-;e011;114;613Upðx; yÞ ≈ ei2kz0P½Uo;⊥ðξ; ηÞei2kZðξ;ηÞ; z0�: (11)

The term inside the propagator in Eq. (11) is the product of the 2D amplitude reflectance
function of the object and a phase term that contains depth information. Normally one does not
concern oneself with the global phase factor expði2kz0Þ in front of the propagator, but as we now
vary the temporal frequency of the source, ν, and care about the resulting phase change, this term
must remain. Making the ν dependency explicit,

EQ-TARGET;temp:intralink-;e012;114;527Upðx; y; νÞ ≈ expði4πνz0∕cÞPfUo;⊥ðξ; ηÞ exp½i4πνZðξ; ηÞ∕c�; z0g; (12)

where k ¼ 2πν∕c for propagation through the atmosphere where the index of refraction is near
unity. Note that we assume that the function Uo;⊥ðξ; ηÞ is independent of ν and that the propa-
gator, P, is as well because we assume a tiny fractional bandwidth. This means that, for the
Fresnel propagator, for example, [except the expði2kz0Þ term], all instances of λ can be replaced
by λ0, the mean wavelength of the illumination bandwidth, for similar reasons as described
above when approximating z as z0. For context, the scenarios that motivated this work have
ðλmax − λminÞ∕λ0 ∼ 10−5, where λmin and λmax are the minimum and maximum illumination wave-
lengths in the bandwidth, respectively, which validates replacing λ with λ0.

To form an image, we apply an aperture function, Aðx; yÞ, to Upðx; y; νÞ and propagate the
resultant field to an image plane. After this point, the analysis is identical to conventional 2D
coherent imaging, so we denote the 2D coherent image for each frequency, ν, as

EQ-TARGET;temp:intralink-;e013;114;368Uiðu; v; νÞ ¼ expði4πνz0∕cÞhðu; vÞ � fUo;⊥ðu; vÞ exp½i4πνZðu; vÞ∕c�g; (13)

where hðu; vÞ is the coherent impulse response function of the imaging system, which we assume
to be independent of frequency over our narrow bandwidth and proportional to a Fourier
transform of Aðx; yÞ, and the in-line asterisk, �, represents a 2D convolution in the transverse
coordinates.

Now, we examine the method by which the temporal frequency, ν, of the illumination laser is
adjusted, which allows us to sample the spatial frequencies of the range dimension. We illuminate
the object with discrete laser pulses within a narrow bandwidth that has a temporal frequency that
increases linearly, or is chirped, in time. As such, we define νn ¼ ν0 þ nδν, where ν0 is the aver-
age temporal frequency over the bandwidth and integer n is the index of the pulse. The pulse
index is contained in the interval ½−N∕2; N∕2 − 1�, where N is the total number of pulses
(assumed to be an even number), such that the total bandwidth Δν is given by Nδν. We also
break the depth profile of the object into two components: (1) the coarse depth profile,
Zdðξ; ηÞ, of the object that we desire in the final range image and (2) the microscopic surface
roughness of the object, Zr;nðξ; ηÞ, which causes speckle in the irradiance images. We denote
the total depth profile (in object space) as the sum

EQ-TARGET;temp:intralink-;e014;114;164Znðξ; ηÞ ¼ Zdðξ; ηÞ þ Zr;nðξ; ηÞ; (14)

where the subscript n in Zr;nðξ; ηÞ informs us that the surface roughness profile can change over
the image collection time, and we add a dependence on n to the total depth profile. Now we
replace Zðξ; ηÞ and ν in Eq. (13) with their more detailed forms, yielding
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EQ-TARGET;temp:intralink-;e015;117;736

Uiðu; v; νnÞ ¼ ei4πνnz0∕chðu; vÞ � fUo;⊥ðu; vÞ exp½i4πðν0 þ nδνÞZdðu; vÞ∕c�
× exp½i4πðν0 þ nδνÞZr;nðu; vÞ∕c�g: (15)

Note that the product of ðν0 þ nδνÞ and Zr;nðu; vÞ in the final exponential term yields a phase
term equal to 4πnδνZr;nðu; vÞ∕c, which, as alluded to in the introduction, is on the order of
milliradians of phase and is considered negligible for the bandwidths and surface roughness
standard deviations assumed here.5,7 One can use Eq. (15) to simulate 3D images by writing
Uo;⊥ðu; vÞ as the square root of the object reflectance map and Zdðu; vÞ as the depth profile,
examples of which are shown in Fig. 1. Going further, if the coarse depth profile Zdðξ; ηÞ varies
slowly over the width of hðu; vÞ (a specification that we revisit later), we can remove the expo-
nential term containing Zdðξ; ηÞ from inside the convolution, leaving

EQ-TARGET;temp:intralink-;e016;117;602

Uiðu; v; νnÞ ¼ ei4πνnz0∕c exp½i4πðν0 þ nδνÞZdðu; vÞ∕c�
× ðhðu; vÞ � fUo;⊥ðu; vÞ exp½i4πν0Zr;nðu; vÞ∕c�gÞ: (16)

At this point, we examine Eq. (16) to understand how to form a 3D image from a stack of
images, Uiðu; v; νnÞ, with a varied source frequency. First, consider the exponential phase term
containing the coarse depth profile, Zdðu; vÞ. For a given image point (transverse coordinates),
ðu; vÞ, this term contains discrete phase terms that are linear in n across the stack of images, and
the slope of this linear term is proportional to Zdðu; vÞ, the coarse depth profile of the object. By
this, one can see how a 1D Fourier transform of Uiðu; v; νnÞ along the n dimension yields a 3D
coherent image: because a 1D Fourier transform over frequency-index coordinate, n, acts on
every image point ðu; vÞ, the phase terms that are linear in frequency shift, in the z direction,
the image at each ðu; vÞ proportionally to Zdðu; vÞ, giving us the z-profile of the coherent 3D
image. Reference 14 similarly describes the Fourier transform relationship between the optical
frequency and range for a single transverse pixel. Here, however, the presence of linear phase
terms in the optical frequency domain that are proportional to Zdðu; vÞ for each ðu; vÞ is made
explicit through the above theoretical analysis.

2.3 Speckle Decorrelation Mechanisms
The exponential phase term containing Zr;nðu; vÞ in Eq. (16) cannot be removed from the con-
volution with hðu; vÞ because the surface roughness of the object varies rapidly over the width of
the convolutional kernel, and this convolution with a random-phase function is what generates
speckle in each 2D coherent image, Uiðu; v; νnÞ. To form a proper 3D image, we want this phase
term to vary negligibly with frequency index, n. In general, we desire the speckle phase—the
phase that results from the convolution of hðu; vÞ with the exponential capturing the surface
roughness—to change negligibly with the frequency index, n, i.e., we want Zr;nðu; vÞ to remain
constant over the image collection time. A speckle phase that varies with n will corrupt the linear
phase term described above for each ðu; vÞ as this linear phase term is what allows for the
formation of the z-profile of the 3D image.

At this point, we have determined that the interaction between the surface roughness of the
object and the variable frequency of the illumination source yields negligible changes in the
speckles across the bandwidth. However, the speckle can vary over the bandwidth via two other
mechanisms: (1) transverse object motion, rotation, or vibration over the image collection time
and (2) the diffraction angles changing with frequency, which is referred to in Refs. 2 and 15.

The first mechanism is well-known5 and is described in detail for a variety of types of object
motion by Burrell et al.16,17 Stationary objects will provide a common speckle pattern across all
of the 2D images in Uiðu; v; νnÞ such that the linear phase terms that depend on Zdðu; vÞ are
preserved. By contrast, if object motion is severe enough to provide independent speckle patterns
for each Uiðu; v; νnÞ, then a 3D image is impossible to generate. For example, given a propa-
gation distance of 1 km, an aperture diameter of 30 cm, and a pulse repetition frequency of
1 KHz, an object rotating faster than 8.6 deg per second will cause the speckle patterns from
pulse-to-pulse to be completely uncorrelated, and no useful range image can be formed using
conventional 3D imaging. The speckle patterns will decorrelate more quickly for larger propa-
gation distances, so one can see how objects that move or vibrate over the image collection time
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can cause enough speckle decorrelation for range images to be severely degraded, especially for
longer propagation distances.

We examine the second mechanism by which the speckle phase can decorrelate across the
stack of 2D images Uiðu; v; νnÞ. For a first illustration, consider an object facet with a linear
coarse depth profile such that

EQ-TARGET;temp:intralink-;e017;114;676Zdðξ; ηÞ ¼ αξ (17)

over the extent of the object facet, where α is the slope of the facet along the ξ direction. Here,
α ¼ tanðθÞ, where θ is the tilt angle between the object’s surface normal and the optical axis.
Consider the effects that this slope has on the field in the pupil for two different frequencies,
ν1 and ν2, with frequency difference ν1 − ν2 ¼ Δν1;2. Let us examine the phase imparted to the
exponential term inside the propagator in Eq. (12). Because Zðξ; ηÞ contains Zdðξ; ηÞ, there is
a linear phase term of the form

EQ-TARGET;temp:intralink-;e018;114;581ϕd ¼ 2kαξ ¼ 4πναξ∕c: (18)

This linear phase term will change from frequency to frequency because of the dependence
on ν in Eq. (18), so we examine the phase difference between two frequencies, ν1 and ν2, as

EQ-TARGET;temp:intralink-;e019;114;532Δϕd ¼ 4πΔν1;2αξ∕c: (19)

The phase difference between the two frequencies, which is also linear in ξ, manifests as a
relative shift between the speckle patterns in the pupil plane associated with each frequency via
the Fourier shift theorem. We use the shift theorem to calculate the frequency separation Δν1;2
required to separate the pupil-plane speckle patterns from one another by some distance, Δx, as
follows. The shift theorem gives

EQ-TARGET;temp:intralink-;e020;114;4474πΔν1;2αξ∕c ¼ 2πΔxfx; (20)

where fx ¼ ξ∕ðλ0z0Þ is a spatial frequency coordinate and λ0 is the average wavelength asso-
ciated with ν1 and ν2. This gives

EQ-TARGET;temp:intralink-;e021;114;4004πΔν1;2αξ∕c ¼ 2πΔx
ξ

λ0z0
; (21)

and after rearranging and substituting ν0 ≈ c∕λ0, it yields a term that we define as the slope-
bandwidth product (SBP), given by

EQ-TARGET;temp:intralink-;e022;114;340SBP ¼ α
Δν1;2
ν0

¼ Δx
2z0

: (22)

We chose the form of Eq. (22) specifically because the right side is the half-angular subtense
of the separation, Δx, when viewed from the object, and the left side is the product of the slope of
the object and the fractional bandwidth of the two frequencies analyzed—or the SBP. This term
on the left side determines much of the speckle correlation behavior for 3D imaging. For exam-
ple, if the magnitude of the SBP exceeds half the angular subtense of the aperture, then the
speckle patterns associated with ν1 and ν2 will be completely decorrelated. Put into the context
of 3D imaging, if the SBP associated with the frequencies at the edges of the bandwidth (such
that jΔν1;2j ¼ Δν) exceeds half the angular subtense of the aperture, then the speckle patterns at
the edges of the bandwidth will be decorrelated from one another, but speckle patterns from
smaller differences in frequencies will have some degree of correlation with one another.
Inserting these values into Eq. (22), we find, for an aperture of diameter D, that the facet’s slope
magnitude, αm, at which the speckles at the edges of the bandwidth completely decorrelate is
given by

EQ-TARGET;temp:intralink-;e023;114;147αm
Δν
ν0

¼ D
2z0

⇒ αm ¼ c
2Δν

D
λ0z0

: (23)

This is a case in which the slope magnitude is equal to the range resolution, c∕ð2ΔνÞ,
divided by the transverse resolution, λ0z0∕D. Here, the resulting range images exhibit a “tiled”
appearance in which the range reports are constant over the width of each speckle (as pertains to
Cases 1 and 2 in Fig. 2). In this case, the range image formation process [see Eq. (4)] selects the
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location of maximum irradiance to be the range at each transverse pixel, and, when the slope
magnitude equals αm, the range image formation process will report the brightest location in z of
each speckle as the range over the speckle’s entire transverse width, resulting in a tiled appear-
ance. We refer to this as a “range-resolved” case because the object depth within a transverse
resolution element is equal to the range resolution.

Next, consider a case for which the SBP for adjacent frequencies within the ramp exceeds
half the angular subtense of the aperture, i.e.,

EQ-TARGET;temp:intralink-;e024;117;652αr
δν
ν0

¼ D
2z0

⇒ αr ¼
c
2δν

D
λ0z0

; (24)

where, here, the slope magnitude of the facet, αr, is equal to the range ambiguity interval,
c∕ð2δνÞ, divided by the transverse resolution width. For this case, the speckle patterns for each
frequency are completely independent, and the resulting range image takes on random values
within the range ambiguity interval from speckle-to-speckle, which is to say that it is completely
noise. Equation (24) describes a case in which the pupil-plane speckle patterns associated with
each frequency are completely decorrelated, even if the object is stationary. In practice, the slopes
required to achieve the equivalence in Eq. (24) are quite large (αr ≫ 1 for the transverse res-
olutions and range ambiguities simulated here), and they usually correspond to image regions
that will have a low signal return due to the large slopes (e.g., for a Lambertian reflector).

It is worth mentioning that the derivation of Eq. (22) does not examine the entire picture. The
more complete description of these speckle patterns shifting with frequency comes from
Goodman,5 who describes that speckle patterns actually contract/expand about a specific angle
(the mirror reflection angle) when changing the illumination frequency instead of just translating.
This manifests as a translation in our case and validates Eq. (22), which is shown in the
Appendix.

2.4 Motion-Compensated, Multi-Wavelength 3D Imaging
We now describe motion-compensated 3D imaging in which the addition of a second illuminator
allows for the negation of one of the methods of speckle decorrelation described above. Recall
that, for 3D imaging to be successful, we need a fixed, linearly-varying, phase relationship in the
νn dimension for each transverse point across the stack of 2D images Uiðu; v; νnÞ. If the speckle
phase varies enough from image-to-image, then this phase relationship is destroyed and a 3D
image cannot be formed. The addition of a second illuminator, called a pilot tone, compensates
for object motion4 and ensures that the linear phase relationship in νn is preserved even if the
object motion induces complete speckle decorrelation from pulse-to-pulse.

The pilot tone works as follows. Every time an illuminating pulse is sent from the chirped
illuminator, a pilot-tone pulse is sent at the exact same time and from the same transmitter but
with an unchanging frequency.4 This is illustrated in Fig. 3: (a) shows the chirped pulse frequency

(a) (b)

Fig. 3 Diagram that illustrates the pulse train for (a) conventional 3D imaging and (b) motion-
compensated 3D imaging with a pilot tone. For (a), some degree of speckle correlation between
adjacent pulses is required. Here, decorrelation can occur via object motion and/or via the SBP
because adjacent pulses differ in both time and frequency. For (b), some degree of correlation
between the chirped illuminator and the pilot tone within each pulse-pair is required. Here decor-
relation can occur via the SBP but not via object motion because each pulse within a pulse pair is
emitted from the same transmitter at the same time.
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as a function of time for conventional 3D imaging, and (b) shows the chirped pulse and pilot
pulse frequencies as a function of time. The key here is that conventional 3D imaging requires
some correlation of the speckle phases between adjacent pulses but that 3D imaging with the
pilot tone requires some correlation of the speckle phases between the two illumination frequen-
cies within a pulse pair. The latter requirement is much more realizable if the two illuminator
transmitters are co-located in space and time. Because the frequency of the pilot tone does not
vary with time, the resulting images formed from the pilot tone are a special case of Eq. (16) with
νn ¼ ν0 þ nδν replaced with νp, giving

EQ-TARGET;temp:intralink-;e025;114;640

Upilot;nðu; v; νpÞ ¼ exp½i4πνpz0∕c� exp½i4πνpZdðu; vÞ∕c�
× ðhðu; vÞ � fUoðu; vÞ exp½i4πνpZr;nðu; vÞ∕c�gÞ: (25)

For each frequency, the complex conjugate of the pilot-tone images is taken and multiplied
by the images from the chirped illuminator, yielding a stack of conjugate-product images as

EQ-TARGET;temp:intralink-;e026;114;572Eðu; v; νnÞ ¼ U�
pilot;nðu; v; νpÞUiðu; v; νnÞ: (26)

Recall that we do not expect the speckle phase to vary much between the pilot tone and
the chirped illuminator for a given frequency, νn, which means that the exponential terms inside
the convolutions in Eqs. (16) and (25) are nearly identical. Thus we can write

EQ-TARGET;temp:intralink-;e027;114;510

Eðu; v; νnÞ ≈ ei4πðνn−νpÞz0∕c exp½i4πðν0 þ nδν − νpÞZdðu; vÞ∕c�
× jhðu; vÞ � fUoðu; vÞ exp½i4πν0Zr;nðu; vÞ∕c�gj2; (27)

where we replaced the frequency, νn, dependence in the exponential term inside the convolution
with ν0. Equation (27) contains the leading phase terms that are linear in frequency for each ðu; vÞ
and a real-valued, non-negative term given by the modulus-squared operation. Thus, even if
Zr;nðu; vÞ varies greatly from pulse-pair to pulse-pair, the linear phase terms in frequency, which
allow for the extraction of Zdðu; vÞ and 3D image generation to occur, are preserved. To form a
3D image from Eðu; v; νnÞ, the same steps that are used forUiðu; v; νnÞ should be followed, i.e., a
Fourier transform over frequency. From there, a range image and 3D irradiance image are formed
via the same steps given in Eqs. (3) and (4).

Examining Eq. (27) further, there is no speckle phase in Eðu; v; νnÞ, and instead the phase at
each image point is proportional to Zdðu; vÞ and the frequency difference between νn and νp. The
amplitude is proportional to the irradiance of the 2D coherent image for each νn. Using the pilot
tone makes the 3D imaging process robust against speckle decorrelation due to object motion/
vibration; however, the second method of speckle decorrelation described above—decorrelation
via the SBP—still affects 3D image generation. Imagine again a facet of the object with a
linearly-varying depth profile. For a given chirped frequency, νn, and pilot-tone frequency, νp,
the speckle patterns associated with the chirped illuminator and the pilot tone will be completely
decorrelated when the SBP exceeds half the angular subtense of the aperture or, from Eq. (23),

EQ-TARGET;temp:intralink-;e028;114;262

����α νn − νp
ν0

���� > D
2z0

: (28)

When this is the case, we can no longer expect the speckle phases in the images Uiðu; v; νnÞ
and Upilot;nðu; v; νpÞ to cancel as they did in the formation of Eðu; v; νnÞ in Eq. (27). Thus, it is
advantageous to keep the absolute difference between νn and νp as small as possible across the
bandwidth; hence νp should be chosen to be near the center of the bandwidth. In this configu-
ration, the speckle patterns associated with the chirped illuminator and pilot tone become com-
pletely decorrelated for pulses at the ends of the bandwidth when

EQ-TARGET;temp:intralink-;e029;114;149jαjΔν∕2
ν0

>
D
2z0

⇒ jαj > Dν0
z0Δν

¼ αc: (29)

The parameter αc in Eq. (29) is a critical slope at which we expect to see errors in the range
images over object facets with a slope magnitude that exceeds αc.

To summarize, there are two pertinent speckle decorrelation mechanisms that appear for 3D
imaging with narrow optical bandwidths: (1) speckle decorrelation due to object motion and

Banet and Fienup: Speckle decorrelation effects on motion-compensated. . .

Optical Engineering 073103-10 July 2023 • Vol. 62(7)



(2) speckle decorrelation due to the SBP. Referring to Fig. 2, Cases 1 and 3 (which correspond to
conventional 3D imaging) are susceptible to the effects from both methods of speckle decorre-
lation. Cases 2 and 4 (which correspond to 3D imaging with a pilot tone) are highly robust to
speckle decorrelation due to object motion, but can exhibit negative consequences as a result of
speckle decorrelation due to the SBP. The effects of speckle decorrelation are of interest for Cases
1 and 4, in particular; as such, Sec. 3 shows qualitative speckle decorrelation effects for Cases 1
and 4 as well as qualitative effects of turbulence for Case 4. Section 4 quantifies the effects of
speckle decorrelation due to the SBP and turbulence for Case 4 (motion-compensated 3D im-
aging with a pilot tone), which has been unexplored in the current literature.

3 Simulation Exploration
To explore the theory presented in Sec. 2, we used wave-optics simulations to generate 3D
images conventionally and with the inclusion of a pilot tone. Here, we used the angular-spectrum
propagation method to propagate M ×M object fields from the object to the pupil plane over a
propagation distance of z0 ¼ 2 km. The aperture was circular with diameter D ¼ 30 cm, and the
average wavelength was λ0 ¼ 1.5 μm. We examined two objects: the first was the truck object
shown in Fig. 1, with the illuminated scene containing the truck object being 0.5 m in the trans-
verse extent. The second object was a rectangular plate with a maximum transverse extent of
0.24 m. Regardless of the object, the zero-padded object array (computational window) side
length, S1, was always 1 m (twice the maximum extent of the object), and the pupil array side
length, S2, obeyed

EQ-TARGET;temp:intralink-;e030;117;475αmax

Δν
ν0

<
S2 −D
2z0

⇒ S2 > 2αmax

Δν
ν0

z0 þD; (30)

where αmax was the absolute maximum slope of a facet for a given object scene. Equation (30)
ensured that the speckle fields never aliased over the extent of the bandwidths used here, which
ranged from 10 to 30 GHz. The number of pixels across the fields, M, was determined by sat-
isfying the critical sampling of the angular spectrum transfer function (also known as Fresnel
scaling) by setting18

EQ-TARGET;temp:intralink-;e031;117;380M ¼ S1S2
λ0z0

: (31)

To form image stacks, Uiðu; v; νnÞ and Upilot;nðu; v; νpÞ, we applied an aperture function to
the fields in the pupil plane and used DH in the off-axis image plane recording geometry (IPRG)11

to gather estimates of Uiðu; v; νnÞ and Upilot;nðu; v; νpÞ. In general, DH is useful for coherent
imaging because it provides access to complex-valued field data and because the use of strong
reference beams allows for approaching a shot-noise limited detection regime.11 Many other
digital holographic recording schemes could be used,12,13 but we chose the off-axis IPRG due
to its straight-forward processing of the holograms in the Fourier domain.19,20 To obtain estimates
of both Uiðu; v; νnÞ and Upilot;nðu; v; νpÞ, we used multiplexed digital holography,9,19–21 which
allowed both signals to be recorded in a single hologram for each frequency, νn, at the cost of a
reduction in SNR proportional to the number of signals in each hologram.9 We set νp ¼ ν0 þ
δν∕2 so that the signals Uiðu; v; νnÞ and Upilot;nðu; v; νpÞ never interfered with each other and
instead only interfered with their respective reference beams. To simplify the simulations and
to examine the fundamental causes of range chatter, no noise was added to the holograms.

Figure 4 shows the approximately monostatic, motion-compensated 3D imaging system
simulated here. Light from two laser sources (chirped illuminator and pilot tone) entered a
common transmitter that flood illuminated the distant object. The light from each source scat-
tered off the object and was collected by a common receiver that imaged the light from the object
onto a camera, where each signal interfered with its respective reference beam. Here, we used
multiplexing to encode the signals from each laser source onto a single hologram for each
pulse pair.

This study also contains some simulations that include atmospheric turbulence and sharp-
ness metric maximization (SMM) as a method of correcting images aberrated by turbulence.
We simulated atmospheric turbulence by placing Kolomogorov phase screens in the pupil of
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the imaging system with variable D∕r0, which is a gauge for the strength of turbulence.22 We
generated the phase screens via the method laid out by Lane et al.23 with added subharmonics.
The sharpness metric of choice for these experiments was given by

EQ-TARGET;temp:intralink-;e032;114;563S ¼ −
X
u;v;z 0

Iβ3Dðu; v; z 0Þ; (32)

where β is the sharpness exponent.24

The SMM algorithm was nearly identical to the one laid out by Banet et al.7 with some
modifications made to allow for inclusion of the pilot tone. There were two main changes to
the algorithm: (1) the conjugate product step, Eq. (26), was added to the forward and reverse
models and (2) the sharpness exponent was changed to β ¼ 0.05. Here, the reverse model was
used to calculate analytic gradients to feed to the optimizer, which was the limited-memory
Broyden Fletcher Goldfarb Shanno algorithm,25 via reverse-mode algorithmic differentiation.26

Thurman and Fienup27 showed that the optimal β value for 2D SMM given a single speckle
realization was 0.5, and Banet et al.7 used an optimal value of 0.88 for 3D SMM given a highly
speckled 3D irradiance. For motion-compensated 3D imaging with the pilot tone, one would
expect the optimal β value to be roughly half the optimal β value for conventional 3D imaging,
due to the fact that I3Dðu; v; z 0Þ is the modulus-squared of the Fourier transform of Eðu; v; νnÞ
over frequency, in this case. The amplitude of the stack of conjugate-product images, Eðu; v; νnÞ,
is proportional to the modulus-squared of the optical field (similar to an irradiance), so
I3Dðu; v; z 0Þ is proportional to the squared irradiance. Thus, one would expect the optimal β
values to decrease by a factor of 2. We performed a simulation study with pilot-tone imaging
that examined β values from 0.05 to 2 and found that β ∼ 0.25 provided the lowest mean-squared
errors for speckled imagery and that β ∼ 0.05 provided the lowest mean-squared errors for
speckle-free imagery. β ¼ 0.05 also provided relatively low errors for speckled imagery,
so we decided to use β ¼ 0.05 for all of the simulations here.

3.1 Qualitative Effects of Speckle Decorrelation on Sloped Objects:
Cases 1 and 4

We explored the qualitative effects of conventional versus motion-compensated 3D imaging,
specifically when observing sloped objects, i.e., Case 1 versus Case 4 of Fig. 2. Here, we exam-
ined rectangular objects (in the transverse dimension) against a dark background with varying
depth profiles. Figure 5 shows 2D frequency-averaged irradiance images of the objects in the top
row and range images of the objects in the bottom row. Here, the images were formed with
stationary objects (no motion) using conventional 3D imaging. Each column displays the images
of a different object; the first three columns feature a rectangular object with a constant sloped
surface. The slope of the surface is in the left-right direction and increases from 0 in (a) and (e) to
0.75 in (b) and (f) and to 3 in (c) and (g). The speckle noise decreases in the irradiance images
from (a) to (c). This phenomenon is due solely to speckle decorrelation across the image col-
lection time that is due to the SBP (the second method described in Sec. 2.3, because the object is
stationary here). Van Zandt et al.28 observed similar speckle contrast reduction on sloped surfaces
for 2D images formed with polychromatic illumination, which are analogous to the 2D
frequency-averaged irradiance images simulated here. The range images look fairly clean in
(e), (f), and (g), with a tiled appearance in the range images in (f) and (g). The final object,
shown in (d) and (h), has a depth profile for which the right half of the object is flat and the

= Pilot tone = Chirped illuminator = Both sources

Fig. 4 Diagram of motion-compensated 3D imaging with a pilot tone simulated in this paper.
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left half has a slope of 3. Here, the range image in (h) looks clean, but the irradiance image has
reduced speckle noise only over the left half of the image. Again, this is due to the fact that the
SBP of the left half causes speckle decorrelation from pulse-to-pulse due purely to diffraction,
and the SBP of the right half is zero.

Figure 6 shows the results of our examination of the exact same objects but with two
changes. First, we enforced independent speckle realizations from pulse-to-pulse to mimic a

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Conventional 3D imaging of tilted rectangular objects with different slopes and with
a common speckle realization across the bandwidth (i.e., the objects were stationary).
(a)–(d) Frequency-averaged 2D images and (e)–(h) corresponding 2D range images. (a) and
(e) have a slope of 0, (b) and (f) have a slope of 0.75, (c) and (g) have a slope of 3. (d) and
(h) An object with a left half that has a slope of 3 and a right half that has a slope of 0. Note:
all range images (bottom row) have the same colorbar range.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Motion-compensated 3D imaging with a pilot tone of tilted rectangular objects with different
slopes and with independent speckle realizations across the bandwidth (i.e., the objects were
moving/vibrating). (a)–(d) Frequency-averaged 2D images and (e)–(h) corresponding 2D range
images. (a) and (e) have a slope of 0, (b) and (f) have a slope of 0.75, (c) and (g) have a slope
of 3. (d) and (h) An object with a left half that has a slope of 3 and a right half that has a slope of 0.
Note: all range images (bottom row) have the same colorbar range.
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scenario in which the object is moving or vibrating during the image collection time. Second, we
used 3D imaging with the pilot tone. The addition of the pilot tone is a necessity in this case as the
independent speckle phases over the image collection would result in completely noisy range
images if conventional 3D imaging were used. In this case, Figs. 6(a)–6(d) feature greatly
reduced speckle noise compared with Figs. 5(a)–5(d) due to the independent speckle from
pulse-to-pulse. Here, each irradiance image is the effective average of N (the number of frequen-
cies in the ramp) independent speckle realizations. If the speckles do not fully decorrelate from
pulse-to-pulse, then the number of independent speckle realizations, and the degree of speckle
reduction, will be correspondingly lower. There are some key differences between the range
images shown in Fig. 6 and those shown in Fig. 5. In Fig. 6(f), the tiled look is no longer
as pronounced as in Fig. 5(f), due to the fact that the 3D irradiance image—from which the
range image is obtained—is now relatively speckle-free, resulting in marginally cleaner range
images. Interesting results appear in Figs. 5(g) and 5(h), where there is obvious noise, which we
refer to as range chatter, over the highly sloped facets of the object. Fundamentally, this is due to
speckle decorrelation between the pilot tone and the chirped illuminator, specifically for
the pulse-pairs with a larger difference in frequency, jνn − νpj, and thus a larger SBP [see
Fig. 3(b)]. From Fig. 6, it is apparent that 3D imaging with the pilot tone completely compensates
for speckle decorrelation due to object motion, but not due to diffraction angle differences
between the chirped illuminator and the pilot tone. Recall that the range images in Fig. 6 would
be complete noise if not for the addition of the pilot tone.

3.2 Blurred and Reconstructed 3D Imagery Using Sharpness Metric
Maximization: Case 4

We simulated isoplanatic atmospheric turbulence to discern the effects of transverse system aber-
rations on range chatter, which can occur for motion-compensated 3D imaging with a pilot tone,
i.e., Case 4 of Fig. 2. Reference 7 simulated conventional 3D imaging in atmospheric turbulence
and used SMM to correct the aberrations. In this study, the effects from turbulence on range
images are fundamentally different with the inclusion of object motion and the pilot tone.
In addition to transverse blurring, turbulence exacerbates range chatter over highly sloped object
facets because of the increased width of the impulse response function, hðu; vÞ, in Eq. (27).
Figure 7 shows imagery of the scaled truck object with and without correction via SMM includ-
ing (a) an aberrated 2D frequency-averaged irradiance image, (b) a corrected 2D frequency-
averaged irradiance image, (c) an aberrated range image, and (d) a corrected range image.
Both the aberrated and corrected irradiance images feature speckle contrast reduction due to
object motion. In comparison, irradiance images formed by conventional 3D imaging (Case
1 in Fig. 2) have high speckle contrast, except for the case of highly sloped facets [cf., Figs. 5(c)
and 5(d)]. In the aberrated range image in Fig. 7(c), there is an obvious range chatter over the
sloped background and much of the truck that was not present in the range images in Ref. 7. The
range chatter is much less severe over the front bumper of the truck, which has a smaller slope
magnitude. From Fig. 7(d), it is clear that SMM improves the transverse blurring of the images as
well as the range chatter over the highly sloped facets.

4 Quantitative Results
Here, we present the results of a trade space exploration to better understand the effects of speckle
decorrelation via the SBP for motion-compensated 3D imaging with a pilot tone, i.e., Case 4 in
Fig. 1. To gauge 3D imaging performance, we define a range image error metric, σR, which is
given by

EQ-TARGET;temp:intralink-;e033;114;163σR ¼ stdu;v∈Wðu;vÞfmod½R̂ðu; vÞ − Rðu; vÞ þ Δz∕2;Δz� − Δz∕2g; (33)

where std is a standard deviation operator, Wðu; vÞ is a window over which we calculate the
standard deviation of each image, R̂ðu; vÞ is the range image generated by 3D imaging, and
Rðu; vÞ is the true range profile (known in simulations).

We performed four trade studies to further elucidate the effects of speckle decorrelation via
the SBP, which all examine sloped rectangular objects such as the ones shown in Figs. 4 and 5.
We experimented with different spectral weighting functions in the frequency domain to reduce
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the sidelobes in the range domain, in an effort to mitigate range chatter. Each spectral weighting
function, SðνÞ, weighted the irradiance associated with the conjugate product images and had
equivalent coherence times as defined by τc ¼ ∫ ∞

0 jSðνÞj2dν∕j∫ ∞
0 SðνÞdνj2, where this definition

is equivalent to the one in Eq. (5) of Ref. 29. In turn, the effective bandwidth of each function is
inversely proportional to the coherence time, which we define as Δνeff ¼ 1∕τc. Here, equivalent
effective bandwidths also correspond to equivalent effective range resolutions. Figure 8 shows

Fig. 8 Four spectral weighting profiles used in Fig. 9 relative to the effective bandwidth.

(a) (b)

(c) (d)

Fig. 7 SMM results for the scaled truck object showing (a) aberrated 2D frequency-averaged
irradiance image, (b) corrected 2D frequency-averaged irradiance image, (c) aberrated range
image, and (d) corrected range image.
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the four spectral weighting functions, which include rectangle, Gaussian, triangle, and Tukey
(raised cosine) profiles.

Figure 9(a) shows the resulting range error versus slope for each weighting function. The
error for each profile increases monotonically due to the fact that the SBP increases as the slope
increases, resulting in more speckle decorrelation between the chirped and pilot tones at the
edges of the bandwidth. We used an effective bandwidth of Δνeff ¼ 7.5 GHz in this case, result-
ing in a critical slope of αc ¼ 3.00, which corresponds to a tilt angle of θ ¼ 71.6 deg. This
agrees with Fig. 9(a), where the range error increases rapidly at or around this slope for all apod-
ization profiles. The range error is highest for the rectangular weighting function, and the errors
for the other weighting functions are fairly comparable. Because the non-rectangular weighting
functions have larger absolute widths than the rectangle, which would increase speckle decor-
relation for the frequencies at their edges, we can infer that sidelobe reduction due to the apo-
dized, non-rectangle weighting functions causes a noticeable (though not large) reduction of
range chatter. This trend is seen in all four studies. Note here that the error reaches an asymptote
around a value of 0.0923 m, which corresponds to a value of Δz∕

ffiffiffiffiffi
12

p
. This value is the standard

deviation of a uniform probability distribution of width Δz, and the range error metric cannot
exceed this value given the wrapped nature of the range images. Here we used a frequency spac-
ing of 0.469 GHz.

Figure 9(b) shows the range error versus bandwidth for the four weighting functions, and the
trends show that range error increases monotonically with the effective bandwidth. This result, as
well as the results in Fig. 9(a), agree with the notion that range chatter is caused by speckle
decorrelation between the chirped and pilot tones via the SBP, and increasing the slope of the

(a) (b)

(c) (d)

Fig. 9 Range error for four spectral weighting profiles for the rectangular objects shown in Figs. 4
and 5 (a) versus slope, (b) versus effective bandwidth, (c) versus frequency spacing, and (d) versus
D∕r 0. Plots (a), (b), and (d) all have the same δν values and thus the same range ambiguity interval.
Plot (d) also includes results for images that have been corrected via SMM. Each plot shows the
average of 10 independent realizations of speckle and turbulence (where applicable) with error
bars corresponding to �1 standard deviation.

Banet and Fienup: Speckle decorrelation effects on motion-compensated. . .

Optical Engineering 073103-16 July 2023 • Vol. 62(7)



object or the effective bandwidth will increase the range chatter. Here the object slope was 3, and
the frequency spacing was 0.469 GHz.

Figure 9(c) shows the normalized range error versus frequency spacing, δν. The previous two
trade studies kept the frequency spacing constant; however, the frequency spacing changes here,
which causes the range ambiguity interval to change for each data point. As a result, we report the
normalized range error on the y-axis, where each point was normalized such that the error is
relative to the same range ambiguity interval that is seen in Figs. 8(a) and 8(b). The normalized
range error is defined as σR ¼ σRðΔzref∕ΔzÞ, where Δzref is the reference range ambiguity
interval. The results show that the normalized range error increases as the frequency spacing
increases, motivating the use of as many laser pulses within the bandwidth as possible to mitigate
range chatter. The reason for this trend is as follows: as the frequency spacing increases, the range
ambiguity interval decreases while the effective bandwidth remains constant. This implies that
the range resolution stays constant as well, but as the range ambiguity interval decreases, the
energy in the z 0 domain becomes more concentrated into a fewer number of range resolution
elements. Because this is a coherent process, this results in speckles in the range domain that can
become large when compared with the main lobe and, in turn, can introduce range chatter. The
results for Fig. 9(c) used an object slope of 3 and an effective bandwidth of 15 GHz.

The final study, shown in Fig. 9(d) shows results of range error versus D∕r0 for an effective
bandwidth of 15 GHz and a slope of 3 both with and without aberration correction via SMM.
The results confirm the qualitative results in Fig. 7, that is, range chatter increases with the
turbulence strength over sloped facets of the object. If the object had a slope of 0, then we would
see aberrations in the range image consistent with the transverse blur seen in Ref. 7 instead of
range chatter. In addition, we see that SMM reduces range chatter over the object for all D∕r0
and that the range chatter after SMM is nearly constant for all turbulence strengths. Here,
the object slope was 3, the effective bandwidth was 15 GHz, and the frequency spacing was
0.469 GHz.

5 Conclusion
This study explained and demonstrated the theory behind conventional, multi-wavelength 3D
imaging as well as motion-compensated, multi-wavelength 3D imaging with the addition of
a pilot tone, which is pertinent for long-range imaging of objects in motion. We explored the
effects of two methods of speckle decorrelation over the bandwidth: decorrelation due to object
motion/vibration and decorrelation due to the SBP of a facet of the object. Speckle decorrelation
via object motion quickly degraded the range image quality for conventional 3D imaging,
whereas motion-compensated 3D imaging with the pilot tone was extremely robust to decorre-
lation via object motion. However, motion-compensated 3D imaging was still susceptible to the
second speckle decorrelation method: decorrelation via the SBP. It is important to note that 2D
frequency-averaged irradiance images can experience speckle contrast reduction if either method
of speckle decorrelation occurs, whether the pilot tone is used or not. In addition, range chatter
only appeared for motion-compensated 3D imaging with a pilot tone, as shown in Figs. 5(g) and
5(h), when both high SBPs and independent speckle from pulse-pair to pulse-pair were present.
In that case, conventional 3D imaging completely failed due to the independent speckle real-
izations, thus demonstrating that range chatter, although an unfavorable effect, is not a tradeoff
of motion-compensated 3D imaging when compared with conventional 3D imaging (see Fig. 2).
The quantitative results in Fig. 9 showed that the range error increases as a function of the object
slope, optical bandwidth, frequency spacing, and D∕r0. We also showed that apodization in the
frequency domain can improve range chatter via sidelobe reduction and that SMM can improve
range chatter as well. This study provides a theoretical baseline and a simulation-based charac-
terization for long-range 3D imaging using a pilot tone. As such, this study should be compared
with experimental results from field data in the future.

6 Appendix: Derivation of the SBP from the Grating Equation
For a more in-depth analysis of speckle decorrelation with wavelength, we treat the rough object
as a superposition of diffraction gratings. Any one bright speckle of the pupil-plane field can be
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considered to have come from a Fourier component of the object’s scattering function, which is
represented as a grating obeying the grating equation given by

EQ-TARGET;temp:intralink-;e034;114;712Λ½sinðθ2Þ − sinðθ1Þ� ¼ mλ; (34)

where Λ is the period of the diffraction grating for that speckle that diffracts, for them’th order of
diffraction, into the outgoing angle of θ2 for an incident angle of θ1. First, we solve for Λ for a
given set of θ1 and θ2 yielding

EQ-TARGET;temp:intralink-;e035;114;653Λ ¼ mλ

sinðθ2Þ − sinðθ1Þ
: (35)

We now treat Λ as a constant and seek to find the behavior of the outgoing angle θ2 for small
changes in λ, that is, dθ2∕dλ, as this will determine the behavior of the bright speckle, and hence
the speckle pattern, as a function of frequency.

To accomplish this, we differentiate both sides of Eq. (34) while treating everything constant
except λ and θ2, yielding

EQ-TARGET;temp:intralink-;e036;114;556mdλ ¼ Λd½sinðθ2Þ� ¼ Λ cosðθ2Þdθ2 ⇒
dθ2
dλ

¼ m
Λ cosðθ2Þ

: (36)

Inserting Eq. (35) and simplifying gives

EQ-TARGET;temp:intralink-;e037;114;507

dθ2
dλ

¼ sinðθ2Þ − sinðθ1Þ
λ cosðθ2Þ

: (37)

In our monostatic case, θ2 ≈ −θ1, which simplifies Eq. (37) further. Figure 10 shows this
monostatic case in which the grating component of interest is the one that scatters directly back
into the same direction as the incident light. Using dθ2 ¼ dx∕z0, where dx is the spatial coor-
dinate differential in the pupil plane, and writing dλ in terms of dν, Eq. (37) yields

EQ-TARGET;temp:intralink-;e038;114;421

dx
dν

¼ 2 tanðθ1Þz0
ν

¼ 2αz0
ν

: (38)

Because tanðθ1Þ is the slope, α, for a facet of the object, we see that Eq. (38) is a slightly
altered version of Eq. (22) in the case in which Δν1;2 and Δx become differentials. Equation (38)
informs us that, purely due to diffraction, the speckle patterns observed in the pupil plane will
shift as the source illumination frequency changes. Thus, this effect is present even after ignoring
the phase term in Eq. (15) that was dropped. Moreover, the shift amount that we expect in the
pupil plane varies proportionally with α, so we expect speckle decorrelation effects to occur more
for highly sloped object facets.

We can now see how Eq. (38) agrees with Goodman’s statement that speckle patterns
expand/contract as the illumination frequency changes. The key here is that, with increasing
optical frequency, speckle patterns contract about the mirror reflection angle vector of a given
object facet. For our monostatic setup and for highly sloped facets, the mirror reflection angle

Fig. 10 Diagram of the monostatic imaging setup simulated here. In this case, the speckles in the
pupil experience a translation when the illumination frequency changes purely due to diffraction.
More explicitly, the speckle pattern contracts or expands about the mirror reflection angle vector,
shown by the dashed line, for changes in frequency, and this contraction/expansion manifests as
a translation over the small angular subtense of the pupil (when viewed from the object). The trans-
lation is proportional to the tilt angle of the object for a small change in frequency.
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will be rotated far away from the optical axis, so the contraction/expansion effect will be more
noticeable over the pupil [see Fig. 10]. In these simulations, the pupil itself has a small enough
angular subtense that the contraction effect can be described as a translation of the speckles over
the pupil. For shallow object facets, the contraction effect is much less pronounced because the
optical axis and the mirror reflection angle will be much closer to each other, and, for the small
bandwidths used here, there can be negligible movement of the speckles in the pupil.

Data Availability
Data underlying the results presented in this paper are not publicly available at this time but may be
obtained from the authors upon reasonable request.
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