
Electrifying the field of metasurface optics
Nicholas A. Güsken and Mark L. Brongersma*
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA

The field of optics has developed sophisticated ways to manipu-
late the flow of light by polishing pieces of glass or molding
shapes from plastic. Many emerging applications, including dis-
plays, sensors, imaging systems, and communication devices,
are now demanding a more favorable size, weight, power, and
cost (SWaP-C) for the optical components to create ultra-
compact optoelectronic systems. This is especially true when
such systems are incorporated in wearables, drones, the internet
of things (IoT), and point-of-care diagnostics where weight and
size come at a premium. The need to miniaturize optical ele-
ments has propelled the field of metasurfaces[1–5], which has
taught us how to create essentially planar optical elements by
judiciously nanostructuring thin films of metal and semiconduc-
tor materials. Metasurfaces provide major advantages over
conventional optics (e.g., a lens or prism) through their ability
to decouple shape from function. For metasurfaces, it is the
nanopattern that controls the optical function. This brings
tremendous design flexibility in arranging the myriad light-
scattering nanostructures in a metasurface, opening valuable
new ways to manipulate optical wavefronts and mitigate aber-
rations. Fortunately, a developing intuition about the operation
of metasurfaces and the widespread availability of powerful
rapid-design software tools based on topological optimization,
inverse design, and deep-learning principles has facilitated rapid
progress in their development[6–8]. As a result, we have been able
to create a wide range of high-performance small-form-factor
optics components, realizing very high numerical apertures
and minimal aberrations, which enable us to focus or redirect
light, control the state-of-polarization, produce holograms, per-
form nonlinear optical functions, deliver multi-functionality,
and enable complex light-field imaging. However, despite the
notable progress, most metasurfaces have remained passive,
merely converting one wavefront into another.

Writing in Photonics Insights, Ding et al.[9] review one of the
most recent frontiers in the metasurface field, which is aimed at
electrifying metasurfaces. Here, the goal is to endow them with
a variety of dynamic functions and facilitate reconfiguration
through external electrical stimuli. If this can be achieved with
high optical efficiencies, high speed, and low electrical power
consumption, it will unlock a plethora of advanced capabilities
in modern optics. One can imagine flat optical imaging systems
that can dynamically reshape light fields to, e.g., tune the focus

of a lens, tailor a polarization state, steer light beams, adjust
wavefronts in real-time to mitigate aberrations, or alter resonant
filtering functions. The review describes how such dynamic
functions can impact a broad spectrum of technologies includ-
ing medical and computational imaging, augmented and virtual
reality (AR and VR), light detection and ranging (LIDAR), dis-
plays, adaptive optics, and (quantum) optical communication
and processing. Current research is also opening up entirely
new directions for explorative science as dynamic metasurfaces
are not bound by the fundamental limits of static elements[10]

and can, e.g., break Lorentz reciprocity or achieve Doppler-like
wavelength shifts. This opens the door to new types of devices
capable of providing optical isolation without the presence of
magnetic fields and shows the way to realize topologically
protected systems.

The review provides a comprehensive overview of the key
fundamental mechanisms by which metasurfaces can be tuned
electrically. These mechanisms are intimately linked to materi-
als and structures whose optical properties can display dramatic
changes upon an electrical stimulus. As the interaction times/
lengths for light waves that are traversing metasurfaces are very
short, materials are needed that can display unity-order changes
in their refractive index. An impressive amount of creative re-
search is discussed on electronic and structural phase change
materials, 2D materials with strong excitonic material resonan-
ces, microelectromechanical devices, semiconductor nanostruc-
tures that display Stark or free-carrier dispersion effects,
electrochemical materials, transparent conductive oxides, and
electro-optic materials. Even when metasurfaces are made from
materials whose optical properties are hard to tune (e.g., noble
metals), it is still possible to dynamically change their behavior
by altering the dielectric environment[11–13]. Here, we can take
advantage of the fact that metasurfaces have an open structure
with many voids between the scattering nanostructures, which
allows easy infiltration with liquids and soft materials. This has
made it possible to, e.g., create tunable metasurfaces using ma-
ture liquid crystal technology[14–17] and microfluidics[18].

The review also illustrates how to benefit from plasmon[19–21],
Mie[16,22], materials[23,24], and guided-mode resonances[25–27] to
boost light–matter interaction and achieve larger tunability by
exploiting resonant behaviors. In general, the enhanced light–
matter interaction allows metasurfaces to do more with less,
reducing materials and fabrication costs. Resonances also
bring the valuable opportunity to selectively interact with light
waves at a desired frequency, polarization, or angle of incidence.
It is worth noting that the optical properties of resonant metasur-
face building blocks are as much determined by their geometric
shape as by their material properties. This often brings
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flexibility in material choices and frequently makes it possible
to select earth-abundant and environmentally friendly ones. This
is why metasurface science is making it possible to move to-
wards more sustainable fabrication and recycling pathways than
those available for conventional optics.

Reducing power consumption in dynamic metasurfaces with
nanoscale pixel arrays is shaping up as one of the major chal-
lenges moving forward, rivaling that of densely integrated elec-
tronic circuitry. Fortunately, the two-dimensional (2D) form
factor of metasurfaces affords facile, dense integration with
electronics. The ability to stack 2D metasurface optics directly
on top of essentially planar electronic systems brings the benefit
of ultrahigh operational speeds and enables minimized power
consumption. However, in the identification of new metasurface
tuning mechanisms, it is very important to identify ones that can
benefit from low electrical switching powers and low optical
losses. In this regard, nonvolatile structural phase change mate-
rials and certain microelectromechanical devices, which only
consume power during switching events, can bring valuable
benefits. For this reason, advances in device technology require
a continuous search for better materials. The active search for
structural phase change materials that display low electrical
switching powers and low optical losses in the visible, such
as antimony sulfide (Sb2S3), is one example[28,29].

Given the many amazing traits of dynamic metasurfaces and
the promising prototypes, it is worth asking what is needed to
commercialize them. One key roadblock is the accessibility of
low-cost, large-area nanofabrication techniques. For some appli-
cations, we can benefit from the advances in the semiconductor
chip industry where phase-shift lithography as well as deep and
extreme ultraviolet (UV) lithography technologies have been
developed to provide the required nanoscale spatial resolu-
tion. It should come as no surprise that early applications of
metasurfaces[30] have emerged in consumer electronics[31] and
automotive sectors[32], where the capabilities of semiconductor
foundries can be leveraged. Certain large-area applications in
aerospace, solar, medical, chemical, and civil engineering re-
quire the printing of nanostructures at large scales and very
low costs. A variety of new printing technologies based on soft
lithography[33,34], including nanoimprint lithography[35,36] and
transfer printing, are currently demonstrating their potential to
create metasurfaces for solar energy[37,38], photonic devices[39],
and biosensor technologies[40,41]. Another challenge is the fabri-
cation reproducibility and long-term stability of electrified de-
vices under continuous operation. Here, each material system
presents its own challenges, making research and development
of encapsulation oxides, adhesion layers, and contact interfaces
increasingly important.

As a closing point, it is worth noting that there are additional
opportunities for electrified metasurfaces beyond the dynamic
manipulation of light fields. Subwavelength structuring of met-
als and semiconductors can also enhance and manipulate light
absorption[42–55] and emission[56–60] processes. For this reason, we
have seen their successful introduction in solar cells[61–63],
CMOS image sensors[51], solid-state light-emitters[60,64,65], and
displays[66]. Nanopatterning of the continuous metal, semicon-
ductor, and insulating layers in these devices has increased per-
formance and enabled new optoelectronic functions. This area is
ripe for commercialization, as the optoelectronic devices indus-
try already makes extensive use of advanced nanostructuring
techniques. For this reason, existing commercially-viable tech-
nologies may be re-envisioned by incorporating a series of

strategic patterning steps into their fabrication process. Looking
ahead, the capability to tune near-field light-matter interactions
between individual emitters and a metasurface opens exciting
possibilities for space-time quantum metasurfaces such as
dynamically structuring light on the single-photon level[67–69].
There is also a broad range of opportunities for using meta-
surfaces to compact imaging systems and letting metasurfaces
perform analog computing functions to extract more informa-
tion from optical scenes[70–77].

We are at the start of a revolution in the development and
commercialization of metasurface technologies. It is also clear
that the fusion of semiconductor electronics and metasurface op-
tics provides many new opportunities and application areas. It
will be exciting to watch where the rapid electrification of meta-
surface technologies will take us in the coming years. The re-
view by Ding et al.[9] in Photonics Insights will serve as an
incredible valuable resource for those involved in pushing the
boundaries in the field.
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