You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 June 2007Evaluation of the Moderate Resolution Imaging Spectrometer special 3.95-micron fire channel and implications on fire channel selections for future satellite instruments
The 3.75-micron and 11-micron channels on the polar orbiting NOAA Advanced Very High Resolution Radiometer (AVHRR) sensors have saturation temperatures of approximately 325 K. They allowed limited successes in estimating the sub-pixel fire temperature and fractional area coverage. The saturation problem associated with the 3.75-micron AVHRR channel greatly limited the ability for such estimates. In order to overcome this problem, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Terra and Aqua spacecrafts have both been equipped with a special fire channel centered at 3.95 microns with a specified saturation temperature of 500 K and a spatial resolution of 1 km. We have analyzed more than 40 sets of Terra and Aqua MODIS fire data acquired over different geographical regions, and found that very few fire pixels have the 3.95-micron fire channel brightness temperatures greater than 450 K. We suggest that the saturation temperature of fire channels near 4 microns for future satellite instruments with pixel sizes of about 1 km should be specified at about 450 K or even slightly lower in order to make the channels more useful for quantitative remote sensing of fires. A dual gain approach should also be considered for future satellite fire channels.
The alert did not successfully save. Please try again later.
Bo-Cai Gao, Xiaoxiong Xiong, Rong-Rong Li, Ding-Yi Wang, "Evaluation of the Moderate Resolution Imaging Spectrometer special 3.95-micron fire channel and implications on fire channel selections for future satellite instruments," J. Appl. Rem. Sens. 1(1) 013516 (1 June 2007) https://doi.org/10.1117/1.2757715