You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 September 2016Change detection with one-class sparse representation classifier
A one-class sparse representation classifier (OCSRC) is proposed to solve the multitemporal change detection problem for identifying disaster affected areas. The OCSRC method, which is adapted from a sparse representation classifier (SRC), incorporates the one-class strategy from a one-class support vector machine (OCSVM) to seek accurate representation for the class of changed areas. It assumes that pixels from the changed areas can be well represented by samples from this class, thus the representation errors are taken as the possibilities of change. Performances of OCSRC and OCSVM are tested and compared with multitemporal multispectral HJ-1A images acquired in Heilongjiang Province before and after the flood in 2013. The entire image, together with two subimages, are used for overall comparison and detailed discussion. Receiver-operating-characteristics curve results show that OCSRC outperforms OCSVM by a lower false-positive rate at a defined true-positive rate (TPR), and the gap is more obvious with high TPR values. The same outcome is also manifested in the change detection image results, with less misclassified pixels for OCSRC at certain TPR values, which implies a more accurate description of the changed area.