You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 August 2014Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments
A modified multiple endmember spectral mixture analysis (MMESMA) approach is proposed for high-spatial-resolution hyperspectral imagery in the application of impervious surface mapping. Different from the original MESMA that usually selects one endmember spectral signature for each land-cover class, the proposed MMESMA allows the selection of multiple endmember signatures for each land-cover class. It is expected that the MMESMA can better accommodate within-class variations and yield better mapping results. Various unmixing models are compared, such as the linear mixing model, linear spectral mixture analysis using the original linear mixture model, original MESMA, and support vector machine using a nonlinear mixture model. Airborne 1-m resolution HySpex and ROSIS data are used in the experiments. For HySpex data, validation based on 25-cm synchronism aerial photography shows that MMESMA performs the best, with the root-mean-squared error (RMSE) of the estimated abundance fractions being 13.20% and the correlation coefficient (R2) being 0.9656. For ROSIS data, validation based on simulation shows that MMESMA performs the best, with the RMSE of the estimated abundance fraction being 4.51% and R2 being 0.9878. These demonstrate that the proposed MMESMA can generate more reliable abundance fractions for high-spatial-resolution hyperspectral imagery, which tends to include strong within-class spectral variations.
The alert did not successfully save. Please try again later.
Kun Tan, Xiao Jin, Qian Du, Peijun Du, "Modified multiple endmember spectral mixture analysis for mapping impervious surfaces in urban environments," J. Appl. Rem. Sens. 8(1) 085096 (8 August 2014) https://doi.org/10.1117/1.JRS.8.085096