11 April 2019 Spontaneous smile intensity estimation by fusing saliency maps and convolutional neural networks
Qinglan Wei, Elif Bozkurt, Louis-Philippe Morency, Bo Sun
Author Affiliations +
Funded by: Beijing Natural Science Foundation, Natural Science Foundation of Beijing Municipality
Abstract
Smile intensity estimation plays important roles in applications such as affective disorder prediction, life satisfaction prediction, camera technique improvement, etc. In recent studies, many researchers applied only traditional features, such as local binary pattern and local phase quantization (LPQ) to represent smile intensity. To improve the performance of spontaneous smile intensity estimation, we introduce a feature set that combines the saliency map (SM)-based handcrafted feature and non-low-level convolutional neural network (CNN) features. We took advantage of the opponent-color characteristic of SMs and the multiple convolutional level features, which were assumed to be mutually complementary. Experiments were made on the Binghamton-Pittsburgh 4D (BP4D) database and Denver Intensity of Spontaneous Facial Action (DISFA) database. We set the local binary patterns on three orthogonal planes (LBPTOP) method as a baseline, and the experimental results show that the CNN features can better estimate smile intensity. Finally, through the proposed SM-LBPTOP feature fusion with the median- and high-level CNN features, we obtained the best result (52.08% on BP4D, 70.55% on DISFA), demonstrating our hypothesis is reasonable: the SM-based handcrafted feature is a good supplement to CNNs in spontaneous smile intensity estimation.
© 2019 SPIE and IS&T 1017-9909/2019/$25.00 © 2019 SPIE and IS&T
Qinglan Wei, Elif Bozkurt, Louis-Philippe Morency, and Bo Sun "Spontaneous smile intensity estimation by fusing saliency maps and convolutional neural networks," Journal of Electronic Imaging 28(2), 023031 (11 April 2019). https://doi.org/10.1117/1.JEI.28.2.023031
Received: 31 October 2018; Accepted: 27 March 2019; Published: 11 April 2019
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Databases

Samarium

Lawrencium

Video

Data modeling

Feature extraction

Convolutional neural networks

RELATED CONTENT


Back to Top