Translator Disclaimer
20 December 2016 Mass reduction patterning of silicon-on-oxide–based micromirrors
Author Affiliations +
It has long been recognized in the design of micromirror-based optical systems that balancing static flatness of the mirror surface through structural design with the system’s mechanical dynamic response is challenging. Although a variety of mass reduction approaches have been presented in the literature to address this performance trade, there has been little quantifiable comparison reported. In this work, different mass reduction approaches, some unique to the work, are quantifiably compared with solid plate thinning in both curvature and mass using commercial finite element simulation of a specific square silicon-on-insulator–based micromirror geometry. Other important considerations for micromirror surfaces, including surface profile and smoothness, are also discussed. Fabrication of one of these geometries, a two-dimensional tessellated square pattern, was performed in the presence of a 400-μm-tall central post structure using a simple single mask process. Limited experimental curvature measurements of fabricated samples are shown to correspond well with properly characterized simulation results and indicate 67% improvement in radius of curvature in comparison to a solid plate design of equivalent mass.
Harris J. Hall, Andrew Green, Sarah Dooley, Jason D. Schmidt, LaVern A. Starman, Derrick Langley, and Ronald A. Coutu Jr. "Mass reduction patterning of silicon-on-oxide–based micromirrors," Journal of Micro/Nanolithography, MEMS, and MOEMS 15(4), 045501 (20 December 2016).
Received: 3 August 2016; Accepted: 21 November 2016; Published: 20 December 2016

Back to Top