You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 July 2004High-resolution x-ray masks for high aspect ratio microelectromechanical systems applications
The advanced requirements of bio-MEMS and MOEMS, i.e., low sidewall surface roughness, submicron critical dimension, and high aspect ratio, necessitate the use of an intermediate mask and a soft x-ray lithography process to fabricate working x-ray masks that are suitable for deep x-ray lithography. Intermediate masks consist of 2 to 2.5-μm gold patterns on membranes/substrates that are highly transparent to x-ray radiation, whereas working masks possess greater than 5 μm of gold patterns. In this work, 1-μm silicon nitride membranes are produced by a low pressure chemical vapor deposition (LPCVD) process on both the front and backside of <100> prime grade wafers and anisotropic wet etch through silicon nitride etch masks. E-beam lithography is used to pattern 0.8- to 3-μm-thick resist layers with submicron resolution. In the case of the 3-μm resist layers, the features are electroplated with approximately 2 μm of gold to form an intermediate mask. The 0.8-μm-thick layers are electroplated with gold up to a thickness of 0.6 µm and form initial masks, which are in turn used in a soft x-ray lithographical process to make intermediate masks. The process of building a high-resolution intermediate x-ray mask, directly by e-beam patterning a 3 μm layer of e-beam resist, followed by gold electroplating, is found to be viable but requires the use of a high energy (>100 keV) e-beam writer. The stability of the resist pattern during soft x-ray lithography (SXRL) by use of an initial mask is found to be problematic. Double-side lithography and gold electroplating, can effectively reduce the aspect ratio of the mask pattern, eliminates the problems associated with the use of an initial mask to fabricate intermediate x-ray masks.
The alert did not successfully save. Please try again later.
Lin Wang, Todd R. Christenson, Yohannes M. Desta, Rainer K. Fettig, Jost Goettert, "High-resolution x-ray masks for high aspect ratio microelectromechanical systems applications," J. Micro/Nanolith. MEMS MOEMS 3(3) (1 July 2004) https://doi.org/10.1117/1.1753271