PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Compared with industrial thick crystalline silicon (c-Si) solar cells, thin c-Si cells have unique advantages of greater cost effectiveness and cell flexibility, representing a future technology trend. However, its present efficiency is far behind that of conventional thick c-Si solar cells. To improve the efficiency, it is necessary to consider and implement advanced designs. We report a strategy of optimizing cell designs to significantly improve the efficiency of a 20 μm-thick thin c-Si solar cell. Compared with the reference, the short-circuit current density is increased from 34.3 to 38.2 mA / cm2, the open circuit voltage is boosted from 632 to 684 mV, and the fill factor presents an improvement from 76.2% to 80.8%, resulting in an absolute efficiency gain of 4.6% from 16.5% to 21.1%. The experimental results are further explained by the device simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.