Translator Disclaimer
27 October 2018 Organic photovoltaic integrator with three complementary absorption bands to enhance efficiency
Author Affiliations +
The spectrum of 400 to 1100 nm sunlight can be divided into three bands, each absorbed by organic photovoltaic devices that are particularly efficient under the band in question, to achieve higher photoelectric conversion efficiency. The three bands are the absorption bands of fullerene (C70), chloroaluminum phthalocyanine (ClAlPc), and tin naphthalocyanine dichloride (SnNcCl2), which have peak values of 500, 731, and 863 nm, respectively. C70 is a well-known acceptor, whereas ClAlPc and SnNcCl2 serve as donors. In combination with another donor made of 4,4’-cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC), which is almost transparent in 400 to 1100 nm, three devices were fabricated and had active layers of TAPC  :  C70, ClAlPc  :  C70, and SnNcCl2  :  C70. After the doping proportions of these materials had been optimized, the maximum power conversion efficiency (PCE) values of the three devices were 4.52%, 4.3%, and 1.33%, respectively. The properties of donor material dominated the differences among these device behaviors. Subsequently, the overall PCE of a simulated multiple reflection module was calculated using these three devices, which, depending on the arranged sequence in which they were exposed to light and reflected the light to another, generated different absorption spectrum and thus influenced the overall PCE of the photovoltaic integrator. The highest overall simulated and experimental PCE of the photovoltaic integrator was 6.12% and 5.9%, respectively.
© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) 1947-7988/2018/$25.00 © 2018 SPIE
Jiun Haw Lee, Chia-Hsun Chen, Chien-Liang Lin, Shun-Po Yang, and Tien-Lung Chiu "Organic photovoltaic integrator with three complementary absorption bands to enhance efficiency," Journal of Photonics for Energy 8(4), 045502 (27 October 2018).
Received: 6 July 2018; Accepted: 1 October 2018; Published: 27 October 2018

Back to Top