You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 March 1992Extended-image reconstruction through horizontal path turbulence using bispectral speckle interferometry
Results are presented from a horizontal path imaging experiment in which a 0.5-m telescope was focused on targets located at a range of 1 .2 km. The targets varied in complexity from simple binary letters to extended representations of satellites with gray scale and size variations. Imaging at a center wavelength of 0.7 μm, we found an atmospheric degradation factor of D/r0 = 17, on average. We used a slow read-rate bare CCD detector and thus had to deal effectively with additive noise in the speckle measurements. Our image reconstruction algorithms are based on the use of the complex bispectrum, and we have demonstrated diffraction-limited imaging down to light levels approaching a few photons per speckle per resolution area. We have paid careful attention to the effects of additive noise on the reconstruction process and have shown that they can be adequately overcome. These results support the feasibility of high-resolution speckle imaging of high-earth-orbit satellites using CCDs.
The alert did not successfully save. Please try again later.
Taylor W. Lawrence, J. Patrick Fitch, Dennis M. Goodman, Norbert A. Massie, Robert J. Sherwood, Erik M. Johansson, "Extended-image reconstruction through horizontal path turbulence using bispectral speckle interferometry," Opt. Eng. 31(3) (1 March 1992) https://doi.org/10.1117/12.56083