You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Two novel full adder architectures are proposed that can be implemented with optical couplers using fiber optics or integrated optics. The first adder has the advantage over other proposed approaches by requiring only three different component devices: optical logical OR, optical logical NOT, and optical couplers. Configurations of the three components are described that are relatively simple to implement and are expected to function at greater than gigabit per second rates. The second adder requires fewer gates by using additional different gates: analog ADD and thresholding. Methods of implementing in fiber optics and with integrated optics are suggested including the synchronization of the lasers and methods for changing phase. The optical full adder can be used to provide high speed word addition by multiplexing independent additions. The pros and cons of fiber optics versus integrated optics for one architecture versus the other are discussed.