You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 1999Temporal and energetic characteristics of ultrabroadband Ti3+:sapphire laser
The main temporal and energetic characteristics of an ultrabroadband nanosecond Ti3+:sapphire laser are measured. The laser resonator employs a prism pair and a diaphragm creating a "spatially dispersive'' cavity, and then is allowed to maintain the lasing conditions simultaneously for different spectral components in different areas of the active element. Second-harmonic radiation from a Q-switched YAG:Nd3+ laser with a 532-nm oscillating wavelength and up to 210 mJ of pulse energy was utilized as a pumping source. The ultrabroadband laser was transversely pumped and operated simultaneously in 685- to 955-nm region with a minimum pulse duration of 25 ns, pulse energy of up to 17.8 mJ, a pulse repetition rate of 10 Hz, and 8.5% real pumping to lasing efficiency. Oscillation build-up time was 19.8 ns at a 775-nm wavelength and was varied for different spectral components by only 7 ns in the 700- to 912-nm region.
The alert did not successfully save. Please try again later.
Valerii V. Ter-Mikirtychev, Ekaterina L. Arestova, "Temporal and energetic characteristics of ultrabroadband Ti3+:sapphire laser," Opt. Eng. 38(4) (1 April 1999) https://doi.org/10.1117/1.602076