You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 December 2008Wavelength switchable multiwavelength actively mode-locked fiber-ring laser based on highly nonlinear photonic crystal fiber and multimode fiber Bragg grating
A wavelength switchable multiwavelength actively mode-locked fiber-ring laser based on highly nonlinear photonic crystal fiber (PCF) and polarization-dependent mode coupling to multimode-fiber Bragg grating (MMFBG) is proposed. Twenty meters of highly nonlinear dispersion-shifted PCF (DS-PCF) is inserted into the fiber ring cavity to suppress gain competition through the four-wave-mixing (FWM) effect. A mode scrambler is attached to the multimode fiber (MMF) to introduce a polarization-dependent mode coupling to the MMFBG. Through changing polarization in the cavity, stable and switchable one-wavelength, two-wavelength (wavelength spacing of 0.8 and 2.4 nm), and three-wavelength simultaneously actively mode-locked optical pulse trains at a repetition rate of 5 GHz are obtained. We show that high nonlinearity introduced by the nonlinear PCF in the cavity can improve significantly supermode suppression ratio (SMSR) of the multiwavelength pulses generated and a sidemode suppression ratio (SMSR) of 58 dB is realized.