You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 March 2011Improved numerical inverse kinematics for human pose estimation
We propose a real-time pose estimation method that addresses the weaknesses of the numerical inverse kinematics method. Using conventional inverse kinematics based on the numerical method requires many iterations; moreover, a singularity in the Jacobian matrix as well as a local minimum problem can occur. To solve these problems, we propose an inverse kinematics method combined with an unscented Kalman filter (UKF) to recover intermediate joint information. Because the numerical inverse kinematics method optimizes a state, the solution can often converge to the local minimum and require many iterations. We use several sigma points for analysis to find the optimum state by using an unscented transform. The improved method using a UKF converges faster than the numerical inverse kinematics method for the global minimum of the existing inverse kinematics. We use 2-D image processes to extract body areas from the input images, and a 3-D reconstruction algorithm is used to estimate the 3-D positions of the extracted human body area. Using the improved method, we generate intermediate joints for each body part and the results show that the proposed method reduces the computational complexity and increases the accuracy of estimation compared to conventional numerical inverse kinematics.