You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 May 2012Multiple surface discrimination in three-dimensional FLASH laser radar while minimizing the effects of diffraction
The goal of this work is to develop an algorithm to enhance the utility of three-dimensional (3-D) FLASH laser radar sensors through accurate ranging to multiple surfaces per image pixel while minimizing the effects of diffraction. With this algorithm it will be possible to realize numerous enhancements over both traditional Gaussian mixture modeling and single-surface range estimation. While traditional Gaussian mixture modeling can effectively model the received pulse, we know that its shape is likely altered by optical aberrations from the imaging system and the medium through which it is imaging. Additionally, only identifying a single surface per pulse may result in the loss of valuable information about partially obscured surfaces. This algorithm enables multisurface ranging of an entire image with a single laser pulse. Ultimately, improvements realized through this new ranging algorithm when coupled with various other techniques may make 3-D FLASH LADAR more suitable for remote sensing applications. Simulation examples show that the multisurface ranging algorithm derived in this work improves range estimation over standard Gaussian mixture modeling and frame-by-frame deconvolution using the Richardson-Lucy algorithm by up to 91% and 70% respectively.
The alert did not successfully save. Please try again later.
Brian J. Neff, Stephen C. Cain, "Multiple surface discrimination in three-dimensional FLASH laser radar while minimizing the effects of diffraction," Opt. Eng. 51(5) 056201 (18 May 2012) https://doi.org/10.1117/1.OE.51.5.056201